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Abstract

Substantial progress h_s" been made recently towards design-

ing, building and test-flying remotely piloted Micro Air Vehicles

(MA Vs). We seek to complement this progress in overcoming the

aerodynamic obstacles to flight at very small scales with a vision-

guided flight stability and autonomy system. The developed .sys-

tem is bezs'ed on a rob_vt horizon detection algorithm which we

discuss in greater detail in a companion paper [5]. In this paper,

we first motivate the use of computer vision .[or MA V autonomy,

arguing that given current sensor technology, vision may be the

only practical approach to the problem. We then briefly review

our statistical vision-based horizon detection algorithm, which

hits' been demow_trated at 30Hz with over 99.9% correct horizon

identi[ication. Next, we develop robust schemesJor the detection

of extreme MA V attitudes, where no horizon is visible, and fi_r the

detection of horizon e.s'timation errors, due to external factors

such as video transmission noise. Finall); we disctt_'s our feed-

back (vmtroller for self-stabilized.flight, and report results" on vi-

sion-based autonomo_s'.Jlights of duration exceeding ten minutes'.

1, Introduction

Ever since humankind's first powered flight, research efforts

have continually pushed the envelope to create flying machines

that are faster and/or larger than ever before. Now, however, there

is an effort to design aircraft at the other, largely unexplored end

of the spectrum, where the desire for portable, low-altitude aerial

surveillance has driven the development and testing of aircraft

that are as small and slow as the laws of aerodynamics will permit

-- in other words, on the scale and in the operational range of

small birds. Vehicles in this class of small-scale aircraft are

known as Micro Air Vehicles or MA Vs'.

Equipped with small video cameras and transmitters, MAVs

have great potential for surveillance and monitoring tasks in areas

either too remote or too dangerous to send human _outs. Opera-

tional MAVs will enable a number of important missions, includ-

ing chemical/radiation spill monitoring, forest-fire

reconnaissance, visual monitoring of volcanic activity, surveys of

natural disaster areas, and even inexpensive traffic and accident

monitoring. Additional on-board sensors can further augment

MAV mission profiles to include for example airborne chemical

analysis.

In the military, one of the primary roles for MAVs will be as

small-unit battlefield surveillance agents, where MAVs can act as

an extended set of eyes in the sky for military units in the field.

This use of MAV technology is intended to reduce the risk to mil-

itary personnel and has, perhaps, taken on increased importance

in light of the U.S.'s new war on terrorism, where special opera-

tions forces will play a crucial role. Virtually undetectable from

the ground, MAVs could penetrate potential terrorist camps and

other targets prior to any action against those targets, significantly

raising the chance for overall mission success.

Researchers in the Aerospace Engineering Department at the

University of Florida have established a long track record in de-

signing, building and test-flying (remotely human-piloted) practi-

cal MAVs [7-9,14,15]. While much progress has been made in the

design of ever smaller MAVs by researchers at UF and others in

the past five years, significantly less progress has been made to-

wards equipping these MAVs with autonomous capabilities that

could significantly enhance the utility of MAVs for a wide array

of missions.

The first step in achieving such MAV autonomy is basic sta-

bility and control. Here, we present such aflight stability and con-

trol ,system, based on vision processing of video from a camera

on-board our MAVs. In this paper, we first motivate the use of

computer vision for such a control system, and briefly review our

related work in vLs'ion-btLs'edhorizon detection which is discussed

more fully in a companion paper [5], and forms the basis of the

flight stability system presented here. Next, we address real-time

control issues in the flight stability system, including extreme at-

titude detection {i.e. no horizon in the image), confidence mea-

sures for the detected horizon estimates, and filtering of horizon

estimates over time. Finally we reporl some results of self-stabi-

lized MAV flights over the campus of the University of Florida

and over Fort Campbell, Kentucky.

2. Horizon detection

Below, we motivate vision-based approaches to the flight sta-

bility and control problem for MAVs and review related work in

in vision-based horizon detection.

2.1 Motivation

MAV flight stability and control presents some difficult chal-

lenges. The low moments of inertia of MAVs make them vulner-

able to rapid angular accelerations, a problem further complicated



bythefactthataerodynamicdampingofangularratesdecreases
withareductioninwingspan.Another potential source of insta-

bility for MAVs is the relative magnitudes of wind gusts, which

are much higher at the MAV scale than for larger aircraft. In fact,

wind gusts can typically be equal to or greater than the forward

airspeed of the MAV itself. Thus, an average wind gust can im-

mediately affect a dramatic change in the flight path of these ve-

hicles.

Birds, the biological counterpart of mechanical MAVs, can of-

fer some important insights into how one may best be able to

overcome these problems. For aerospace and robotic researchers,

the extraordinary capabilities of birds are a source of wonderment

and frustration at the same time wonderment, because birds ex-

hibit a remarkably complex and rich set of behaviors, frustration,

because the duplication of those behaviors in man-made systems

has thus far been elusive. Given this sad state of affairs, it is nat-

uml for engineers and researchers to want to learn from and emu-

late these biological systems. Here, we do not intend to seek

stn_ctural equivalence between artificial MAV systems and bio-

logical neural systems; rather, we seek to learn important func-

tional lessons from biology. In studying the nervous system of

birds, one basic observation holds true for virtually all of the thou-

sands of different bird species: Birds" rely heavily on sharp eves

and vision to guide almost every _s'peet of their behavior [5,16].

Biological systems, while forceful evidence of the importance

of vision in flight, do not, however, in and of themselves warrant

a computer-vision based approach to MAV autonomy. Other

equally important factors guide this decision as well. Perhaps

most critical, the technologies used in rate and acceleration sen-

sors on larger aircraft are not currently available at the MAV

scale. It has proven very difficult, if not impossible, to scale these

technologies down to meet the very low payload requirements of

MAVs. While a number of sensor technologies do currently exist

in small enough packages to be used in MAV systems, these small

sensors have sacrifced accuracy for reduced size and weight.

Take, for example, MEMs (Micro Electro-Mechanical Systems)

rate gyros and accelerometers. MEMs piezoelectric gyros, while

only weighing approximately one gram, have drift rates on the or-

der of 100 ° per minute and are highly sensitive to changes in

temperature. While elaborate temperature calibration procedures

can improve their accuracy somewhat, their use in inertial naviga-

tion is problematic at best.

Even if sufficient rate and acceleration sensors did exist, how-

ever, their use on MAVs may still not be the best allocation of

payload capacity. For many potential MAV missions, vision may

be the only practical sensor than can achieve required and/or de-

sirable autonomous behaviors. Furthermore, given that surveil-

lance has been identified as one their primary missions, MAVs

must necessarily be equipped with on-board imaging sensors,

such as cameras or infrared arrays. Thus, computer-vision tech-

niques exploit already present sensors, rich in information con-

tent, to significantly extend the capabilities of MAVs, without

increasing the MAV's required payload.

2.2 Vision-based horizon detection

Fundamentally, flight stability and control requires measure-

ment of the MAV's angular orientation. While for larger aircraft

this is typically estimated through the integration of the aircraft's

angular rates or accelerations, a vision-based system can directly

measure the aircraft's orientation with respect to the ground. The

two degrees of freedom critical for stability -- the bank angle ¢_

and thepitch angle 0 1 __ can be derived from a line correspond-

ing to the horizon as seen from a forward facing camera on the air-

craft. In [5], we develop and report results for a vision-based

horizon-detection algorithm, which attempts to minimize the in-

tra-class variance of the ground and sky pixel distributions. Figure

1 illustrates several examples of our current algorithm at work. in

each image, the yellow line indicates the algorithm's estimated lo-

cation of the horizon. The algorithm has been demonstrated to run

at 30 Hz on a 900 MHz x86 processor with image resolution of

320 x 240, although acceptable performance has been shown for

image resolutions as low 160 x 120.

At different times of the day, and under both fair and cloudy

conditions, we have gathered hours of video on-board our MAV,

flying under manual control over terrain that includes roads,

buildings large and small, meadows, wooded areas, and a lake.

For these data, our horizon-detection algorithm correctly identi-

fies the horizon in over 99.9% of cases.

3, Flight stability and control

In this section, we extend the basic horizon-detection algo-

rithm to real-time horir.on tracking. Below, we consider the fol-

lowing important issues: (1) extreme attitude detection, (2) error

detection in horizon estimation, (3) filtering of the horizon esti-

mate over time, and (4) basic feedback control and stabilization of

the MAV.

3.1 Extreme attitude detection

One of the implicit assumptions of the horizon detection algo-

rithm is that there will always be a horizon in the images from the

forward looking camera on board the MAV. In real-time control

of the MAV, the MAV may, however, encounter limes when no

visible horizon appears in the image, if, for example, a gust of

wind forces the nose of the aircraft too far up or down. Such cases

cannot simply be ignored; if the aircraft is heading straight to-

wards the ground, no horizon will be visible in the camera image,

yet the control system will certainly be required to take action to

save the MAV from certain and possibly catastrophic crashing.

It is desired then, to be able to detect instances when the hori-

zon is not in view of the camera, and if so to determine what ac-

tion to take in order to bring the horizon back into view. There are

two valuable sources of information which we can draw on to de-

tect these types of extreme attitudes: (I) recent appearance of the

sky and ground from previous time steps, and (2) recent location

of the horizon line from previous time steps. For example, if the

horizon line was recently estimated to lie near the top of the im-

age, it is logical that a subsequent image without a horizon line is

most likely a view of the ground. We can use these two pieces of

information to quantitatively determine if the horizon line exists

in the image and if not, to determine whether we are looking at the

sky or the ground.

1. Instead of the pitch angle O, we actually recover the closely

related pitch percentage 13 in our hori-on-detection algo-

rithm.



(a)

(b)

(c)

Fig. 1: (a) Horizon detection example; (b) horizon detection
with uneven horizon; (c) horizon detection with severe video
interference.

As part of our horizon detection algorithm, we already com-

pute the aggregate statistical properties of the sky and ground in

RGB color space. Let us denote all the sky pixels in an image as,

= [r sgs b_,i• {! ..... ns}, {l)x_

where r_ denotes the red channel value, g] denotes the green

channel value and bi_ denotes the blue channel value of the i th
sky pixel, and let us denote all the ground pixels in an image as,

-__ = [r_ gg 8_],i• {1 ..... rig},
(2)

where rg denotes the red channel value, g_g denotes the green

channel value and b_g denotes the blue channel value of the i th

ground pixeL Then, as part of the horizon detection algorithm, we

compute the following statistical descriptions of the sky and
ground appearance:

n rig

i=1 i=1

n_

_ 1
_ (G- 1) y_ (x_-it')(x_-G)r (4)

" i=l

_g

Eg- 1
(ng- 1) E (xg - Itg)(Xg - Itg)T (5)

i=1

where, Its and lag denote the means of the sky and ground pixels,

respectively, and Es and Eg denote the covariances of the sky
and ground pixels, respectively.

We now use the above statistics to model the appearance of the

sky and ground over a recent time history of the MAV's flight.

Our general approach for detection of extreme attitudes keeps

running statistical models for both the sky and ground from pre-
vious frames, where horizon lines were detected with a high de-

gree of confidence. With each new frame, the result of the horizon

detection algorithm can be checked by comparing the sky and

ground models for the current frame with the computed, time-de-

pendent statistical models for sky and ground. If the distributions

on either side of the line in the current frame both appear to be

more similar to the known ground distribution, then it would ap-

pear that the aircraft is pointing towards the ground. Conversely,

if they both match the sky better, then it is advisable to nose

downward. Interestingly, if the sky in the current frame matches

the ground model while the ground in the current frame matches

better with the sky model, we can detect situations where the

plane is flying upside down.

One additional piece of information is required to implement

the extreme attitude detection scheme, namely, a time history of

the horizon line estimate. For the purposes of detecting extreme

attitudes, we are most concerned with a recent history of the pitch

percentage t_, the percentage of the image below the horizon line.

One measure of that history is a running average 6a vg of the pitch

percentage over the previous ten frames.

Upon startup of the system, the camera is assumed to be ori-
ented such that the horizon is in its view. When the first frame of

video is processed by the system, the means and covariance ma-

trices of the ground and sky models are set equal to those found



by the horizon detection algorithm. The system then begins to up-

date the models using the results of the horizon detection algo-

rithm for a set number of initialization frames. Our current

implementation uses 100 initialization frames (3.3 seconds).

Once boot-strapped, it is necessary to continually update the sky

and ground models as the aircraft flies to account for changes in

lighting associated with changes in orientation and changes in

landscape, etc. The running statistical models are updated as fol-

lows"

Is(t) = _tZs(t) + (1 - ¢t)Z s (6)

Xg(t ) = _Xg(t ) + (I - ¢X)Xg (7)

lAs(t) = ctPs(t) ÷ (1 - oOlAs (8)

_tg(t ) = Ott.tg(t ) + (l - ft.)lAg (9)

where Es(t), Y:g(t) , Its(t) and lAg(t) are the time-dependent mod-

el covariances and means, respectively, while E s , Eg, tts and

lAg are the covariances and means for the current frame. Note that
the constant 0t controls how rapidly the models change overtime.

For a new image, we first compute th estimated horizon for

that image. We then compare the resultant current statistics with

the running statistical models from previous frames, using the fol-

lowing four distance measures:

T -1
D1 = (lAs - lAsCt)) Es(t)(lAs - lAs(t)) ÷

(10)
T -1

(lAs - Its(t)) Xs (Its - lAs(t))

D 2 Ty-I
= (Its - lAg(t) ) g(t)(lAs -- lAg(t) ) +

(ll)

(It s -- lAg(l))TY'sI(IA s - Itg(l))

T -1
D3 = (lAg- lAs(t)) Zs(t)(lAg-- lAs(t)) +

(t2)
T -1

(lAg - lAs(t) ) 7;'g (lAg- lAs(Z))

T -1
D4 = (lAg-lAg(t)) Y_g(t)(Jtg lAg(t)) +

(13)
T -1

(lAg- lAg(t)) 52g (lAg- lAg(t))

The value of D 1 measures the similarity between the region se-

lected as the sky by the horizon detection algorithm in the current

frame and the sky model from recent frames. D 2 represents the

similarity between the currently computed sky region and the

ground model from recent frames. Likewise, the values of D 3

and D 4 are the similarity measures between the current ground

region and the sky and ground models from recent flames, respec-

tively. Table 1 now summarizes four possible cases and the con-

clusions we can draw for each case.

The determinations in the above table can now be combined

with the past history of the horizon line to decide what action to

take. If the current frame is determined to be normal by the valid-

ity test (case l), then the horizon estimate is assumed to be accu-

rate, and commands sent to the MAV are determined by the

normal control system loop described in Section 3.4. Also, the

statistics of the validated frame are used to update the sky and

ground models per equations (6) through (9). If the validity test

returns a higher likelihood of all ground {case 2), we verify that

result with the recent history of the horizon line C_avg to deter-

Table 1: Extreme attitude detection

cone

1

2

3

4

condition conchLs'ion

D t < D 2 and D 3 > D¢ valid horizon present

D 1 > D 2 and D 3 > D 4 all ground

D 1 < D 2 and D 3 < D 4 all sky

D 1 > D 2 and D 3 < D 4 upside down

mine what action to take. When the value of (5avg is above a set

threshold, then the system goes into a "pull-up" mode that sends

commands to the aircraft to rapidly increase its pitch angle. A val-

ue of 0.8 was used for this threshold. While the system is in pull-

up mode, the time-dependent statistical models are not updated

since the horizon estimate during this time will most likely be in-

correct. Also during pull-up mode, (savg is only updated with the
estimated value of G if the validity test indicates the current

frame has returned to a visible horizon line: otherwise, Ga_.g is

updated using a value of 1.01. The system will stay in pull up

mode until a valid horizon is detected. Similarly, if the validity

test returns a higher likelihood of all sky (case 3) and the value of

Gang is below a given threshold (set at 0.2), the system goes into
a "nose-down" mode. Updating of the time-dependent statistical

models and Ga,'g in nose-down mode is the same as in pull-up

mode, except that the default update value for Gavg is 0.01 in-
stead of 1.01.

3.2 Error detection in horizon estimates

Extreme attitude detection can also help us to detect possible

errors in the horizon estimation algorithm; such errors can occur

when transient noise causes video degradation. Consider, for ex-

ample, the following possibility: the validity test returns case 2

(all ground), but Oavg < 0.8. In this situation, we must assume an
error occurred in horizon detection, because the aerodynamic

characteristics of the plane do not permit such sharp changes in

pitch over 1/30th of a second. More generally, if the validity test

returns any of the non-normal cases (2, 3 or 4) and the value of

CSavg does not conform to the appropriate threshold values, we
consider the horizon detection for that frame to be in error. In this

case, the horizon estimate from the previous frame is used to esti-

mate the horizon parameters for the current frame.

From extensive flight testing, we observer qualitatively that

this extreme attitude and error detection system performs well. It

s difficult to quantitatively assess the performance of the system

on real-time data since there is no "correct" answer with which to

compare it. Both the qualitative viewing of the output, however,

along with successful flight tests indicate that the system per-

forms adequately.

Initial tests of the system were performed by playing previous-

ly recorded video of human-piloted MAV flights into the system,

Figure 2 shows a sample of recorded output data from the system

in which the video signal is corrupted by noise. The plot of pitch

percentage estimates are overlaid onto the plot of the error detec-

tion trigger, When an error is detected, the error detection trigger

has a value of 1. As can be seen in Figure 2, the algorithm uses the
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Fig. l: Pitch percentage estimates with video noise.

last known good estimate during the time of the video transmis-

sion error, instead of the estimates from the bad video frames.

Figure 3 illustrates an example of extreme attilude detection.

As soon as the horizon disappears offthe top of the image, the er-

ror detection trigger value jumps to I. The controller then goes

into pull-up mode until the horizon reappears near the top of the

image. The pitch estimate remains at 1.01 until the controller exits

the pull-up mode.

3.3 Kalman filtering

In order to make the horizon estimates usable for self-stabili-

zation and control, the horizon estimates, after being processed by

the extreme attitude and error detector, are passed through a Kal-

man filter [1]. The Kzlman filter provides an optimal estimate of

a system's current state, given a dynamic system model, a noise

model, and a time series of measurements. While a dynamic mod-

el of the system is desirable, the formalism of the Kalman filter

can be employed even without an accurate dynamic model. Since

no dynamic model is readily available for our flexible-wing
MAVs 1,we model the system state (the two parameters of the ho-

rizon estimate) as two simple first-order, constant-velocity sys-

tems. As such, the Kalman filter has the effect of removing high

frequency noise from the system measurements and eliminating

any radical single frame errors not first caught by the error detec-

tion system. The principal benefit of the Kalman filter for our ap-

plication is that it effectively eliminates unnecessary small control
surface deflections due to noise.

3.4 Feedback control

To date, we have employed a very simple controller to validate

vision-based flight stability and control for MAVs. For simplicity,

the bank angle _ and pitch percentage o are treated as indepen-

dent from one another, and for both parameters, we implement a

simple PD (proportional/derivative) feedback control loop, with

gains determined experimentally from flight tests; each control

loop is updated at full frame rate (i.e. 30 Hz). In initial flight tests,

the derivative gains were set to zero.

1. A dynamic model for our MA V airframes is c_rrent(; being

developed at NASA Langley Research Center. With the code

in[i'astructure in place, the dynamic mmlel can be added when
it becomes" available.
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Fig. 3: Extreme attitude detection.

4. Self-stabilized flight

4.1 Experimental setup

Figure 4 illustrates our current experimental setup. The video
signal from the MAV is transmitted from the plane through an an-

tenna to a ground-based computer, where all vision processing is

performed. In manual mode, the plane is controlled during flight

by a remote human pilot through a standard radio link. In autono-

mous mode, the plane is controlled through the feedback control-

ler which sends control surface commands to the MAV through a

custom designed interface over the same radio link. Our interface
allows the PC to control a standard Futaba radio transmitter

through an RS-232 serial port.

The MAV used for test flights had a wingspan of 18 inches.

While we have designed and flown MAVs with wing spans as

small as seven inches, we selected the somewhat larger platform

both for its increased dynamic time constants and its ability to car-

ry a high-powered video transmitter (i.e. increased payload). Fig-

ure 5 shows a picture of this MAV. The on-board camera is a

monolithic CMOS type camera with a 1/3 inch sensor area, and is

MA V

ser_'O(radioCOntrollink_//.._¢ NN_ N_vide°signal

video antenna

vision-btL_'ed control _ video signal_'_d_,'ired heading

Fig. 4: Experimental setup.
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Fig. 5: MAV used for test flights.

connected to an 80 mW video transmitter. The MAV is powered

by electric propulsion and has differential elevons for control, al-

though the software is written to support both devon and rudder-

elevator control designs.

The PC interface uses a PIC microcontroller to translate serial

commands from the PC into the pulse width modulated signals re-

quired for input to the transmitter. A carbon fiber housing was

constructed to hold the circuit board and port connectors for the

interface.

4.2 Flight testing

Flight testing proceeds as follows. Prior to launch, the aircraft

is oriented such that the horizon is in the field-of-view of the cam-

era. This allows the algorithm to build initial models of the sky

and the ground; while these models are not used in the horizon-

detection algorithm itself [5], they are used for extreme attitude

and error detection.

Upon launch, flights are controlled by a human pilot until the

MAV reaches sufficient altitude. At that point, control is trans-

time (sea)
(a)

ferred to the automated flight control and stability system; in case

of catastrophic failure (loss of video signal, etc.), the radio trans-

mitter is equipped with an override button to allow the human pi-

lot to regain control at any time if necessary.

A joystick connected to the PC can be used to adjust the de-

sired heading for the controller. The joystick input effectively

commands a bank and pitch angle for the aircraft to follow. Later

flights used a pre-programmed set of maneuvers for truly autono-

mous flight• To date, we have flown uninterrupted autonomous

flights of over 10 minutes, flights that ended only due to video

transmission interference, or tow on-board battery power•

Figure 6 below illustrates a short, 9n-second run of actual

flight data, where the flight vehicle was under vision-guided con-

trol above the University of Florida campus.t More recently, the

same vision-based control system successfully flew over substan-

tially different terrain at Fort Campbell, Kentucky. Videos of the

current algorithm performance under manual and automated

flight stabilization can be viewed at httn://mil.ufl.edu/~nechyba/

may.

5. Conclusion

Qualitatively, even our simple PD control system provides

much more stable control than that of our best human pilots, both

in terms of steady, level flight, and in coordinated turns. Human

pilots can typically not hold the plane on a steady, level heading

for more than a few fractions of a second; under vision-guided

control, however, we were able to fly long straight segments that

were limited only by the range of the video transmitter (see Figure

7 for a 7.5 second stretch of self-stabilized straight and level

flight). Prior to the development of the horizon-tracking control

system, only pilots with extensive training could learn to fly our

micro air vehicles; with the automated control system, however,

people who had never piloted any aircraft before were able to eas-

ily guide the MAV above the flying arena• it is this fact alone that

speaks the most to the potential value of this work. ideally, one

1. The data in Figure 6(b) appears more oscillatory than the

actual flight, because o flight non-linear coupling between

pitch percentage and roll angle.
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Fig. 6:90 seconds of sample flight data: (a) commanded roll angle (red) vs. vision-based measured roll angle (blue); (b)

commanded pitch percentage (red), vs. vision-based measured pitch percentage.



Fig.7:Imagesequenceofself-stabilizedstraightandlevelflight(7.5seconds,imagesare20framesapart).Notethattheblack
linesatthetopoftheimagearethepropeller.

wants MAVs to be deployable by a wide range of people, not only

expert RC pilots; while much remains to be done, including auto-

mating landings and take-offs, the work in this paper is a big step

towards the development and deployment of usable and practical

MAVs.
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