OBLIQUE-WING GLIDE-BACK BOOSTER
FOR
SHUTTLE REUSABLE FIRST STAGE

Stephen C. Smith
Robert A. Kennelly
James Reuther

Ames Research Center Aeronautics Directorate
Acknowledgements

A Long list of researchers have contributed to Oblique Wing Technology

R.T. Jones, Larry Graham, James Summers, Ron Smith, Ed Hopkins, Dan Bencze, Rod Bailey, Ilan Kroo, Steve Morris

Several Aeronautics Staff contributed to preparation of this presentation

Francis Enomoto, John Melton, Bruce Gilbaugh, Susan Cliff, Mark Rimlinger
Background and Motivation

• Current Shuttle SRB Falls in Ocean After Separation

• Any Fly-back Concept Eliminates Search/Recovery Cost And Reduces Processing Cost

• Most Fly-back Concepts Require Engine, Fuel To Return Fuel Wt Approx 30,000 Lb/Booster

• Glide-back Concept Offers Much Lower Weight, Lower Complexity

Can It Be Done?

Objective:

• Demonstrate Feasibility of Turn and Glide-Back Using Oblique Wing Deployed on Reusable First Stage
Ballistic Trajectory of Current Shuttle SRB

Apogee
3600 ft/s

Separation
4200 ft/s
Γ = 30°
The Oblique-Wing Glide Back Concept

- Oblique Wing Stows with Minimal Impact on Ascent Configuration

- Variable Sweep, High Aspect-ratio Wing Provides Very High L/D Over Wide Mach No. Range

- Minimum Weight For Variable Geometry
 - Continuous Spar, No Bending In Pivot

Conceptual Design Sizing, Layout

- Wing Sized to Fit Existing Shuttle SRB
 - Biggest Wing Gives Best Turn Performance, Min Landing Speed
 - Nominal SRB Weight, Trajectory Used for Initial Feasibility Study

- Adaptable to Liquid-Fueled Booster, Aft C.G. Issue
Variable Sweep Provides High Aerodynamic Efficiency Over Wide Mach Number Range

![Graph showing lift/drag ratio vs. Mach number for different sweep angles. The graph demonstrates high aerodynamic efficiency across a wide range of Mach numbers.](embed)

ARC code A scs 7/99
geometry figure — To be improved —
Trajectory Simulation of Turn and Glide-back Requires Aero-Performance Model

- Typical Conceptual Design Studies Rely on Low-Fidelity Aero-Performance: CL\text{max}, CD Estimation

- Extensive Wind Tunnel Database on Representative Configuration Provides High-Credibility Aero Model

- Data for Mach 0.4 - 2.5 From F-8 Oblique Wing Development

- Stowed Geometry Aero Model From CFD
Stowed Oblique Wing Booster
AIRPLANE Aerodynamic Coefficients, $M = 4.00$

AIRPLANE

C_L vs α

C_L vs C_D

C_L vs C_M
Drag Corrections for Re, Base Drag, and Aspect Ratio

\[CD_{ow-gb} = CD_{F8} - \Delta CD_{Re} + \Delta CD_{base} + \Delta CD_{AR} \]

Re Correction:
\[@ H = 42,000 \quad \Delta CD_{Re} = 0.0045 \]
\[@ H = 0 \quad \Delta CD_{Re} = 0.0037 \]

Base Drag:
\[@ M > 1 \quad \Delta CD_{base} = 0.0185 \]
\[@ M < 1 \quad \Delta CD_{base} = 0.0130 \]

AR Correction:
\[@ AR=9.5 \quad \Delta CD_{AR} = 0.0020 \]

\[@ M < 1 \quad CD_{ow-gb} = CD_{F8} + 0.01 \]
Conclusions

- Oblique Wing Stows on Booster with Minimum Impact on Ascent Configuration

- Successful Glide-back Trajectory Demonstrated

- Many Issues/Questions Remain

 - Increased Booster Length Improves performance

 - Aero-brake from Separation to Apogee

 - Base Drag Reduction

 - Wing Weight

 - Aft C.G. For Liquid Fueled Rocket

 Tentative answers exist.