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Abstract 

In t.his pi1.p<T, we report n version of th Space-Time Conservation El ill 'n and So­
lution Element (CEjSE) Method in which the 2D and 3D unsteady Euler equations are 
imulated using structured or un truct ured quadrilateral and hexahedral meshes respec­

tively. In th PI' sent method. mesh values of flow variables and th ir spatial derivat ives 
are treat d as independent unknown to be solved for . At each m esh point , the value of 
a flow variable i obtained by imposing a flux conservation condition. On the other hand, 
the spatial derivativ s are evaluated using a fini te-differencejweighted-average procedure. 
Not that the pres nt extension retains many key advantages of the original CEjSE method 
which uses triangular and tetrahedral meshes . respect ively, for its 2D and 3D applications. 
These advantage include efficient parallel computing, ea of implementing no -reflecting 
boundary conditions high-fidelity resolution of shocks and waves, and a genuinely mul­
tidimensional formulat ion wi thout using a dimensional-spli tting approach. In particular, 
because Riemann solvers-the cornerstones of the Godunov-type upwind schemes, are not 
needed to cap ture shocks the computational logic of the present method is considerably 
simpler. To demonstrate the capability of the present method, numerical results are pre­
sented for several benchmark problems including oblique shock reflection, supersonic flow 
over a wedge, and a 3D detonation flow. 

1. Introduction 

The Space-Time Conservation Element and Solution Element (CEjSE) Method, orig­
inally proposed by Chang [1- 13], is a new numerical framework for solving conservation 
laws. The CE/SE method is not an incremental improvement of a previously existing 
CFD method, and it differs substantially from other well-established methods. The CE/SE 
method has many nontraditional features , including a unified treatment of space and time, 
the introduction of conservation element (CE) and solution element (SE) and a novel 
shock capturing st rategy without using Riemann solvers. Note that conservation elements 
are nonoverlap ping space-time subdomains int roduced such that (i) the computational do­
main is the union of these subdomains; and (ii ) flux conservation can be enforced over 
each of them and also over the union of any combination of them. On the other hand, 
each solution element is a space-time subdomain over which any physical flux vector is 
approximated using simple smooth functions. In general, a conservation element does not 
coincide with a solution element. 

To date , numerous highly accurate CE/ SE teady and unsteady solut ions \\·ith Mach 
numbers ranging from 0.0028 to 10 have been obtained without using preconditioning 
or other special techniques [1 - 26J. The flow phenomena modeled include tra,·eling and 
interacting shocks , acoustic waves, hedding vortices, detonat ion waves, and cavi tat ion. In 
particular, the ra ther unique capability of th CEj SE method to resolve both strong shocks 
and small disturbances (e .g. , acoustic waves) simultaneously has been verified through 
s veral accurate predictions of experimental data [15- 17]. ote that while numerical 
di sipation is required for hock resolution, i t may also result in annihilation of small 
dist urbance. . Thus a olver that can h andle both strong shocks and mall disc urbances 
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sirr1l!lta.n c() ll ~ly [rlll~t be able co ovc:rcome' this difficulty. The design principle::; of the 
CE/SE method have been extC'llsively illnst rated in the cited references. In thi::; pap r , a 
brief de cription of the CEISE method is provided as the background of the pres nt work. 

Perhaps , one of the most important feat ures of the CE/SE method is the adoption 
of an integral form of space-time flux conservat ion as the corner tone for the subsequent 
numerical discretization. Note that one derive the conventional finite-volume m thods 
based on Reynolds ' transport theorem [27] in which space and time are treated separately. 
As will be hown shortly, thi separate treatment of space and time imposes a restriction 
on the space-time geometry of finite volumes and, as a result , classical Riemann problems 
arise natually in the course of flux evaluation across an interface. In contrast, due to 
its unified t r atment of space and time, Chang' flux conservation formula tion allows a 
choice of the space- time geometry of CEs that render it unnece sary to solve Riemann 
problems. To clarify this fundamental difference , in this Introduction, we will first review 
th conv~ntional integral form for hyperbolic conservation laws in Sec. 1.1 as a contrast 
to Chang s integral form which is described in Sec. 1.2. The original CEISE method is 
reviewed in Sec. 1.3 , and the objectives and outline of the present work are presented in 
Sec. 1.4. 

1.1. Co nvent io nal F init e Volume Methods 

Consider the differential form of a conservation law I.e. , 

au --- + \7 . h = 0 (1. 1) at --

where (i) u is the density of the conserved quantity; (ii) Ii is the spatial flux vector; and 
(iii ) '\}. is the spatial divergence operator. ote that, in order to distingush a spatial object 
from a space-time object (see below), hereafter the former will be denoted by an underline. 
By using the Reynolds ' transport theorem, one can obtain the conventional integral form 
of Eq. (1.1), i.e., 

~ J u dv + 1 E . d- = 0 
vt Jv J!2.00 

(1.2) 

where (i) V is a fixed spatial domain (i.e. , a "control volume"); (ii) dv is a spatial volume 
element; (iii ) S(V) is the boundary of V; and (iv) ds= daTi. with da and Ti. respectively, 
being the area and the unit outward normal vector of a surface element on S(V). By 
integrating Eq. (1.2) over the time interval (ts, t f ), one obtains 

(1.3) 

The discretization of Eq. (1.3) is the focus of convent ional fini te volume methods [27J. 

1.2 . The Space-T ime F lux Co nservat io n Fo rm ulat ion 
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Let (i) E denote an ~- dirncllsiollal Euclidean space in which X l , .C2, .·· ,x N- 1 are 

spat ial '0 rdinat('s and x N = t; (ii ) {j . bp th divergence operator in E ; and (iii ) h ~f 
eli, u). Thf'n Eq. (1.1 ) implies f; . h = O. As a result , Gau s Divergence Th orem in E N 
implie 

J h· ds= 0 
J S(V) 

(1.4) 

As depicted in Fig. 1, here (i) S(V) is the boundary of an arbitrary space-time region V in 
E N , and (ii ) ds = dO" ii with dO" and ii, respectively, being the area and the unit outward 
nor.:nal of a surface element on S(V ). 1 ote that: (i) because h . ds is the space-time flux 
of h leaving the region V through th surface element d- Eq. (1.4) simply tates that 

the total space-time flux of h 1 aving V through S(V ) vanishes; and (ii) all mathematical 
operations can be carried out as though EN were an ordinary -dimensional Euclidean 
space. 

Let N = 2. For this case, (i) Xl = X and X2 = t; (ii) E = h x ; (iii) V. E = 8h x /8x; and 
(iv) a 'surface element" on S(V) and the "area" of this element reduce to a line segment 
and the length of this segment , respectively (see Fig. 1). Note that , for an arbitrary V, 
the spatial projection V ( t) of the cross-section of V at time t generally varies with t. The 
exception occurs only if V is a cylinder with its axis being parallel to the time axis, such 
as the rectangle ABCD depicted in Fig. 2(a). In this case, Vet) is independent of t and 
thus it can be considered as a ' control volume." 

Let V be the rectangle ABCD depicted in Fig. 2(a). Then S(V) is formed by the line 
segments AB BC, CD and DA. Let (i) t = ts at CD ; (ii) t = t f at AB ; (iii) x = Xs at 

BC; and (iv) x = Xf at DA. Then because h = (h x u), with the aid of Fig. 2(a), Eq. (1.4) 
implies 

(1.5) 

Note that Eq. (1.3) reduces to Eq. (1.5) for the 1D unsteady case in which (i) V is the 
spatial cylinder of constant cross-section depicted in Fig. 2(b); (ii ) u = u(x, t); and (iii) 

E = (hx, 0, 0) with hx = h·Ax, t). 
Note that generally the discretization of Eq. (1.3) is carried out by dividing the entire 

space-time computational domain into space-tim CEs. Each CE is a cylinder in space-time 
with (i) its spatial projection being the control volume V and (ii ) its top and bottom faces 
representing two constant time levels. Because the control volume is a fixed spatial domain, 
these CEs generally are stacked up exactly on the top of each other, i.e. , no staggering of 
CEs in time is allowed (see Fig. 2( c) for the N = 2 case). With this arrangement of CEs, 
the vertical interface that separates any two neighboring columns of CEs will always be 
sandwiched betwe n two neighboring columns of mesh points (marked by dots in Fig . 2( c)). 
As such, flux at the vertical interface of two neighboring CEs generally must be evaluated 
hy interpolating the data from these two CEs. How this interpolation should be carried 
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out properly IlIlJ '1' varyill~ sollltioll behav ior is a Jiffi 'ult problem. As will be 'hown 
immediately, with a new p acc-time arrangement of CEs and me 'h points, and a proper 
definition of SE . the above dim 'ult interpolation problem can be bypassed completely. 

1.3. The CE/SE Method 
As an example, the CE/ SE method will be described by con idering the PDE 

au a(au ) 
-+--=0 at ax (1.6) 

where a i a con tanto Obviously the integral form of Eq. (1.6) is Eq. (1.4) with i\f = 2 

andh= (au u) . 
To proc ed. let III denotf' he . of all m h point in E2 (dot in Fig. 3( a)) . Each 

(j, n) E W is associated with a solution element , i.e ., SE(j, n). By definition, SE(j, n) is 
the interior of the space-time region bounded by a dashed curve depicted in Fig. 3(b). It 
includes 'a horizontal line segment, a ver tical line segment, and their immediate neighbor­
hood. 

For any (x, t) E SEU, n), u(x, t) and h(x , t), respectively, are approximated by 

(1.7) 

and 
h .... * ( .) d ef ( * ( .) * ( .)) X, t ; J, n = au X, t ; J , n ,U X, t ; J, n (1.8) 

ote that (i) uj , (ux)j, and (Ut)j are constants in SE(j, n), (ii) (Xj, t n
) are the coordinates 

of the mesh point (j , n) and (iii ) Eq. (1.8) is the numerical analogue of the defini t ion 

h=(au,u). 
Let u = u*(x , t ;j, n) satisfy Eq. (1.6) within SE(j, n). Then one has (Ut)j = - a (ux)j. 

As a result, Eq. (1.7) reduces to 

u*(x , t; j, n) = uj + (ux) j [(x - Xj) - a (t - t n
)] , (x, t) E SE(j, n) (1.9) 

i.e. , uj and (ux)j are the only independent marching variables associated with (j,n) . 
Let E2 be divided into nonoverlapping rectangular regions (see Fig. 3( a)) referred to 

as conservation elements. As depicted in Figs . 3(c) and 3(d), two CEs , i. e., CE_(j,n ) and 
CE+ (j, n), are associated wi th each interior mesh point (j n) E W. These CEs will be 
referred to as basic conservation elem ents (BCEs) . Contrarily, CE(j, n) (see Fig. 3(e)), 
which is the union of CE_(j n) and CE+(j , n), will be referred to as a compounded 
conservation element (CCE ). 

Note that, among the line segments forming the boundary of CE_(j, n) A B and 
AD belong to SE(j , n) , while CB and CD belong to SE(j - 1/2, n - 1/2). Similarly, the 
boundary of CE+(j, n) belongs to either SE(j, n) or SE(j + 1/ 2, n - 1/2). As a result , by 
imposing two conservation condi t ions at each (j, n) E W, i.e., 

1 h*· ds= 0, 
J S(CE±(j,n») 

(j n) E III (1.10) 
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and llsing E<[s. ( 1. ) and ( 1.0 ). ow' has ( i ) 

fL = ~ { (I + ). fL- L/2 + (1 _ ), a-Ltl. + (1 _ 2) [( +) " -Lt1. _ ( +)fL-l/2] } 
u J 2 1/ U)_L/2 1/ U)+1/2 1/ UJ; )-1/2 U x j+I/2 (1.11 ) 

and, assuming 1 - 1/
2 i=- O. (i i ) 

( +)fL _ 1 [ fL- L/2 fL-l/2 ( )( +)n-l/2 ( )( + ) fL-1/2 ] 
U x j - 2' U j + L/ 2 - U j _ 1/ 2 - 1 - v U x j-l/2 - 1 + 1/ U x j+1/2 (1.12) 

Here 1/ d~f a6.tl6.x and (ut}'; d~f (6. xI4)(u x r;. Th a scheme [1,5.8]' the explicit nondissi­
pative CE/SE solver for Eq. (1.6). is formed by Eq . (1.11 ) and (1. 12). 

According to Eq. (1.10), the total flux of h'" leaving the boundary of any BCE is zero. 
Because the surface integration over any interface eparating two neighboring BCEs is 
evaluated using the information from a single SE, obviously the local conservation relation 
Eq. (1. 10) leads to a global flux conservation relation , i.e. , the total flux of h* leaving the 
boundary of any space-time region that is the union of any combination of B eEs will also 
vanish . In particular, because CE(j, n) is the union of CE_(j, n) and CE+(j , n) , 

1 h*· ds= 0 
JS(CE(j,n» 

(j,n)EIlJ (1.13) 

must follow from Eq. (1. 10). In fact , it can be shown that Eq . (1.13) is equivalent to 
Eq. (1.11). 

In addition to the nondissipative a scheme, there is a broad family of dissipative CE/SE 
solvers of Eq. (1.6) in which only the less stringent conservation condition Eq. (1.13) is 
assumed [2,3,5,8J. Because Eq. (1. 13) is equivalent to Eq. (1.11 ), for each of these schemes, 
uj is still evaluated using Eq. (1.11) while (u~)j is evaluated using an equation different 
from Eq. (1.12). Among these schemes is one (referred to as the a-a scheme) which is among 
the simplest and yet capable of handling solutions with discontinuities. For this scheme, 
(ut)j is evaluated using a finite-difference/weighted-average procedure which involves a 
parameter a (see Eqs. (2.62), (2.63) and (2.65) in [12]). The key disadvantage of the a-a 
scheme and its extensions (see below) is that, compared with the more general CE/SE 
schemes, they allow for less freedom in adjusting numerical dissipation. As explained 
in Sec. 5.5 of [9], this inflexibility may impose a constraint on the performance of these 
schemes in numerical simulations involving highly nonuniform meshes. 

The above description of the CE/SE development is ba ed on a simple PDE. However, 
it represents the essence of the general CE/SE development which may involve a system 
of conservation laws in one, two or three spatial dimensions. In particular, note that: 
(a) The 1D Euler extension of the a-a scheme, which first appears in [2], has been shown 

to be an accurate and robust shock-capturing solver [2,3,5.6J. 
(b) In the original 2D extension of the CE/SE method [4,6- 10]' triangles are used as the 

ha ie bltiloing blocks of the spatial me hes . Corresponding 0 the three sides of a 

5 



--- - - ------~-
(' - ----- - -----~---.---

I 
I 

-.. ' 

tr iangl " three BCEs arc Jcfin 'd for ca ·h mesh point . The ullion of the three BCEs at 
a. mesh point form the CCE at the arne mesh point. Among the family of 2D CE/SE 
schemes Jescri b -d in [4,6 10], the 2D a schem , which has thre unknowns u, U x and 
Il. y at each mesh point ) are construct d by imposing thre can ervation condi tions 
over the three BCEs at each m sh point. On the ot her hand only one conservation 
condition (imposed over the CCE) per mesh point and per conservation law is us d in 
the construct ion of t he 2D Euler a-Q scheme (i. e ., the scheme defined by Eqs. (6.54), 
(6.107) and (6.108) in [8]) . Because of its simplicity accuracy and roubustness, all the 
numerical result pre ented in [48 9] are generated using the 2D Euler a-Q scheme. 

( c) The 3D Euler a-Q scheme [11] is a straightforward extension of the 2D Euler a-Q 

scheme taking into account that : (i) tetrahedrons ar used as th basic building 
blocks of 3D spatial meshes; and (ii) carre ponding to the four ides of a tetrahedron , 
the CCE at each mesh point is the union of the four BCEs defined at the sam mesh 
poirit. 

1.4. The Objectives and Outline of the Present Work 
In this paper, the 2D and 3D unstructured-mesh a - Q Euler schemes will be constructed 

using quadrilateral and hexahedral meshes , respectively. It will be shown that the present 
schemes are also simple, robust , and accurate . The rest of the paper is organized as follows. 

The 2D and 3D solvers along with their key properties are described in Secs. 2 and 3, 
respectively. Numerical examples are presented in Sec. 4 to demonstrate the capabilities 
of the present solvers. The concept of local and global flux conservation for the present 
2D scheme with an unstructured mesh along with a post-marching procedure for handling 
a possible "solution decoupling" problem is discussed in the Appendix. The concluding 
remarks are given in Sec. 5. 

2. The 2D U nsteady Euler Solver 

Consider the standard conservation form of the two-dimensional unsteady Euler equa­
tions of a perfect gas [9] : 

m=1,2, 3,4 (2. 1 ) 

where f m and gm , m = 1, 2, 3, 4 , are explici t functions of the independent flow variables 
U m , m = 1 2, 3,4 [9]. Let Xl = X, X2 = Y and X3 = t be the coordinates of a three 
dimensional Euclidean space E 3 . Then in the case that U m are smooth functions of X, y , 

z and t Eq. (2 .1 ) can be derived from the more fundamental conservation laws 

1 hm · ds= 0 
J S(V) 

m = 1, 2, 3, 4 (2.2) 

where (i) S (V) and ds were defined following Eq . (1.4); and (ii) hm def (fm , gm,u m ), Note 
that Eq. (2.2) is valid even in the presence of flow discontinuities. 
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For thc' fll t \lrc' developmC'nt. let 

. d · f 
jm ,e = of m/fJu e, def a / 9m,e = gm au e, 

2.1. Conservation E lements and So lut ion E lements 

m, f = 1, 2 3, 4 (2. 3) 

Consider Fig . 4(a) . Her the x -y plane is divid d into nonoverlap ping convex quadri­
lat.erals and any two neighboring quadrilateral hare a common ide. Moreover, (i) vertices 
and centroids of quadrilaterals are marked by dots and circles, respectively; (ii ) Q is the 
centroid of a typical quadrilateral BI B2B3~ ' (iii ) Al A2 A3 and & respectively-are the 
centroids of the four quadrilater als neighboring to the quadrilater al B I B 2£~ ; and (iv) 
Q* (marked by a cro ) is the centroid of the polygon A[ B IA2 B 21b B 3&1L. Hereafter , 
point Q* (which g nerally do s not coincide with point Q) is referred to as the solution 
point associated with the centroid Q. ote that points A;, A;, A; and A.: , which are also 
marked by crosses, are the solut ion points associated with the cen troids AI' A2 A3 and 
iL, respectively. 

ext consider Fig. 4(b). Here (i) t = n~t a t the nth t ime level (n = 0, 1/2, 1, 3/ 2, .. . ); 
and (ii ) for a given n > 0, Q, Q' , and Q" respectively, denote the points on the nth , the 
(n-1/2)th and the (n+1/2)th time levels with point Q (see Fig. 4(a)) being their common 
spatial projection. Other space-t ime mesh points, such as those depicted in Fig. 4(b), and 
also those not depicted, are defined similarly. In par t icular , (i) Q*, A~, A~, Ai and A:, 
by defini t ion, lie on the nth tim e level and, respectively, are the space-time solution m esh 
points associated with points Q, AI, A2, A3 and A4; and (ii) Q'*, A~* , A~* , A;* and A~* by 
definition, lie on the (n - 1/2)th t ime level and, respectively, are the space-time solution 
mesh points associated with points Q' , A~ , A ;, A~ and A~. 

W ith the above preliminaries the solution element of point Q*, denoted by SEC Q*), 
is defined as the union of the five plane segments Q' Q" B~' B L Q' Q" B~' B~, Q' Q" B~' B~, 

Q'Q"B~B~ and AI B IA2 B2A3 B 3A4 B4' and their immediate neighborhoods. Moreover , 
the four basic conservation elements (BCEs) of point Q, denoted by CEe( Q), .e = 1, 2, 3,4, 
are defined to be the space- time cylinders AI BI QB4A~ B~Q'B~ A2B2 QBI A.; B~ Q'B~ , 
A3 B 3 QB2A;B~ Q' B~ and A4B4 QB3 A~B~ Q' B L respec tively. In addit ion, the compounded 
conservat ion element (CCE) of point Q, denoted by CE( Q), is defined to be the space­
time cylinder Al B I A2B2A3B3A4B4 A~ B~ A~ B~A; B~ A~B~, i.e., t he union of the above four 
BCEs. 

In this section (i ) the set of the space-time mesh points whose spat ial projections are 
the c ntroids of quadrilaterals depicted in Fig. '-lea) is denoted by D; and (ii ) the set of 
the space-time mesh points whose spatial projections are the solution points depicted in 
Fig. 4( a) is denoted by D*. ote that the B CEs an d the CCE of any mesh point E D and 
th SE of any mesh point E D* are defined in a manner ident ical to that described earlier 
for point Q and Q*. 

2.2 . A p proximatio ns W it hin a Solution Ele m ent 

For any Q* E D* and any (x,y,t) E SE(Q*), um(x,y,t), fm (x,y , t), gm(X , y , t) and 

hm (x, y, t ), rf'spectively. are approximated by u:n Cx, y, t; Q*), f:n(x, y , t; Q*) g:n(x , y , t; Q*) 

-
I 
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and h;" (x, .I).t;Q" ) (see below). For any rn = 1, 2,3, 4, let 

U:n ( x. y. t ; Q" ) c~r (u m ) Q' + ('u m L ) Q - ( x - x Q - ) + ( Um y ) Q' (y - Y Q ' ) + ( U m t ) Q' ( t - t n) (2.4 ) 

wh re (i) (x Q_,YQ· ,t n
) are the coordinates of the space-time olution mesh point Q* ; 

and (ii ) (u m )Q" (u mx )Q" (umy )Q- and (u mt )Q- , which are constant in SE( Q*), are the 
numerical analogues of the valu s of Um. oUm/ox , oUm/oy and oUm/ot at point Q*, 
respectively. 

Let (fm)Q - , (9m) Q- , (fm,e) Q- and (9m,e) Q- denote the values of the functions 1m, 9m , 
I m,l and 9m,l , respectively, when Um m = 1,2, 3, 4 respectively, assumes the values of 
(u m)Q-, m = 1 2, 3, 4. Then , for any m, we define 

4 4 

(J mx )Q- d~f 2:)1 m,e )Q* (Ulx )Q* , (9mx )Q- d~f 2:)9m,e) Q* (Ulx )Q* (2.5a ) 
l=! e=l 

4 4 

(fmy )Q* d~f 2:)lm,e)Q* (Ue y )Q* , (gmy)Q* ~f I)gm ,e)Q* (Ufy) Q* (2.5b) 
l=l l=l 

4 4 

(fmt)Q* def L(fm,e)Q*(Ult)Q*, (gmt )Q* ~f I)gm ,e)Q* (Uet )Q* (2.5c) 
l=l l=l 

Because (i) 

(2.6) 

and (ii) the expression on the right side of the first equation in Eq. (2.5a) is the numerical 
analogue of that on the right side of Eq. (2.6) at point Q* , (fmx )Q* can be considered as 
the numerical analogue of the value of 01 m / ox at point Q*. Similarly, (gmx )Q* , (f my )Q* , 
(gmy )Q* , (fmt)Q* and (gmt )Q* can be considered as the numerical analogues of the values 
of 09m/8x, 81m/8y , 89m/8y , 81m/8t and 09m/at at point Q*, respectively. As a result , 
for any m = I , 2, 3, 4, we define 

and 

- de f 
Also , as an analogue to hm = (Im ,9m,um), for any m = 1, 2, 3 , 4. we define 

h:n (x y,t;Q* ) d~t (f;t(x,y,t; Q* ), g~ (x,y ,t;Q*) , u:n(x , y,t ; Q* )) (2. 9) 
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Not.e that.. by their defini t ions: ( i) (fm)Q - (gm )Q- , (fm,e)Q * , ancl(Ym,e)Q - are functions of 
(/Lilt )Q- , Tn. = 1, 2, 3.4; ( ii ) (fmL )Q- and (g rnx )Q* are functions of( Urn )Q* and (u rnx )Q* m = 
1, 2, 3 , 4 ' (iii ) (fmy) Q* and (gmy) Q* arc functions of (um) Q* and ( umy )Q* , Tn = 1, 2,3 , 4' 
and (iv ) (frndQ * and (gm t )Q- are fun ·tions of (um )Q* and (urndQ * , Tn = 1, 2, 3,4. 

To proce d, we also a sume that , for any (x,y, t ) E SE(Q*), and any Tn = 1, 2, 3,4, 

OU':n(x,y,t' Q*) of:n(x,y,t' Q*) og':n(x ,y t ;Q* ) 
at + Ox + oy = 0 (2.10) 

at that Eq. (2.10) is the numerical analogue of Eq. (2.1 ) . Wi th the aid of Eqs. (2.4), 
(2 .7), (2.8), (2.5a), and (2.5b ). Eq. (2.10 ) implies that , for any Tn = 1 2, 3,4, 

4 

(Urnt)Q' = -(Jmx)Q' - (gmy)Q* = - L [(frn,e) Q* (Uex)Q* + (gm,e)Q" (uey)Q*] (2.11 ) 
e=l 

Thus (Umt )Q* is a function of (U m)Q- , (umx )Q* , and (u my )Q* , m = 1,2, 3,4. From this 
result and the facts stated following Eq. (2.9), one concludes that the only independent 
discrete solu tion variables associated with the space-time solution point Q* are (um)Q- , 
(u mx)Q* , and (umy) Q- , m = 1, 2, 3, 4. 

2_3_ Evaluation of (urn) Q-

Based on Figs. 4(a) and 4(b ), we introduce the following preliminaries: 
(a) The boundary of CE( Q) belongs to the union of SEC Q*) , and SE(A~* ), .e = 1, 2, 3, 4. 

Specifically, (i) the octagon AIBIA2B2A3B3A4B4 belongs to SE(Q* ); (ii) the quadri­
laterals A~B~Q'B~, A~ B~B4Al ' and A~B~BIAI belong to SE( A~* ); (iii ) t he quadri­
laterals A~B~Q'B~, A~B~BIA2 ' and A~B~B2A2 belong to SE(A~* ); (iv) the quadrilat­
erals A;B~Q' B~ , A;B~B2 A3 , and A;B~B3A3 belong to SE(A;* ); and (v) t he quadri­
laterals A~B~Q'B~ , A~B~ B3A4' and A~B~B4A4 belong to SE(A~* ) . ote that , by 
definition, (i) the quadrilaterals A 1 B 1 QB4, A2B 2QB1 , A3 B 3QB 2, and A4B4QB3, 
which form the octagon AI B IA2 B 2A3 B 3A4B 4 (the top face of CE(Q )), also be­
long to SE(An , SE(A~ ), SE(A; ), and SE(A:) , respectively; and (ii ) the octagon 
A~B~A~B~A;B~A~B~ (the bottom face of the CE(Q )) also belongs to SE(Q'*). How­
ever, in the evaluation of Eq. (2.13) (see below), by assumption, the top face of GE( Q) 
is considered to be a subset of SEC Q* ) while the bot tom face is considered to be the 
union of subsets of SE(A~*), .e = 1, 2, 3,4. 

(b) Let f be a space- time plane segment lying wi thin SEC Q*) . Let (i) A be the area 
of f ; (ii ) (xc, Yc, t c) be the coordinates of the centroid of f ; and (iii ) ii be a unit 
vector normal to f. Then , because u:n(x, y,.t· Q* ), f:n (x y, t; Q*) and g:n (x, y t; Q*) 
are linear in x, y and t, Eq. (2.9 ) implies that 

(2.12) 

where ds = dcr n with dcr being the area of a surface elemen t on f. 
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(c) Let S denot.e the area of t.he top face A I B 1 A:.!B2 A ;l fl :I A ,fl" of CE(Q). Because 

~. thf' unit outward normal vect.or (outward from the interior of CE(Q )) of this face i 
(0, 0, 1), it.s surface vector (i.e ., th' unit outward normal vector mllltiplied by the area) 
is (0, 0, S ). 

(d) Let (i) (x l, yl ), e = 1, 2 3 4, denote the spatial coordinates of the centroids of the 
quadrilat 'ral ' A~B~Q'B~ A~B~ Q'B~ , A; B~Q'B~ and A~B~Q'B~ re pectiv ly; and 
(ii ) S e. e = 1,2,3,4, denote the areas of the above four quadrilaterals respectively. 
Then (i) (x e, ye,tn

-
1

/
2

) , e = 1,2 3, 4, are the coordinates of t h above four cent roids , 
respectively' and (ii ) (0, 0 - Sf), I!. = 1, 2, 3 4, are the surface vectors of the above four 
quadrilaterals, respectively. Furthermore, because (i) the above four quadrilaterals 
form the bot tom face of CE( Q); and (ii ) the ar a of the top face of CE( Q) is identical 
to that of the bottom face , one concludes that S = L~=l Sf . 

(e) Let the eight side faces A~ B~B4Al' A~ B~ B I AI , A~B~ B IA2 ' A~B~B2A2' A;B~B2A3 
A~B~B3A3 , A~B~B3A4 and A~B~B4A4 of CE(Q) be assigned the indices (1, 1) (2 1), 
(1,2), (2, 2), (1,3), (2, 3), (1, 4) and (2,4), respectively. Hereafter each side face with 
the indices (k, f.) is referred to as the (k, f.) side face . For each I!., by definition, the 
(1,1!.) and (2,1!.) side faces belong to SE(At ) . Because (i) the spatial projection of 
each side face is a line segment on the x- y plane; and (ii) each side face is sandwiched 
between the (n - 1/2)th and the nth time levels one concludes that for the (k,l!.) 
side face, its surface vector and the coordinates of its centroid, respectively, are given 
by (6t / 2)Ak(nL, nky, 0) and (xk,Yk, tn 

- 6t/4). Here Ak, (nkx' nky), and (xk, Yk ), 
respectively, denote the length, the unit outward normal (on the X-Y plane), and the 
coordinates of the midpoint of the spatial projection of the (k, I!.) side face . 

(f ) Note that: (i) (xQ. ,YQ. tn) are the coordinates of the centroid Q* of the top face 
AIBIA2B2A3B3A4B4 of CE( Q); (ii ) u~(xQ . , YQ· , tn ; Q* ) = (um) Q· (see Eq. (2.4)); 
and (iii) the surface vector of the top face is (0,0,5) . As a result , Eq. (2.9) and (2.12) 

imply that the flux of h~ leaving CE( Q) through its top face is (um) Q. S. Similarly, by 

using the information presented in items (a), (b ), (d) and (e), the flux of h~ leaving 
the other faces of CE( Q) can be evaluated in terms of the independent marching 
variables at points A~* , I!. = 1, 2, 3, 4. 

Let 

1 h:n . ds= 0, 
J S(C E(Q)) 

m = 1, 2, 3, 4 (2.13) 

i.e., the total flux of h~ leaving CE( Q) through its boundary vanishes. Then, with the aid 
of the above preliminaries, it can be shown that 

4 

(U m)Q· = (L R~)/ 5, m = 1, 2, 3, 4 (2.14) 
e= 1 
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whCl"C' , for any m, P. = 1, 2, 3,4 , 

Rf =Sfu," (.J;~ yf t n - I /,2· A'*) 
Tn m· , e 

2 

'" 6.t \ f [ e f * (f f t n t/4 A'* ) f * (f e - ~ -Ak n kx m Xk' Yk ' - 6. ; e + n ky 9m Xk> Yk 
2 

(2.15) 

k=l 

Because, by defini tion, t = t n
-

1
/

2 for any point A~* here the functions u~ (x y, t; A~* ), 
f:n (x, y, t; A~* ), and g~ (x, y, t; A~* ) are defined using Eqs. (2.4) (2.7), and (2.8 ), respec­
tively, with the symbols Q* and t n in these equations being replaced by A~* and t n - 1

/
2

, 

r sp ctively. As a result, each R~ and ther for each (u m)Q* , an independent marching 
variable at the nth tim lev 1, is a function of veral ind pendent marching variables at 
the (n - 1/2)th time level , i. e., (Um )A'*, (Umx)A'* and (Umy )A" m ,f = 1,2, 3, 4. 

l l l 

2.4. Evaluation of (u mx)Q* and (umy)Q* 

A finite-difference approach similar to that given in [10] is employed here to evalu­
ate (u mx )Q' and (u my )Qo. First , we perform a spatial translation of the quadrilateral 
Ar A;A;A= so that the centroid of the resulting new quadrilateral A~ A~AgA~ coincides 
with Q* (see Fig. 4(c)) . Let the centroid of the quadrilateral A;A;A;A: and its spatial 
coordinates be denoted by A* and (XA* ,YA*), respectively. Then (XA~'YA~)' the spatial 
coordinates of Ai , are 

(2.16) 

To proceed, let 

m, f = 1, 2, 3,4 (2.17) 

ext, for any m = 1, 2, 3,4, consider the three points in the x-y-u space with the coor­
dinates (x Q* , YQo ,(um)Qo) , (XAr,YAr,(Um)Ar) and (X A~ ' YA~,(Um ) A~ )' respectively. The 
values of au/ax and au / ay on the plane that intercepts the three points are given by 

where 

and 

and 

~ ~f I XA ~ - xQ' 
XA2 - xQ* 

YA ~ - YQ'I 
YA 2 - YQo 

~ ~f I (Um)Ar -(um)Qo 
x - (U m)A2 - (u m)Q* 

~ d~f I (Um)Ar - (um)Q* 
y - (Um)A~ - (um)Q * 

11 

YA r - YQ* I 
YA~ -YQ* 

XQ* - XAr I 
x Q* - XA~ 

(~ i- 0) (2.18) 

(2. 19a ) 

(2.19b ) 

(2.19c) 



i otc that : ( i) 6 = 0 if and only if the spatial proj ctions of A7 .4.2 and Q* are collinear ; 

1. anet (ii ) similarly, (u~~)Q ' and ( u~~t) Q " k = 2, 3, 4 are defined , respect ively, by replacing 
the point· .rI.f and A2 in th above operations with (i) A2 and A~; (ii ) A~ and A~ ; and (iii ) 
A~ and A f respectively. 

With th above preliminaries , for each m = 1,2 , 3, 4, (umx )Qo and (u my )Qo may be 
evaluated by 

(2.20) 

Alt rnatively. for a flow with steep gradients or discontinuities . t h simple averages in 
Eq. (2.20) may be replaced by weighted averages, i.e ., 

if Bmk = O, k = 1, 2 , 3 , 4 

otherwise 

(2.21a) 
and 

if ()mk = 0, k = 1,2, 3,4 

otherwise 
(2.21b) 

Here (i) a 2': 0 is an adjustable constant (usually a = 1 or a = 2); (ii ) 

()mk ~f [ ( ( k ) ) ] 2 [ ( ( k) ) ] 2 U mx Qo + U my QO , m, k = 1,2, 3 4 (2.22) 

and (iii ) 

W (I) def e e e W (2) d ef e e e W(3) d ef e e e W(4) def e e e 
m = m2 m3 m4 , m = m3 m 4 ml , m = m4 ml m2 , m = ml m2 m3 

(2.23) 
Note that: (i) to avoid dividing by zero , in practice a small posit ive number such as 10-60 

is added to the denominators that appear in Eqs. (2. 21a) and (2.21 b); and (ii ) Eqs. (2.21a) 
and (2.21 b) reduce to Eq. (2.20) if a = O. 

2.5. Remarks and Discussions 

The present 2D Euler solver is formed using Eqs. (2. 14) , (2.21a) and (2. 21b). Stabili ty 
of the solver generally requires that (i) a 2': 0, and (ii ) the maximal CF L number < 1. 
Also, (i ) with a 2': 1, the solver is capable of suppressing numerical oscillations near a 
discontinui ty ; and (ii) solutions generated by the solver tend to become more smeared as 
the C F L number decreases or the value of a increases . Other key properties of this solver 
are given in the following remarks: 

12 
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(it) The stencil of the jJrc~cnt exp licit. ~olver i formed by one point a.t. th(' upper time level 
and foll!' points at the lower time l -'vel. Because the spatial proj(-"ction~ of the four 
point - at th -, low 'r t ime level are th immediate neighbors of that of th point at the 
upper time lev 1, the stencil i staggered in space- time, and it is most compact among 
th' sch mes u ing quadrilateral meshes. A a result , the olver is ideal for parallel 
complltations. 

(b) For a uniform mesh, points such as Q, Q* and A * referred to earlier coincide with one 
another. In this case, the present solver can be greatly simplified. Also , by using the 
arguments presented in [ ,9] and also by numerical experiments, it can be shown that 
the implified scheme is second order in accuracy. 

(c) The present schem is applicable to both structured and unstru ·tured meshes . For 
a structured mesh, the set n* may be divided into two disjoint ubsets n+ and n~ 
with the following property: If any point , say point Q* , belongs to n+ (n~) , then the 
six space-time solution mesh points immediately neighboring to point Q* , i. e., points 
Q'*, QI/* , and A; , P. = 1, 2, 3, 4, belong to D~ (D+). Because, for each I! = 1, 2, 3,4, 
points A~* and Ai are immediate neighbors of each other and thus they must belong to 
different subsets, one concludes that points Q*, and At , I! = 1,2,3,4, which form the 
stencil of the present marching scheme, belong to the same subset . From the above 
observations, it is seen that each of n+ and n~ represents a staggered space-time 
mesh. As such the entire space-time mesh is a dual space-time mesh [9], i.e., the 
union of two disjoint staggered space-time meshes. Furthermore, it is also obvious 
that the marching over n+ is completely decoupled from that over n~, i .e., marching 
needs to be carried out only over one of these two staggered space-time meshes, unless 
the decoupling is prevented by other factors such as the boundary conditions imposed. 
Note that boundary values generally are not updated using the main marching scheme. 
As a result , solution values of n+ and n~ may become coupled near a boundary (see 
Sec. 4). 

(d) Consider the decoupling case referred to in item (c). Let a space-time mesh point 
belong to n+ (n_ ) if and only if its associated space-time solution mesh point belongs 
to D+ (D~). Then it is obvious that the set D is formed by the two disjoint sets 
n+ and n_. Moreover, the CCEs of the mesh points in n+ (n_) do not overlap 
among themselves and they can fill any domain in E3 . Furthermore, because the 
surface integration over any interface separating two neighboring and nonoverlapping 
CCEs is evaluated using the information from the same SE (i.e. , the flux leaving a 
CCE through its interface with a neighboring CCE is the negative of the flux leaving 
the neighboring CCE through this interface), a summation of the local conservation 
conditions Eq. (2.13) over the mesh points Q E D+ (D_) leads to a global conservation 

condition, i. e., for each m = 1, 2,3 ,4, the total flux of h~ leaving the boundary of 
any space-time region that is the union of any combination of the CCEs associated 
with n+ (n_ ) vanishes. ote that a similar discussion for the general case in which 
decoupling may not occur will be given in the Appendix. 

(e) The present olver and the triangular-m sh-based solver describ d in [10] are con-
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st. ruct('d using similar techniques. Using th se techniques and their trivial extensions, 
on(' can easily dev lop a 2D CE/SE solver for patial m she's formed by polygons of 
different shapes . An advantage of using such a mixed mesh is that a geometrically 
complex spat ial subdomain can bE' filled easily using tri angles while a less complex sub­
domain, such as a near-wall region, can be filled using mor regular shaped polygons 
such as quadrilaterals. 

(f ) Because of the space-time staggering nature of the stencil of the present scheme a 
solution of the present scheme may appear as the overlapping of two distinctively dif­
ferent solut ions ( specially in a high-gradient region) after many marching steps. The 
significance of this {solution decoupling' problem and how to handle it are discussed 
in the Appendix. ot that this problem could occur even in the absence of a complete 
n~ -D:" d coupling referred to earlier. Also because the solut ion decoupling problem 
is no t ignificant for the test problem di cussed in Sec. 4, the numerical results pre­
sen t.ed there are generated without using the post-marching procedure described in 
the Appendix. 

3. The 3D Unsteady Euler Solver 

For the current 3D case, Eqs. (2.1)- (2.3) are replaced by 

8um 8im 8gm 8qm _ 0 
at + 8x + 8y + 8z - , m = 1,2, 3,4,5 

and 

J hm · ds= 0, 
J S(V) 

def def / im ,f = 8im / 8uf, gm ,f = 8gm 8u f, 

m = 1, 2, 3, 4,5 

m, f = 1,2, 3,4,5 

(3.1) 

(3.2) 

(3. 3) 

respectively. Here (i) hm d~f Um , gm , qm , um); and (ii ) the three dimensional Euclidean 
space E 3 referred to in Sec. 2 is replaced in the current case by the four dimensional 
Euclidean space E4 with Xl = X, X2 = y , X3 = z, and X4 = t. 
3.1. Conservation Elements and Solution Elements 

The spatial computational domain is divided into nonoverlap ping convex hexahedrons 
of arbitrary shape with the understanding that any two neighboring hexahedrons share a 
common face. In Fig. 5, Q (marked by a circle) is the centroid of a typical hexahedron 
B I B2 B3~ll..sIl...e,B 7B8 (hereafter referred to as the central hexahedron). Each of the 
central hexahedron s six neighboring hexahedrons is arbitrarily assigned an identification 
index .e = 1, 2, ... , 6, i .e., the neighboring hexahedron with the index f is referred to as 
the fth neighbor of the central hexahedron. Also the centroid of the f th neighbor will be 
denoted by .At. As an example, the central hexahedron and its first neighbor is separated 
by the quadrilateral Bl~B8ll..s in Fig. 5. 

With the above preliminaries, we proceed with the following definitions: 
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(a) Point Q and the two end points (say points B land B 2 ) of any of the twelve dge 
, of the central hexaheoron form a triangle. Each of th welve triangles so formed is 

arbitrarily assigned an index j = 1,2, 3, .. . , 12 and denoted by 6(j) . 
(b) Given any e = 1, 2, . .. , 6, a triangle is formed by the point At and the two end points 

of any of the four edg s of the interface (a quadrilateral) that separates the central 
hexahedron and its eth neighbor. Each of th four triangles so form d with the same .e 
is arbitrarily assigned an index k = 1 2, 3, 4 and denoted by 6 (k ,.e) . As an example, 
6AI B1~ ' 6A 1 B 4Iis, 6A 1Iis£, and 6AI B sB l depicted in Fig. 5 have the same 
e = 1. Ther fore they may be denoted by 6 (1, 1) 6 (2,1 ), 6(3,1 ), and 6(4,1), 
respectively. 

(c) The centroid of the 24-faced polyhedron B 1 B2£~B.dt; Bd2.8Al A2A3lhbA6 is 
referred to as the '01 u tion point associated with point Q. Note that (i) the above 
24-faced polyhedron hereafter is denoted by V(24); and 0 i) the centroid of V(24) is 
denoted by Q* and marked by a cross in Fig. 5. 

(d ) Given any .e = 1 2 . .. , 6 points Q, lie and the four vertices of the quadrilateral 
interface that separates the centralhexahedron and its .eth neighbor are the vertices 
of a octahedron. This octahedron hereaft er is denoted by V(8; .e). 

In the space-time computational domain, again we assume that t = ntlt at the nth 
t ime level (n = 0, 1/ 2,1, 3/ 2, ... ). Also , for a given n > 0, let Q, Q' , and Q" (not shown) 
respectively be the points on the nth, (n - 1/2)th , and (n + 1/2)th time levels with point 
Q being t heir common spat ial projection. Other space-time m esh points such as (i) Q* and 
Q'* ; (ii) B k , B~ , and B~ , k = 1, 2, 3, 4,5, 6, 7,8; and (iii ) A i, Ai , A~ and A~*,.e = 1, 2, . .. , 6, 
are defined similarly. Because geometric objects in E4 generally are difficult to visualize , 
they will be described analytically in the following discussions. 

To proceed, note that a "plane" (termed a hyperplane) in E4 , by definition , is a 
subspace of E4 defined by a linear equation, i. e ., 

(3.4) 

where ak , k = 0, 1, 2, 3,4 are constants. As a result ) a hyperplane in E4 I S a t hree 
dimensional subspace. The uni t normal to the hyp erplane is 

(3.5) 

Note that a hyperplane segment, by definition, is a bounded region of a hyperplane . 
Two types of hyperplane segments in E4 are involved in the definition of SEs to be 

given shortly. A hyperplane segement 'of type I, denoted by f (V; tc ), is formed by all the 
points (x) y, z, t) that satisfy the conditions (i) t = t c; and (ii) (x, y , z) E V, where tc is 
a constant and V denotes a 3D spatial region. Obviously the equation t = t c is a special 
form of Eq. (3.4) . Also it can be shown that: 
(a ) The unit normal to f (V; t c ) is (0, 0, 0, ±1 ) . 
(b) The "area" of f (V; t c ) is the volume of V. 
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(c) Tll<' coordinates of the c 'ntroiJ of f( V ; t ,:) are (J: 1:, Yr, Zr;, t r ) where (.Dr , Yr', zr) are th 

("oordinatf's of the centroid of V. 

On thf' other hand , a hyperplane egment of type II , denoted by f (S ; L , t+) , is formed 
by all the points (x,y,z, t ) that atisfy the ondit ions: (i) (x,y,z) E S ; and (ii ) L ~ t ~ t+ , 
wher S denotes a spatial plane segment , and Land t+ (L < t+) are constants . Note 
that every point (x, Y, z) on the patial plane segment 5 satisfi a linear equation of the 
form 

(3.6) 

where Ck, k = 0,1,2,3, are constants. Thus every point (x y, z, t) on f (S ;L t+) also 
ati fies a p cial form of Eq. (3.4), i.e .. Eq. (3.6 ). Moreover, it can be shown that : 
(a) The unit normal to r(Sj t_, t+ ) is (i[, 0) where i[ is the unit normal to the spatial 

plane segment S l. e., 

(3.7) 

(b) The "area" of f (S 'L ,t+) is the area of S multiplied by (t+ - L) . 
(c) The coordinates of the centroid of f (S ;L ,t+) are (xc,yc,zc,(L + t+) /2 ) where 

(xc, Yc , zc) are the coordinates of the centroid of S. 

In addi t ion to the above two types of hyperplanes, we shall also consider 'hyper­
cylinders" in E4 . A hypercylinder , denoted by A(V ; L , t+), is formed by all the points 
(x, y z, t) that satisfy the condi t ions: (i) (x, y, z) E V ; and (ii) L :::; t :::; t+, where V is a 
3D spatial region , and Land t+ (L < t+) are constants . 

With the above preliminaries, SEC Q*) , the solut ion element of point Q*-the point 
that lies on the nth t ime level and has Q* as its spat ial projection, is defined to be the 

union of f (V( 24); tn) and f (6(j); tn-l/2~tn+l/2), j = 1, 2, 3, .. . , 12, and their immediate 
neighborhoods. Moreover , the six basic conservat ion elements (BCEs) of point Q, denoted 
by CEe( Q) e = 1, 2, ... , 6, are defined to be the hyper cylinders A(V (8;.e); tn-l/2, tn), 
.e = 1, 2, .. . , 6, respectively. In addi t ion , the compounded conservation element (CCE) of 
point Q, denoted by CE(Q), is defined to be A(V (24 ); tn- 1/

2, tn ), i.e., the union of the 
above six BCEs. 

In this section , (i) the set of the space- time mesh points whose spatial projections are 
the centroids of the hexahedrons that fill the 3D spatial computational dom ain is denoted 
by [2 ; and (ii) the set of the space-time mesh points whose spatial projections are the 
solution points of the centroids referred to in item (i) is d noted by [2*. Note that th 
BCEs and the CCE of any mesh p oint E [2 and the SE of any mesh point E [2* are defined 
in a manner iden t ical to that described earlier for point Q and Q*. 

3 .2 . A pprox im at ions Within a Solution Element 

For any Q* E [2* and (x,y,z,t) E SE(Q*) , um(x,y ,z, t) fm (x, y ,z, t) , gm(X,y, z, t), 
qm (x, y ,z, t) , and hm (x, y,z,t) are approximated by u~(x,y ,z, t; Q*) , f :n (x,y ,z, t; Q* ) 
g:n (x, y , z, t; Q*) , q~ (x, y,':::, t ; Q*), and h~(x, y, z, t; Q*) respectively (see below) . For any 
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m = 1,2, 3,4,5, let 

and 

/J,:n (.r .!J . z, t; Q*) d~f (um,)Q - + (umx) Q- (x - xQ- ) + (umy) Q-(Y - YQ - ) 

+ (um z)Q- (z - zQ-) + (um t)Q- (t - tn ) 

j~ (x, y, z, t; Q* ) d~f Um)Q- + Umx)Q*(X - XQ- ) + (fmy)Q* (y - YQ - ) 

+ (fmz)Q - (z - ZQ* ) + (fmt}Q*(t - tn) 

g:n(x, Y, z, i; Q*) ~f (gm)Q- + (gmx) Q- (x - XQ-) + (gmy)Q- (y - YQ- ) 

+ (gmz)Q- (z - zQ- ) + (gmt)Q-(t - tn) 

q:n (x, y,z , t ;Q*) d~f (qm)Q- + (qmx)Q- (X - XQ- )+(qmy)Q- (Y-YQ-) 

+ (qm z) Q* (z - zQ - ) + (qmt)Q* (t - t n
) 

(3.8 ) 

(3.9 ) 

(3.10) 

(3.11) 

h:n(x Y z, t; Q*) d~f U:n(X, Y, z, t; Q*), g:n(X, Y, z, t; Q*), q:n(X, Y, z, t; Q*), U:n(X, Y, z, t· Q*)) 
(3.12) 

be the 3D extension of Eqs. (2.4) and (2.7)-( 2.9). Note that, in this section it is implicit ly 
assumed that any notat ion that has a similar 2D version is defined similarly. The defini t ion 
of such a notat ion will not be given explicit ly here unless confusion could occur. 

Moreover we assume that, for any (x y z,t) E SE(Q*), and any m = 1, 2, 3,4,5 

OU:nCX , Y, t; Q* ) oj;'" (X, Y, t; Q*) og:n(x, y, t · Q*) oq:n(x, Y, t; Q*) _ 0 
at + ax + oY + oz - (3.13) 

Thus , for any m = 1, 2, 3 4 5, 

5 

= - L [(fm,£)Q- (u£x)Q- + (gm,£)Q- (uey)Q- + (qm,e)Q* (Ulz) Q- j 
(3.14) 

l=1 

Using the equations given above, it can be shown that, for the current 3D case, the only 
indep ndent discrece variables associated with the space-time solution point Q* are (um)Q* , 
(u mx)Q* , (umy) Q- , and (u mz )Q- , m = 1, 2,3,4,5 . 

3 .3. Evaluation of (um)Q* 

We begin with the following prelim inaries: 
(a ) The boundary of CE(Q) is formed by the "top face" f (V(24); in), the "bottom face' 

f (V (24); tn- 1
/

2
), and th 24 "side faces' f (6 (k f.)- tn- 1

/
2

, tn ), k = 1, 2, 3, 4 and f = 
1 2, ... 6. Because V(24) is the union of V(8; e) e = 1, 2, ... , 6, the top (bottom) 
face is the union of r (V (8 ' f); tn) (f (V(8' e); t n- 1

/
2
)), f = 1 2, . . . , 6 . From the above 
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observations, one concludes that the boundary of CE( Q ) belongs to the umon of 
.. SE(Q*), ami SE( A.~* ), €= 1 2, .. . , 6. Specifically, (i) f (V (24 ):trt) belongs to SE(Q*); 

and (ii ) for each € = 1, 2, . .. 6 f (V( ; e); t rt - l / 2 ) and f(6(k, e)· t n - l / 2 tn) , k = 
1, 2, 3. 4, belong to SE( A~* ) . Not that : (i) f (V (8;e); trt ), e = 1,2, ... ,6, the union 
of which is r(V(24); tn ), also belong to SE(Ae) , f = 1,2, . .. ,6, resp ctively; and (ii ) 
f (V (24); t rt - I

/
2

), which is the union of f (V (8; e); t rt - I / 2 ) , e = 1 2, .. . 6, abo belongs 
to SE(Q'*) . However, in the evaluation of Eq . (3.16) (see below), by assumption, 
f (V (24); tn) is considered to be a subset of SE(Q* ) while f (V (24 ); tn- 1 / 2 ) is considered 
to be the union of sub ets of SE(A~* ), e = 1, 2, ... 6. 

(b) L t f be a hyperplane segment lying within SE(Q* ). Let (i) A be the area of f ; 
(ii ) (x c,yc, ;;c.tc) be th coordinates of the centroid of f ; and (iii ) ii be a unit veC LOr 
normal to r. Then it · an be shown that 

1r h:n . ds = h:n (xc Yc, Zc, tc; Q* ) . A ii (3.15 ) 

where ds = dcr ii with dcr being the area of a surface element on f. 
(c) Let V denote the volume of V(24 ), i.e. the area of the top face f (V( 24) ; tn) of CE(Q). 

(see comments (a)- (c) given following Eq. (3.5)) . Because the unit outward normal 
vector (outward from the interior of CE(Q )) of this face is (0, 0, 0, 1) , its surface vector 
(i.e. the unit outward normal vector multiplied by the area) is (0,0,0, V ). 

(d) Let Vi and (xi, yi, zi), repectively, denote the volume and the spatial coordinates 
of the centroid of any V(8; f). Then the surface vector, and the coordinates of the 
centroid of f (V(8; f); tn- 1 /

2
) respectively, are (0,0,0, - VI') and (xl', yi, zl', t n- 1 / 2 ) . 

(e) Let S£ , (nL,n~y,nL), and (x~,yk,z£), respectively, denote the area, the spatial unit 
outward normal, and the coordinates of the centroid of any 6 (k, f). Then the sur­
face vector, and the coordinates of the centroid of the side face f ( 6( k f); t n - 1

/
2

; t n ), 

respectively, are (Llt/2)S£(nL ,n1y,nL, 0) and (xi,yk,zk,tn - Llt/4) (see comments 
(a)-( c) given following Eq. (3.6)). 

(f ) ote that: (i) (x Q* , YQ* zQ* tn) are the coordinates of the centroid Q* of the top 
face f (V(24) , tn) of CE(Q); (ii) u~(xQ., YQ*, ZQ* , tn; Q*) = (um) Q* (see Eq. (3.8)); 
and (iii ) the surface vector of the top face is (0,0,0, V). As a result, Eq. (3 .12) and 
(3.15) imply that the flux of h~ leaving CE(Q) through its top face is (um) Q* V. 
Similarly, by using the information presented in items (a) (b), (d) and (e), the flux 

of h~ leaving the other faces of CE(Q ) can be evaluated in terms of the independent 
marching variables at points A~* , f = 1, 2, 3,4,5 6. 

Let 

is 
-. h:n · ds= 0, 

S(CE(Q)) 
m = 1 2, 3, 4, 5 (3.16) 

i.e., the total flux of h~ leaving CE( Q) through its boundary vanishes. Then, with the aid 
of the above preliminaries , it can be shown that 

6 

(Um)Q* = (L R~ )/V, m = 1 2, 3,4,5 (3.17) 
f= l 
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., 
where, for any m = 1, 2, 3, 4, 5 and any e = 1, 2, .. . 6, 

·1 

Rf. _ v i * ( . f. , e f. t n -t/2'A'*) ~ Clt s e[ e j'*( e e e t n /4'A'*) 
m - Um :1:, Y ,Z , P - 0 2 k n kr. m Xk> Yk' Zk" - 6. t , e 

k=l (3.18) 

+ niy g;n (x i. yt zk· t n 
- Clt/4; A~* ) + nL q~l(xi. yk. zL t n 

- 6.i/4 ; .4.~* )] 

Here 'u:n(x , y Z t; At ), f:n(x,y,z, t ; A~*) g:n (x,y,z , t'A~*), and q~(x, y ,z, t ; A~* ) are de­
fined using Eqs. (3.8)- (3.11 ) resp ctively, wi th the understanding that the symbols Q* 
and t n in these equations be replaced by At and t n - 1

/
2

, respectively. As a result, each 
R~ and therefore each (um)Q - an independent marching variable at the nth time level, 
is a fun c ion of everal independent marching variabl at he (n - 1/2)th time level, i.e. 
(Um)A' - , (u mx )A'- , (u my )A'- , and (U mz)A' - m = 1, 2, 3, 4 , 5 and I!. = 1, 2, . . . , 6. 

l l l l 

3.4. Evc,tluation of (u mx)Q-, (umy )Q- and (utn z) Q-

First , we perform a spatial translation of the polyhedron A~ A;A;A:A;A~ so that 
the centroid of the resulting new polyhedron Ar A~A3A~A5A6 coincides with Q*. Let (i) 
the centroid of the polyhedron A~ A;A;A:A;A~ and its spatial coordinates be denoted 
by A* and (X A. , YA. , ZA* ), respectively; and (ii ) Ox = xQ. - XA· , oY = YQ· - YA* , and 
oz = ZQ. - ZA·. Then (XA o, YA o, ZAo), the spatial coordinates of AeD , I!. = 1, 2, ... , 6 are 

l l l 

given by 

XAo = XA* + ox, 
l l 

and (3.19) 

As a preliminary for the following discussions , for m = 1,2, 3, 4 , 5 and I!. = 1, 2, ... , 6, let 

(3.20) 

(3.21 ) 

and 
d ef c d ef 

OXe = XA;-XQ* , UYe=YA; -YQ- , (3.22) 

ext consider the vertex B 1 depicted in Fig. 5. This vertex is the common vertex of 
the central hexahedron and three of its neighbors. As an example, let the identification 
indices I!. of these three neighbors be 1, 2 and 3. Then, for any m = 1,2, 3, 4,5 , consider 
the four points in the x-y-z-u space with the coordinates (xQ* YQ-, zQ-, (utn )Q* ) and 
(XA~' YA~, ZA~, (Um )A~)' I!. = 1 2, 3. It can be shown that the values of au/ox , ou/oy , and 
ou/oz on the hyperplane that intercepts the above four points are given by 

( (1)) • ~f 6. / 6. U m x Q x, (6. -1= 0) (3.23) 

where 
Ox ! OY ! OZ I 

6. d~f OX2 OY2 OZ2 (3.24) 
OX3 OY3 OZ3 
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and 

) ! 
bUm 6y) OZI Ox! Urn Z l 6.1' ) oY ! 8Ll~ 

.6. x 
def '2 

5Y2 5z2 .6. y 
d e f 

5X2 5u~ 5z2 .6. z 
def 

5Y2 5u~ (3.25 ) 5u m , , X2 

:3 
OUm OY3 OZ3 5X3 ou::n 5z 3 OX3 5Y3 ou::n 

Note that: ( i) .6. = 0 if and only if the spatial project ions of A~ , A~ Ag and Q* are 

coplanar ; and ( ii ) For each k = 2, 3, ... ,8, (u~~)Q* ' (u~~) Q* ' and (u~~)Q* are defined by 
the above d fini tion procedure except that B l is replaced by B k . 

With the above preliminaries, for each m = 1 2, 3,4,5, (umx) Q* , (u my )Q* ' and 
(u mz )Q' may be evaluated by 

(3.26) 

Alternatively, for a flow with steep gradients or discontinuities , the simple averages in 
Eq. (3.26) may b e replaced by weighted averages, i.e. , 

and 

if () m k = 0, k = 1, 2, ... , 8 

otherwise 

(3.27a ) 
if ()mk = O, k = 1, 2, ... , 8 

otherwise 

(3.27b ) 

if ()mk = 0, k = 1, 2 ... , 8 

otherwise 

(3.27c) 
Here (i) a ~ 0 is an adjustable constant (usually a = 1 or a = 2); (ii ) 

()mk d~f [( (k)) ]2 [( (k)) ]2 [( (k)) ]2 
U mx Q- + U my Q' + U mz Q* (3.28) 

and (iii ) for each k , W~) is the product of ()ml , ()m2 , . .. , ()mB excluding ()mk . ote that: 
(i) to avoid dividing by zero , in practice a small positive number such as 10-60 is added to 
the d nominators that appear in Eqs. (3.27a)- (3.27c)· and (ii ) Eqs. (3.27a)-( 3.27c) reduce 
to Eq. (3.26) if a = O. 
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3_5. Remarks and Discussions 

Th(' present 3D Euler solver is formed using Eqs. (3.17) and (3.27a)- (3.27c). With 
some t rivial modifications, most of the di 'cu sion about the 2D schem given in Sec. 2.5 
and the App ndix are also applicable to the present 3D scheme. In particular, th concept 
of local and global flux conservation can also be established for the present 3D scheme by 
usillg a red finition proc dure similar to that pres nted in the App ndix . 

4 . Numerical Results 

The capabili ties of the present 2D and 3D schemes will be demonstrated using the 
numerical examples presented in the following subsections. 

4 .1. Shock R efl ect ion on a Flat Plate 

This steady-state test problem was proposed by Yee et al. [28] . By imposing suitable 
upstrearri condit ions, oblique incident and reflected shocks will appear above a flat plate. 
The spatial computational domain is a 4.0 x 1.0 rectangle containing 19200 uniform rect­
angles . For the resulting space-time mesh, (i) .0* = .0 , and (ii) .0* can be divided into two 
disjoint sets .0+ and n:. (see Sec. 2.5). 

The flow condi tions at t = 0 are [9] 

( ) { 
(2. 9 0.0 1.0, 0.71428), 

u, v, p, p = (2.6193 , -0.50632 , 1. 7, 1.5282), 
ahead of the incident shock 
behind the incident shock 

( 4.1) 

where u, v, p and p are x-velocity, y-velocity, mass density and static pressure, respectively. 
For t > 0, (i) the flow conditions given in the first and second rows on the right side of 
Eq. (4.1 ) are imposed on the left and the top boundaries , respectively; (ii ) the reflecting 
boundary conditions (see the bottom half of p .124 in [9]) are imposed on the bottom 
boundary (a solid wall ); and (iii) the non-reflecting conditions [9,13] are imposed on the 
right boundary (a supersonic outlet ). 

Note that , for the reflecting boundary conditions used here, no mesh point lies on 
the solid wall. In addition, for each interior mesh point immediately neighboring to the 
solid wall , at the same time level there is a mirror image ghost mesh point lying just 
below the wall. Because (i) the solution values at the ghost point are assigned to be the 
mirror-image values of its corresponding interior mesh point , and (ii ) one of the above two 
points belongs to .0+ while the other belongs to .0:" the solution values of .0+ and .0:' 
are coupled by the present reflecting boundary condi tions. In spite of this disadvantage, 
as explained in [9], the set of reflecting boundary conditions used here (which will also be 
used in the following numerical examples) is the most robust among several sets of the 
reflecting boundary condit ions described in [9]. ote that , because the marching over n+ 
and that over n:. are completely decoupled from each other except for the mesh points 
immediately neighboring to the solid wall , only the solution values of one of n+ and n:. 
are involved in producing Fig. 6(b ), although the numerical time-marching itself involves 
both n+ and n:. . Here it should be emphasized that, for the curr nt special problem in 
which only one straight solid wall is present only one of n+ and n:. needs to b used in 
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t. he comput.at.ion if, iw;teaJ, OIl<' lIS(';, ttl\' ["eHeet ing boundary cOllciitiollS simila.r to that 
..I described on p.122 in [9]. 

The pressur' contours gellerat 'd using t he present 2D cherne with ex = 2 are shown in 
Fig. 6( a) . The angle between the computed reflected hock and the hori20n talline is 23.28° , 
which is very close to th analytical value [27]. Furthermore as shown in Fig . 6(b), (i) the 
numerical value of the pressure co ffici nt at the horizon al mid-section of th rect angular 
domain agr e very well with the analytical value ' (ii ) no numerical oscillat ions are detected 
near either the incident or the r fleeted shock ; and (iii ) both th inciden t and r fleeted 
hocks are r solved by a single data point. 

4.2. Shock Wave Diffraction over a Wedge 

Thi test problem, which wa originally u ed by Wang [6] i bas d on a flow field 
given in the flow album edited by van Dyke [29]. A planar shock wave at Ms = 1.3 moves 
toward a ,wedge with the angle e = 26.565 (see Fig. 7(a». Taking advantage of symmetry, 
only half of the flow field is simulated. The spatial computational domain is a rectangle 
with -0.8 :::; x :::; 3.2 and 0 :::; y :::; 1.1 , excluding the wedge. The whole domain is divided 
into 248 , 750 non-uniform quadrilaterals and a = 1 is assumed. 

At t = 0, the incident p lanar shock is placed at x = -0.5. For t > 0, (i) the 
constant behind-the-shock flow conditions are maintained at the the left boundary; (ii) 
the reflecting boundary condi tions are imposed on the upper and lower boundaries (note: 
the lower boundary is the symmetric center line), and also on the surfaces of the wedge ' 
and (iii) the non-reflecting boundary conditions are imposed on the right boundary, a 
supersonic outlet. 

To enhance the visual effect, the density count ours of the entire flow field at three 
different times are presented in Figs. 7(b )-( d ). When the planar shock reaches the wedge, a 
circular reflection wave is generated. As the shock passes the wedge, the flow separates and 
vortices are formed around the two sharp corners. Further interaction between shocks and 
vort ices produces increasingly elaborate pat terns of shock waves, slip lines and vortices. 
These results agree well with the experimental result [29] except for those phenomena 
induced by the viscous effect. Here, it should be pointed out that the exact locations of 
the upper and lower walls in the experiment are not given in [29] (we only know that these 
walls are actually above and below t he top and bottom edges of the photograph frame, 
respectively) . As a result the spatial domain assumed in t he current simulation (which is 
slightly lareger than the photograph frame) is only an approximation of the actual physical 
domain. 

4.3. Three-D imensional D etonat ion 

The 3D scheme described in Sect ion 3 has been extended to become a solver for 
conservation laws with source terms. Previously, we have reported numerical simulations 
of 1D and 2D detonation waves by using the CE/ SE method [25] . Those results have been 
validated by comparing them with analytical solutions and numerical solutions reported by 
other researchers. In the pres nt paper 3D simulation of a detonation wave is performed 
by solving the reacting Euler equations. The chemical react ions are modeled by single- tep 
irreversible and finite-rat kinetics. Two chemical sp cies are considered , i . . , th reactant 
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and the prodllc t.. The Euler eqllatiollS <tIld one sp(-!cics equat.ion ar' 'olved 'imultan 'ously. 
With proper Il{)n - dim('nsi()nali ~at.ion, it can be shown tha t the defining parameters of this 
detollation wave arc the ov 'rdriven factor f , the sp cific heat rat io I, the acti vation nergy 
E +, and th heat release ra te q. In the pr s nt imulation, f = 1.6, -y = 1.2, E + = 50 , 
and q = 50 are assumed. 

In th current imulation , Q = 1 is assumed. Also th spatial computational domain , 
a x 8 x 6 rectangular box , is divided into 6.4 million hexahedron . Reflecting boundary 
conditions are impo d on the four lateral wall boundaries. The fresh reactant travels from 
top to bot tom. and is consumed by the frame front. On the top surface the incoming flow 
condition are specifi d. On the bottom surface, a non-refl cting boundary condition is 
imposed . The coordina e ystem is cho en u h that he fr ame front stays in the horizontal 
mid-section of the rectangular box. 

A snap shot of temperature count ours is shown in Fig . 8. The flow field is composed 
of the ql1iescent state of the reactant ahead of the shock, a flame zone with finite rate 
reaction, and the equilibrium state behind the reaction zone. Due to cellular structure of 
the detonation, the flow field is very complex. The shock front is characterized by triple 
points traveling in transverse directions. The colliding triple points create tremendous 
vortices . We observe the classical picture of "explosions within explosions" sustained by 
the propagating triple points at the detonation front. It is seen that a high-temperature 
region exists around triple points. At each collision of triple points, vortices with opposite 
signs are created and propagated downstream. Due to these vortices unburnt reactant is 
pushed into the flame zone. The continuous burning of the pockets of the unburnt reactant 
behind the flame zone greatly extends the effective flame zone. 

5 . Concluding Remarks 

In this paper , the original 2D and 3D CE/SE Euler a-Q schemes (which use triangular 
and tetrahedral meshes, respectively) were extended to solve the 2D and 3D unsteady Euler 
equations using quadrilateral and hexahedral meshes , respectively. It has been shown that 
the present schemes retain many key advantages of other CE/SE schemes , i.e. , efficient 
parallel computing, ease of implementing non-reflecting boundary conditions, high-fidelity 
solutions , and a genuinely multidimensional formulation without using Riemann solvers. 
The only key disadvantage of the present schemes (and, for that matter, any other a-Q 

scheme) is that , compared with other more general CE/SE schemes such as the a-E-Q-!3 

schemes [9], they allow for Ie freedom in adjusting numerical dissipation. As explained in 
Sec. 5.5 of [9], this inflexibility may impose a constraint on the performance of the current 
schemes in numerical simulations involving highly nonuniform meshes. 

In addition, it was pointed out that by combining the techniques used to construct 
the present and earlier CE/SE solvers one could easily develop 2D and 3D mixed mesh 
solvers. An advantage of using such a mixed mesh is that a geometrically complex spa­
tial sub domain can be filled easily using triangles or tetrahedrons while a less complex 
subdomain, such as a near-wall region , can be filled using quadrilaterals or hexahedrons. 

Also , a rigorous discussion about the concept of local and global flux conservation as 
applied to the present 2D scheme using an unstructured m sh is given in the Appendix. As 
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a part of this discussion a post-marching procedure was introdu 'ed to handl a'( 'olution 
ciCCOll pling" problem that may arise after a long marching involving many time steps. 
vVithout any exception, the discussions given in the Appendix can be extend d to 3D 
easily. 

Appendix 

In this appendix, using a similar technique presented in [10] local and global flux 
conservation will be established for the present 2D scheme using an unstructured mesh. 
Al 0 a po t-marching procedure will be introduc d to handle th solution decoupling" 
problem referred to in comment (f ) of Sec. 2.5. 

ote that , for the case in which the n+ -n:.. mesh decoupling referred to in comments 
(c) and (d) of Sec. 2.5 does not occur , generally the pace-time computational domain 
cannot b,e filled by the union of a combination of nonoverlapping GGEs. As a result , 
global flux conservation cannot be established by summing over a set of local conservation 
conditions Eq. (2.13) . However , even in the nondecoupling case, the computational domain 
can still be filled by the union of a combination of nonoverlapping BGEs. As a result , 
through a process of flux redefinition to be shown, one can manage to preserve the concept 
of local and global flux conservation over the B GEs and the union of any combination of 
them. 

As a preliminary, first we introduce the following definitions (see Fig. 4(b) ): 

(a) For any m,.e = 1,2,3,4, let F:n (Q* ) denote the flux of h~ leaving CE(Q) through the 
top face of CEe( Q), assuming that this top face belongs to SE( Q* ). ote that the top 
faces of CEe( Q) ,.e = 1, 2, 3,4, are the quadrilaterals A 1 B 1 QB4, A2B2QB 1 , A3B3QB2 
and A4B4QB3 , respectively. 

(b) For any m,.e = 1, 2, 3, 4, let F:n (A~*) denote the flux of h~ leaving CE(Q ) through 
the bottom face of CEe( Q), assuming that this bottom face belongs to SE( A~* ) . Note 
that the bottom faces of CEe(Q) , .e = 1,2, 3 4, are the quadrilaterals A~ B~Q'B~ , 
A;B~Q'B~ A~ B~Q'B~ and A~B~Q'B~ respectively. 

( k e) -(c) For any m,.e = 1,2 3,4 and any k = 1,2, let Fm ' ( A~* ) denote the flux of h~ 
leaving CE(Q) through its (k,.e) side face , assuming that this side face belongs to 
SE(A~*). _ ote that the (k ,.e) (k = 1, 2, f. = 1, 2, 3, 4) side faces of CE(Q ) are defined 
in Comments (e) of Sec. 2.3. 

Wi th the above definitions , local flux conservation over CE(Q ), i .e., Eq. (2. 13), implies 
that 

4 

L S~ ( Q* , A~* ) = 0 (A .l ) 
e=l 

where 
(A.2) 

ote that Eq. (A . 1) says nothing about local flux con ervation over CEe(Q),.e = 1, 2, 3, 4. 
As will be shown , local flux conservation over these BCEs can be realized with a proper 
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assignment of "artificial flu x s" over tb(' four interfaces that divide CE( Q ) into CEe( Q ), 
f= I , 2.3.4. 

To proceed, note that the boundar of each CEe( Q ) is formed by th top face, th 
bottom face and the four side faces . Among these four side faces, two are also the side 
fac s of CE( Q) while the other two b long to the set of the four interfaces that divide 
CE( Q) into CEe( Q), e = 1 2, 3,4. Hereafter , the first pair and second pair of the above 
four side faces r spectively, are referred to as the exterior ' and ' interior" side faces of 
CEe(Q)· Obviously, for each m, the four terms on the right side of Eq. (A.2) represent 
the fluxes leaving CEI'( Q) through its top face, bottom face , and two exterior side faces , 
respec ti vely. 

Next, for any m = 1, 2, 3,4, let F;;;2 (Q) represent a flux (as yet to be defined explici tly) 
leaving CE 1 (Q) (and entering CE2 (Q)) through the interface dividing CE1 (Q) and CE2 (Q ). 
F~3( Q), F!4( Q) and F~l (Q) are similarly defined. In addition, for any m = 1,2, 3,4, let 

S:n ( Q*,A~*) + F!r: 2 (Q) - F!l (Q) = 0 

S~ (Q* , A;*) + F!3(Q ) - F;2(Q) = 0 

S~(Q*,A;* ) + F!;4 (Q) - F!3( Q) = 0 

S~JQ* , A~* ) + F!l (Q) - F!;4 (Q) = 0 

(A.3a ) 

(A .3b ) 

(A. 3c) 

(A .3d) 

Note that (i) S~(Q*, A~* ) represents the sum of the fluxes leaving CE1(Q) through its top 
face bot tom face and two exterior side faces; and (ii) F~2 ( Q) and - F~ 1 (Q), respectively, 
represent the fluxes leaving CE1 (Q) through its two interior side faces . Thus, for each m, 
Eq. (A.3a) represents a local flux conservation relation over CE1(Q). Similarily, for each 
m , Eqs. (A.3b)-( A.3d), represent local flux conservation relations over CE2 (Q), CE3 (Q) 
and CE4 ( Q), respectively. 

ate that a summation over Eqs. (A .3a)-(A.3d) results in Eq. (A.I)- the known local 
conservation condition over CE(Q ). Thus, for each m, Eqs. (A.3a)-(A.3d) contain only 
three independent conditions for four unknowns F;:,2 (Q), F~3 (Q), F!4(Q) and F~l(Q). 
In other words , there still is a degree of freedom left for these unknowns. 

To proceed , note that the interfaces that divide CE(Q) into CEI'(Q ), g = 1, 2,3 ,4, 
all belong to SE( Q* ). As a result, even though they are not used in the construction of 

the present scheme, the fluxes of h:n at these interfaces can be evaluated in terms of the 
independent marching variables at point Q*. In the following discussion, the evaluated 
flux of h:n leaving CE1 (Q) (and entering CE2 (Q )) through the interface dividing CE1 (Q) 
and CE2(Q) will be denoted by F~2( Q* ) . Similarily one also define F;;:3( Q* ), F!4 (Q*) 
and F~l ( Q* ). 

With the above definitions , the degree of freedom referred to earlier is removed by 
requiring that, for each m, F;;;2(Q) , F~3(Q), F!4 (Q) and F~l ( Q ) be the solution to 
Eqs. (A .3a)-(A.3d) with the minimal value of 

Lm ~f [F;:, 2( Q) _ F;;;2 (Q* )]2 + [F;:3( Q) _ F!3 (Q* )]2 

+ [F~~4( Q ) - F!;4( Q* )]2 + [F!l (Q) - F!l (Q* )F 
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It nUl l)(' showll t hat the las t requiI'('!Il(-'ut <-111lOIlIltS to imposing rlw ext ra condi tiOIl 

F,~: 2( Q ) + F~ :I(Q ) + F~,= ·1 ( Q ) + F;!:l (Q) 

= F~2( Q* ) + F';I::I(Q"' ) + F;4 (Q* ) + F!l (Q* ) 
(A .. 5) 

By using Eq. (A.5) and any thre of Eqs . (A.3a)- (A.3d), for each m, F~2(Q ), F~3 ( Q ) , 

F~:4(Q) and F;/ (Q) can be uniquely d fined in terms of known parameters F!,:2 (Q* ), 
F~3( Q* ) F!4( Q*), F;/ (Q* ), and S~ ( Q*,At ) . e = 1, 2,3 , 4. 

ext, note that a space-time region may be the common BCE of two different mesh 
point ( thes two mesh points are referred to as the cohosts of the common BCE). As an 
example, the space-time cylinder AI BIQB4A~B~ Q'B~ depicted in Fig. 4(b) was designated 
as CEl(Q). However , it also can be designated as a BCE of point AI , say CEI(Al)' As will 
be shown in the following remarks , for each m, how the flux is assigned to each face of the 
space-time cylinder, along with the resulting flux conservation relation over the cylinder, 
is dependent on whether it is designated as CEI (Q) or CEl(Al ): 
(a) At the top face of CE1(Q) (CEl(Ad), the flux is evaluated assuming that the face 

belongs to SE(Q*) (SE(Ar)) . 
(b) At the bottom face of CEl(Q) (CEl(Al )), the flux is evaluated assuming that the face 

belongs to SE(A~* ) (SE( Q'*)) 
(c) The exterior (interior) side faces of CEI (Q) are the interior (exterior) side faces of 

CEl(Ad· 
(d) At each of the exterior side faces of CE1(Q) (CEl(Al )) , the flux is evaluated assuming 

that the side face belongs to SE(A~*) (SE(Q*)). 
(e) A local conservation condition over CE1(A1 ) (different from that over CE1 (Q), i.e., 

Eq. (A.3a)) will result if the artificial flux at each interior side face of CE1(A1 ) is also 
assigned using a procedure parallel to that used to assign the flux at each interior side 
face of CE I (Q). 
Consider a common BCE of two cohosts lying in the interior of the computational 

domain. From the above discussion, one concludes that, for each m, (i) two different fluxes 
are assigned to each face of the BCE, and (ii) corresponding to the two cohosts, there are 
two different conservation relations over this BCE. Hereafter , the simple average of the 
two fluxes at each face will be referred to as the generalized flux at this face. By summing 
the two local conservation relations over the BCE, one concludes that the total generalized 
flux leaving the BCE through its boundary vanishes. 

Furthermore, note that: (i) only one generalized flux is defined at any interface divid­
ing two neighboring BCEs; and (ii) the generalized flux leaving a BCE through an interface 
dividing this BCE and a neighboring BCE is the negative of the generalized flux leaving 
the neighboring BCE through the same interface. Thus , one arrives at the following global 
flux conservation relation : for each m, the total generalized flux leaving the boundary of 
any space-time region that i the union of any combination of BCEs (with each of these 
BCE having two interior cohosts) vanishes. 

To proceed further , note that, for each m, corresponding to its two cohosts , the 
bouml.ary of a BeE is assign d two sets of fluxes . Because of the space-time - aggering 
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.. nature of t. he stencil of the present scheme, the above two sets alon~ wi th the 'olution values 
at it two cohosts may becom decoupled locally after many marching steps. ote that one 
lllay argue that this decoupling do s not matter , because the amount of d coupling usually 
is of th _ ord · r of the di crepancy b tw en the numerical solu tion and the exact solution 
and a uch , it does not exacerbate the actual imulation errors . However , in practice, 
the decoupling can cause a substantial problem in solution display. The decoupling can 
manifest itself as what app ar to be small-wavelength oscillations when the solution at 
the final time level is displayed using the solution values of both n+ and n~. As will 
be shown immediately, not only does the above definition of a unique generalized flux at 
any boundary of a BCE provide a way to avoid the problem of flux decoupling ' it also 
provides a way to handle the problem of "solution decoupling ' . 

Consider the top face of any BCE with two cohosts . For any m, the two fluxes assigned 
to this face respectively, are evaluated assuming that the face belongs to the SEs of its 
two cohosts , respectively. It can be shown that these two fluxes. respectively are equal 
to the area of the face multiplied by the two values of Urn at the centroid of the top face 
evaluated assuming that the centroid belongs to the two cohosts, respectively. Let the 
simple average of the above two values of Urn be referred to as the coupled solution value 
of Urn at the centroid of the top face of this BCE. Then it can easily be shown that, for 
each m, the generalized flux at this face is simply the area of the face multiplied by the 
new solut ion value. Also, because of how they are defined, solution decoupling generally 
is no longer a problem if the numerical data are taken from these new solution values. 

Finally, it should be emphasized that the above definition of generalized fluxes and 
coupled solution values , by no means implies any change in the marching scheme. In fact, 
evaluation of the locations of the centroids of the top faces of the BCEs along with that 
of the associated coupled solution values represents only a post-marching procedure. 
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Figure 1 .-A surface element on the boundary SM 
of a volume V in a space-time E2. 
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Figure 2.-Space-time geometry of the conventional 
finite volume method in E2' (a) A rectangle in E2' 
(b) A spatial cylinder aligned in the x-direction, 
(c) A regular space-time mesh. 
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Figure 3.- The SEs and CEs of the a scheme. (a) A staggered 
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E- l 2894 Chuang 9pt/1 00 % nm 

(a) 

(b) A3 

Figure 4.-Space-time geometry of the 20 scheme. 
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(b) SEs and CEs. (c) Spatial translation of the 
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Fig. 6: The Euler solution of a steady-state shock reflection problem: (a) pressure contours; (b) 

pressure coefficient distribution at the mid-section of the computation domain (y=O.5). 
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Fig. 7: Schematic and density contours at three different times compared with the experimental 
photographs. 
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Fig. 8: A simulated three-dimensional detonation wave in a square duct: temperature contours. 


