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Abstract

In this paper, we report a version of the Space-Time Conservation Element and So-
lution Element (CE/SE) Method in which the 2D and 3D unsteady Euler equations are
simulated using structured or unstructured quadrilateral and hexahedral meshes, respec-
tively. In the present method. mesh values of flow variables and their spatial derivatives
are treated as independent unknowns to be solved for. At each mesh point. the value of
a flow variable is obtained by imposing a flux conservation condition. On the other hand,
the spatial derivatives are evaluated using a finite-difference/weighted-average procedure.
Note that the present extension retains many key advantages of the original CE/SE method
which uses triangular and tetrahedral meshes. respectively, for its 2D and 3D applications.
These advantages include efficient parallel computing, ease of implementing non-reflecting
boundary conditions, high-fidelity resolution of shocks and waves, and a genuinely mul-
tidimensional formulation without using a dimensional-splitting approach. In particular,
because Riemann solvers—the cornerstones of the Godunov-type upwind schemes, are not
needed to capture shocks, the computational logic of the present method is considerably
simpler. To demonstrate the capability of the present method, numerical results are pre-
sented for several benchmark problems including oblique shock reflection, supersonic flow
over a wedge, and a 3D detonation flow.

1. Introduction

The Space-Time Conservation Element and Solution Element (CE/SE) Method, orig-
inally proposed by Chang [1-13], is a new numerical framework for solving conservation
laws. The CE/SE method is not an incremental improvement of a previously existing
CFD method, and it differs substantially from other well-established methods. The CE/SE
method has many nontraditional features, including a unified treatment of space and time,
the introduction of conservation element (CE) and solution element (SE), and a novel
shock capturing strategy without using Riemann solvers. Note that conservation elements
are nonoverlapping space-time subdomains introduced such that (i) the computational do-
main is the union of these subdomains; and (ii) flux conservation can be enforced over
each of them and also over the union of any combination of them. On the other hand,
each solution element is a space-time subdomain over which any physical flux vector is
approximated using simple smooth functions. In general, a conservation element does not
coincide with a solution element.

To date, numerous highly accurate CE/SE steady and unsteady solutions with Mach
numbers ranging from 0.0028 to 10 have been obtained without using preconditioning
or other special techniques [1-26]. The flow phenomena modeled include traveling and
interacting shocks, acoustic waves, shedding vortices, detonation waves, and cavitation. In
particular, the rather unique capability of the CE/SE method to resolve both strong shocks
and small disturbances (e.g., acoustic waves) simultaneously has been verified through
several accurate predictions of experimental data [15-17]. Note that, while numerical
dissipation is required for shock resolution, it may also result in annihilation of small
disturbances. Thus a solver that can handle both strong shocks and small disturbances
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simultancously must be able to overcome this difficulty. The design principles of the
CE/SE method have been extensively illustrated in the cited references. In this paper, a
brief description of the CE/SE method is provided as the background of the present work.

Perhaps, one of the most important features of the CE/SE method is the adoption
of an integral form of space-time flux conservation as the cornerstone for the subsequent
numerical discretization. Note that one derives the conventional finite-volume methods
based on Reynolds’ transport theorem [27], in which space and time are treated separately.
As will be shown shortly, this separate treatment of space and time imposes a restriction
on the space-time geometry of finite volumes and, as a result, classical Riemann problems
arise natually in the course of flux evaluation across an interface. In contrast, due to
its unified treatment of space and time, Chang’s flux conservation formulation allows a
choice of the space-time geometry of CEs that render it unnecessary to solve Riemann
problems. To clarify this fundamental difference, in this Introduction, we will first review
the conventional integral form for hyperbolic conservation laws in Sec. 1.1 as a contrast
to Chang’s integral form which is described in Sec. 1.2. The original CE/SE method is
reviewed in Sec. 1.3, and the objectives and outline of the present work are presented in
Sec. 1.4.

1.1. Conventional Finite Volume Methods

Consider the differential form of a conservation law, i.e.,

1

ou

at+i-@=0 (1.1)

where (1) u is the density of the conserved quantity; (ii) E_ is the spatial flux vector; and
(iii) V- is the spatial divergence operator. Note that, in order to distingush a spatial object

from a space-time object (see below), hereafter the former will be denoted by an underline.
By using the Reynolds’ transport theorem, one can obtain the conventional integral form

of Eq. (1.1), i.e.,
at%udvﬁ-f dsi=0 (1.2)

where (1) V is a fixed spatial domain (i.e., a “control volume”); (ii) dv is a spatial volume
element; (iii) S(V') is the boundary of V; and (iv) d5' = do i with do and 7, respectively,
being the area and the unit outward normal vector of a surface element on S(V). By
integrating Eq. (1.2) over the time interval (¢,,%y), one obtains

Vzu@}t:tl : [fludv} /t! dt]i(_) .df =0 (1.3)

The discretization of Eq. (1.3) is the focus of conventional finite volume methods [27].

1.2. The Space-Time Flux Conservation Formulation
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Let (i) En denote an N-dimensional Euclidean space in which z,,z2,...,2x_, are

def
sparml coordinates and zy = #; (ii) V- be the divergence operator in Ey; and (iii) h =

(h,u). Then Eq. (1.1) implies V-h=0. As a result, Gauss’ Divergence Theorem in Ey
implies
f h-ds=0 (1.4)
S(V)

As depicted in Fig. 1, here (1) S(V) is the boundary of an arbitrary space-time region V in
Exn, and (i1) ds" = do i with do and 7, respectively, being the area and the unit outward
normal of a surface element on S(V'). Note that: (i) because h - d3 is the space-time flux
of h leaving the region V through the surface element d3, Eq. (1.4) simply states that
the total space-time flux of h leaving V' through S(V') vanishes; and (ii) all mathematical
operations can be carried out as though Ey were an ordinary N-dimensional Euclidean
space.

Let N = 2. For this case, (1) z; = z and zo = t; (ii) E = hg;(111) iE = Oh,/8z; and
(iv) a “surface element” on S(V') and the “area” of this element reduce to a line segment
and the length of this segment, respectively (see Fig. 1). Note that, for an arbitrary V,
the spatial projection V(%) of the cross-section of V' at time t generally varies with t. The
exception occurs only if V' is a cylinder with its axis being parallel to the time axis, such
as the rectangle ABC D depicted in Fig. 2(a). In this case, V(¢) is independent of ¢ and
thus it can be considered as a “control volume.”

Let V be the rectangle ABCD depicted in Fig. 2(a). Then S(V) is formed by the line
segments AB, BC, CD and DA. Let (i) t = t, at CD; (ii) t = ¢; at AB; (iii) z = z, at
BC; and (iv) z = z5 at DA. Then because h= (hz,u), with the aid of Fig. 2(a), Eq. (1.4)

implies
Ty iy ty
- [/ udx} - [/ h,dtjl - [/ hzdt] = (1.5)
Ts =1t ts =z ts =%,

zs
[
z t=t; =z
Note that Eq. (1.3) reduces to Eq. (1.5) for the 1D unsteady case in which (i) V is the
spatial cylinder of constant cross-section depicted in Fig. 2(b); (ii) u = u(z,t); and (iii)
h = (hz,0,0) with h, = hy(z,t).

Note that generally the discretization of Eq. (1.3) is carried out by dividing the entire
space-time computational domain into space-time CEs. Each CE is a cylinder in space-time
with (1) its spatial projection being the control volume V, and (ii) its top and bottom faces
representing two constant time levels. Because the control volume is a fixed spatial domain,
these CEs generally are stacked up exactly on the top of each other, i.e., no staggering of
CEs in time is allowed (see Fig. 2(c) for the N = 2 case). With this arrangement of CEs,
the vertical interface that separates any two neighboring columns of CEs will always be
sandwiched between two neighboring columns of mesh points (marked by dots in Fig. 2(c)).
As such, flux at the vertical interface of two neighboring CEs generally must be evaluated
by interpolating the data from these two CEs. How this interpolation should be carried
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out properly under varying solution behavior is a difficult problem. As will be shown
immediately, with a new space-time arrangement of CEs and mesh points, and a proper
definition of SEs, the above difficult interpolation problem can be bypassed completely.

1.3. The CE/SE Method
As an example, the CE/SE method will be described by considering the PDE

Ju % Od(au)
ot Oz
where a is a constant. Obviously the integral form of Eq. (1.6) is Eq. (1.4) with N = 2

= (1.6)

and h = (au,u).

To proceed, let ¥ denote the set of all mesh points in E, (dots in Fig. 3(a)). Each
(7,n) € ¥ is associated with a solution element, 1.e., SE(7,n). By definition, SE(j,n) is
the interior of the space-time region bounded by a dashed curve depicted in Fig. 3(b). It
includes a horizontal line segment, a vertical line segment, and their immediate neighbor-
hood.

For any (z,t) € SE(j,n), u(z,t) and E(:L",t), respectively, are approximated by

u*(z,t;5,n) B u? + (uz)H(z — z5) + (we) }(t — t7) (1.7)

and
R*(z,t1,n) € (au*(z,t;4,n), w*(z,t;5,n)) (1.8)
Note that (i) u7, (uz)}, and (u)] are constants in SE(j, n), (ii) (z;,t") are the coordinates
of the mesh point (j,n), and (iii) Eq. (1.8) is the numerical analogue of the definition
h= (au,u).
Let u = u*(z,t;j,n) satisfy Eq. (1.6) within SE(j, n). Then one has (u:)} = —a (uz)7].
As a result, Eq. (1.7) reduces to

u*(z,t;5,n) = uj + (usz)j [(z —z;)—a(t—t")], (z,t)€SE(j,n) (1.9)

ie, u} and ( uz )} are the only independent marching variables associated with (7,n).

Let E; be divided into nonoverlapping rectangular regions (see Fig. 3(a)) referred to
as conservation elements. As depicted in Figs. 3(c) and 3(d), two CEs, i.e., CE_(j,n) and
CE4(j,n), are associated with each interior mesh point (j,n) € ¥. These CEs will be
referred to as basic conservation elements (BCEs). Contrarily, CE(j,n) (see Fig. 3(e)),
which is the union of CE_(j,n) and CE4(j,n), will be referred to as a compounded
conservation element (CCE).

Note that, among the line segments forming the boundary of CE_(j,n), AB and
AD belong to SE(j,n), while CB and CD belong to SE(j — 1/2,n — 1/2). Similarly, the
boundary of CE4(j,n) belongs to either SE(j,n) or SE(y +1/2,n — 1/2). As a result, by
imposing two conservation conditions at each (j,n) € ¥, ie.,

]{ h*.ds =0, (j,n) e T (1.10)
S(CE+(j3,m))



and using Eqs. (1.8) and (1.9), one has (1)

1 n—1/2 n—1/2 ‘ / n—1/2 n—1/:
uf =5 {2+ (1= oy T2+ (1= o) )22 - ({Lj)_l+l'/jj} (1.11)
and, assuming 1 — v? # 0. (ii)
1 ~1/2 —1/2 —-1/2 ~1/2
(wi)f =3 ['u7+1//2 —u T - (1)) - (1 +u)(uj);.’+l//2J (1.12)

Here v & ast/az and (uf)? E (az/4)(u;)}. The a scheme [1,5,8], the explicit nondissi-
pative CE/SE solver for Eq. (1.6), is formed by Eqgs. (1.11) and (1.12).

According to Eq. (1.10), the total flux of h* leaving the boundary of any BCE is zero.
Because the surface integration over any interface separating two neighboring BCEs is
evaluated using the information from a single SE, obviously the local conservation relation
Eq. (1.10) leads to a global flux conservation relation, i.e., the total flux of h* leaving the
boundary of any space-time region that is the union of any combination of BCEs will also
vanish. In particular, because CE(j, n) is the union of CE_(j,n) and CE, (7,n),

[ R ds=o0, (jyn) € ¥ (1.13)
S(CE(3,n))

must follow from Eq. (1.10). In fact, it can be shown that Eq. (1.13) is equivalent to
Eq. (1.11).

In addition to the nondissipative a scheme, there is a broad family of dissipative CE/SE
solvers of Eq. (1.6) in which only the less stringent conservation condition Eq. (1.13) is
assumed [2,3,5,8]. Because Eq. (1.13) is equivalent to Eq. (1.11), for each of these schemes,
u? is still evaluated using Eq. (1.11) while (u;");‘ 1s evaluated using an equation different
from Eq. (1.12). Among these schemes is one (referred to as the a-a scheme) which is among
the simplest and yet capable of handling solutions with discontinuities. For this scheme,
(u'{);‘ is evaluated using a finite-difference/weighted-average procedure which involves a
parameter a (see Egs. (2.62), (2.63) and (2.65) in [12]). The key disadvantage of the a-a
scheme and its extensions (see below) is that, compared with the more general CE/SE
schemes, they allow for less freedom in adjusting numerical dissipation. As explained
in Sec. 5.5 of [9], this inflexibility may impose a constraint on the performance of these
schemes in numerical simulations involving highly nonuniform meshes.

The above description of the CE/SE development is based on a simple PDE. However,
it represents the essence of the general CE/SE development which may involve a system
of conservation laws in one, two or three spatial dimensions. In particular, note that:

(a) The 1D Euler extension of the a-a scheme, which first appears in [2], has been shown
to be an accurate and robust shock-capturing solver [2,3,5.6].
(b) In the original 2D extension of the CE/SE method [4,6-10], triangles are used as the

basic building blocks of the spatial meshes. Corresponding to the three sides of a
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triangle, three BCEs are defined for each mesh point. The union of the three BCEs at
a mesh point form the CCE at the same mesh point. Among the family of 2D CE/SE
schemes described in [4,6-10], the 2D a scheme, which has three unknowns u, u, and
u, at each mesh point, are constructed by imposing three conservation conditions
over the three BCEs at each mesh point. On the other hand, only one conservation
condition (imposed over the CCE) per mesh point and per conservation law is used in
the construction of the 2D Euler a-a scheme (i.e., the scheme defined by Egs. (6.54),
(6.107) and (6.108) in [8]). Because of its simplicity, accuracy and roubustness, all the
numerical results presented in [4,8,9] are generated using the 2D Euler a-a scheme.

(¢) The 3D Euler a-a scheme [11] is a straightforward extension of the 2D Euler a-«
scheme taking into account that: (i) tetrahedrons are used as the basic building
blocks of 3D spatial meshes; and (ii) corresponding to the four sides of a tetrahedron,
the CCE at each mesh point is the union of the four BCEs defined at the same mesh
point.

1.4. The Objectives and Outline of the Present Work

In this paper, the 2D and 3D unstructured-mesh a-a Euler schemes will be constructed
using quadrilateral and hexahedral meshes, respectively. It will be shown that the present
schemes are also simple, robust, and accurate. The rest of the paper is organized as follows.

The 2D and 3D solvers along with their key properties are described in Secs. 2 and 3,
respectively. Numerical examples are presented in Sec. 4 to demonstrate the capabilities
of the present solvers. The concept of local and global flux conservation for the present
2D scheme with an unstructured mesh along with a post-marching procedure for handling
a possible “solution decoupling” problem is discussed in the Appendix. The concluding
remarks are given in Sec. 5.

2. The 2D Unsteady Euler Solver

Consider the standard conservation form of the two-dimensional unsteady Euler equa-
tions of a perfect gas [9]:

m am m
du . f +(9g

5T ety =0 m=L234 (2.1)

where f, and ¢, m = 1,2,3,4, are explicit functions of the independent flow variables
Um, m = 1,2/3,4 [9]. Let z; = z, zo = y and z3 = t be the coordinates of a three
dimensional Euclidean space E3. Then, in the case that u,, are smooth functions of z, y,
z and ¢, Eq. (2.1) can be derived from the more fundamental conservation laws

f hm-d5=0, m=1,23,4 (2.2)
S(V)

def

where (1) S(V') and d5 were defined following Eq. (1.4); and (ii) Ay = (fos Got's 2, ) Notie

that Eq. (2.2) is valid even in the presence of flow discontinuities.
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3

For the future development, let
. def . def /i ) .
fmf = ij/(?w. Im. ¢ = agm/auf- R 1~2~, 3.4 (23)

2.1. Conservation Elements and Solution Elements

Consider Fig. 4(a). Here the z-y plane 1s divided into nonoverlapping convex quadri-
laterals and any two neighboring quadrilaterals share a common side. Moreover, (i) vertices
and centroids of quadrilaterals are marked by dots and circles, respectively; (i1) @ is the
centroid of a typical quadrilateral B, B,B,By; (iii) 4,, Ay, A, and A,, respectively, are the
centroids of the four quadrilaterals neighboring to the quadrilateral B, B,B;B,; and (iv)
point Q* (which generally does not coincide with point Q) is referred to as the solution
point associated with the centroid Q. Note that points Af,- A3, A% and A}, which are also
marked by crosses, are the solution points associated with the centroids A,, 4,, 4; and
A,, respectively.

Next consider Fig. 4(b). Here (i) t = nat at the nth time level (n =0,1/2,1,3/2,...);
and (ii) for a given n > 0, @, @', and Q", respectively, denote the points on the nth, the
(n—1/2)th, and the (n+1/2)th time levels with point @ (see Fig. 4(a)) being their common
spatial projection. Other space-time mesh points, such as those depicted in Fig. 4(b), and
also those not depicted, are defined similarly. In particular, (i) Q*, A}, A5, A} and Aj,
by definition, lie on the nth time level and, respectively, are the space-time solution mesh
points associated with points @, A, A2, A3 and A4; and (ii) Q"*, A", AL, AL and A, by
definition, lie on the (n — 1/2)th time level and, respectively, are the space-time solution
mesh points associated with points @', A}, A5, A} and Aj.

With the above preliminaries, the solution element of point @Q*, denoted by SE(Q*),
is defined as the union of the five plane segments Q'Q" B{ B}, Q'Q"B} B, Q'Q" B} Bj;,
Q'Q"BY B}, and A;B,A;B;A3B3A4B,, and their immediate neighborhoods. Moreover,
the four basic conservation elements (BCEs) of point @), denoted by CE,(Q), ¢ = 1,2, 3,4,
are defined to be the space-time cylinders A;B,QB,A|B|Q'B;, A>B,QB,A,B,Q' B,
A3B3;QBy Ay B3Q' B, and AyByQB3 A} By Q' B}, respectively. In addition, the compounded
conservation element (CCE) of point @, denoted by CE(Q), is defined to be the space-
time cylinder Ay By Ay B, A3 B3 AyB4A| B{ A, B, A, B} A} B}, i.e., the union of the above four
BCEs.

In this section, (1) the set of the space-time mesh points whose spatial projections are
the centroids of quadrilaterals depicted in Fig. 4(a) is denoted by £2; and (ii) the set of
the space-time mesh points whose spatial projections are the solution points depicted in
Fig. 4(a) is denoted by Q*. Note that the BCEs and the CCE of any mesh point € {2 and
the SE of any mesh point € Q* are defined in a manner identical to that described earlier
for point @ and Q*.

2.2. Approximations Within a Solution Element

For any Q* € Q* and any (z,y,t) € SE(Q*), um(z,y,t), fm(z,y,t), gm(z,y,t) and

E,,,(;z:. y,t), respectively, are approximated by u}, (z,y,t; Q*), fr(z,y,t;Q*), gr(z,y,t; Q™)
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and f—;fn(.l',,y.f: Q") (see below). For any m = 1,2,3,4, let

s, (a2, 35 Q™) def (Um)Q* + (Umz)Q* (£ —ZQ* )+ (Umy)Q= (¥ — Y@= ) + (ume)Q-(t —1t") (2.4)

where (1) (zg~,yg+,t") are the coordinates of the space-time solution mesh point Q*;
and (i) (t4m)Q+s (Umz )@+, (Umy)@+ and (um)g-, which are constants in SE(Q*), are the
numerical analogues of the values of u,,. du,/0z, Ou,,/0y and Ou,,/0t at point Q*,
respectively.

Let (fm)@=, (9m)@=, (fm,)@+ and (gm,¢)g+ denote the values of the functions fn, gm,
P and’ g 2 respectlvely, when u,,, m = 1,2, 3,4, respectively, assumes the values of
(um)g=, m =1,2,3,4. Then, for any m, we deﬁne

4

(fmz:)Q' dﬁf Z(fm,l)Q‘(uh:)Q" gmz)Q' dif Z(gm,l)Q‘(ulr)Q‘ (25(1)
=1 =1
(fmy Q* e Z(fm( Q'(uly)Q' (gmy Qr — Z(gm Z)Q uly) (2‘56)
def 5 def g
(fmtdos =Y (fmdo-(Uee)gs,  (gmedor = ) (gme)o-(uer)gr  (2.5¢)
=1 =1

Because (i)
L Z Pt (2.6)
=

and (i1) the expression on the right side of the first equation in Eq. (2.5a) is the numerical
analogue of that on the right side of Eq. (2.6) at point Q*, (fmz )@+ can be considered as
the numerical analogue of the value of 0fp,,/0z at point Q*. Similarly, (¢mz)Q=; (fmy)Q*,

(g9my )@+, (fmt)+ and (gm¢)@+ can be considered as the numerical analogues of the values
of Ogm [0z, Ofm [0y, Ogm /0y, Ofm /0t and O¢,, /0t at point Q*, respectively. As a result,
for any m = 1,2, 3,4, we define

def

(2,9, Q%) = (fm)@~ + (frme)o=(z —2g«) + (fmy)o= (¥ —y@+) + (fmt)q-(t —1") (2.7)

and
g:‘n(r,y,t;Q df‘f (gm)Q +(gmz)Q‘($_$Q‘) (gmy)Q‘(y‘“yQ')+(gmt)Q‘(t“tn) (28)

Also, as an analogue to Aom (fm,gm, Um ), for any m = 1,2, 3, 4. we define

def

hn(2, 0, 5Q%) Z (Fr(, 0, 5Q%), g0 (2,, 1, Q%) um(2,y,1: Q")) (2.9)
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Note that, by rh< ir definitions: (1) ( fm )@+, (9m)@=, (fm,e)Q+, and (gm.¢)@- are functions of
(taw Jr s e="1,2,8,4; (1) fraz)o- 804 (g,,w)Q are functions of (um )@+ and (Umz)g+, m =
1552 3 4 (ii1) (fmy)Q= and (gmy )+ are functions of (um )+ and (Umy)g+, m = 1,2,3,4;
and ( (fme)o- dnd (gmt)q- are functions of (U, )+ and (Um¢)g-. m = 1,2,3,4.

To proceed, we also assume that, for any (z,y,t) € SE(Q*), and any m = 1,2, 3,4,

Qur=(z,y: t;0%) 3 afX{e.9,t;0") ag;‘n(x,y.t;Q*)
ot Jz dy

=0 (2.10)

\Iot( that Eq. ( is the numerical analogue of Eq. (2.1). With the aid of Egs. (2.4),
), (2.8), (2.5a a,nd (2.5b), Eq. (2.10) implies that, for any m = 1,2, 3,4,

4

(ume)@s = —(Fmz)@s — (gmy)es = — Y [(fme)@ (uez)o~ + (gm e)q~ (uey)]  (2.11)
; =1

Thus (ume)Q+ is a function of (um )@+, (Umz)@=, and (umy)g=, m = 1,2,3,4. From this
result and the facts stated following Eq. (2.9), one concludes that the only independent
discrete solution variables associated with the space-time solution point Q* are (um)Q-,
(Umz)Q+, and (Umy)g=, m =1,2,3,4.

2.3. Evaluation of (um)g-

Based on Figs. 4(a) and 4(b), we introduce the following preliminaries:

(a) The boundary of CE(Q) belongs to the union of SE(Q*), and SE(A}*), £ = 1,2,3,4.
Specifically, (i) the octagon A By A By A3 B3 Ay B4 belongs to SE(Q*); (ii) the quadri-
laterals A B1Q'B,, A|B;B4A;, and A]B]B1A; belong to SE(AY"); (iii) the quadri-
laterals A, B,Q' B, A, B} B A,, and A}, B} By A, belong to SE(A5"); (iv) the quadrilat-
erals A} B3Q' B!, A} B} By Aj, and A} By B3 Aj belong to SE(AY*); and (v) the quadri-
laterals A} B;Q'B}, AyByB;As, and A)B)BsA4 belong to SE(AY*). Note that, by
definition, (i) the quadrilaterals A, B1QB4, A2B2QB1, A3B3sQB>, and A4B4QBs3;,
which form the octagon A;ByA;B;A3B3A4B,4 (the top face of CE(Q)), also be-
long to SE(A}), SE(A}), SE(A3), and SE(Aj), respectively; and (ii) the octagon
A\ By A, By A By A} B} (the bottom face of the CE(Q)) also belongs to SE(Q"*). How-
ever, in the evaluation of Eq. (2.13) (see below), by assumption, the top face of CE(Q)
is considered to be a subset of SE(Q*) while the bottom face is considered to be the
union of subsets of SE(A}*), £ = 1,2,3,4.

(b) Let I' be a space-time plane segment lying within SE(Q*). Let (i) A be the area
of I'; (ii) (z¢,yc,t.) be the coordinates of the centroid of I'; and (iii) ©# be a unit
vector normal to I'. Then, because u},(z,y,t;Q*), fm(z,y,t;Q*) and g, (z,y,t;Q*)
are linear in z, y and ¢, Eq. (2.9) implies that

/ E:n 'dg:}_l':n(xmymtc;Q*)'Aﬁ (212)
I
where ds = do 77 with do being the area of a surface element on TI'.
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(c)

(d)

Let S denote the area of the top face A\ ByAy,ByA3B3A4By of CE(Q). Because
the unit outward normal vector (outward from the interior of CE(Q)) of this face is
(0,0, 1), its surface vector (i.e., the unit outward normal vector multiplied by the area)
is (0,0,5).

Let (1) (zf,y%), ¢ = 1,2,3.4, denote the spatial coordinates of the centroids of the
quadrilaterals A\ B1Q'By, A3ByQ'B}, A3B3Q'B) and A} B;Q’'Bj, respectively; and
(ii) S* ¢ = 1,2,3,4, denote the areas of the above four quadrilaterals, respectively.
Then (i) (z¢, y¢, t"~1/2), ¢ = 1,2,3,4, are the coordinates of the above four centroids,
respectively; and (ii) (0,0, —S%), ¢ = 1,2, 3, 4, are the surface vectors of the above four
quadrilaterals, respectively. Furthermore, because (i) the above four quadrilaterals
form the bottom face of CE(Q); and (ii) the area of the top face of CE(Q) is identical
to that of the bottom face, one concludes that S = Z;:l 5.

Let the eight side faces A} B{B4A,, A|B{B1A,, A}B|B1A>, A}B}ByA,, AyB,ByAj,
A3B3B3 A3, Ay B3B3 A4 and Ay Bj By A4 of CE(Q) be assigned the indices (1,1), (2, 1),
(1,2), (2,2), (1,3), (2,3), (1,4) and (2,4), respectively. Hereafter each side face with
the indices (k, ) is referred to as the (k, /) side face. For each /¢, by definition, the
(1,€) and (2,¢) side faces belong to SE(A}*). Because (i) the spatial projection of
each side face is a line segment on the z-y plane; and (ii) each side face is sandwiched
between the (n — 1/2)th and the nth time levels, one concludes that, for the (k,¥¢)
side face, its surface vector and the coordinates of its centroid, respectively, are given
by (At/2))\i(ni1,niy,0) and (z%,yf,t" — at/4). Here ), (nfw,niy), and (zf,y%),
respectively, denote the length, the unit outward normal (on the z-y plane), and the
coordinates of the midpoint of the spatial projection of the (&, ¢) side face.

Note that: (i) (zg-,yg-,t") are the coordinates of the centroid @* of the top face
A1B1A3;ByA3 B3 Ay By of CE(Q); (i) uj,(zg+,y0-,t™; Q%) = (um)g- (see Eq. (2.4));
and (iii) the surface vector of the top face is (0,0,5). As a result, Eq. (2.9) and (2.12)
imply that the flux of A*, leaving CE(Q) through its top face is (um )@+ S. Similarly, by

using the information presented in items (a), (b), (d) and (e), the flux of k¥, leaving
the other faces of CE(Q) can be evaluated in terms of the independent marching
variables at points A%, £ =1,2,3,4.

Let

]{ R: -d5=0, m=1,23,4 (2.13)
S(CE(Q))

i.e., the total flux of A%, leaving CE(Q) through its boundary vanishes. Then, with the aid
of the above preliminaries, it can be shown that

(vmlor = (> B)/S, . m=1,284 (2.14)



where, for any m,¢ =1, 2, 3,4,
R:’" — Spll,:n(.L'p,.l/p 7uz—l/.l "l,*)

23’11(*@@,1 I T 1% (2.15)
« Z = Ak [Pke Fr(ho yko 1" — AL/4; AY) + ng, gr(Tk, YR, 1" — AL/4; AY)]

Because, by definition, t = t"~!/2 for any point A}*, here the functions u* (z,y,t; A7),
fo(z,y, t; AY), and gp(z,y,t; Ay") are defined using Eqgs. (2.4), (2.7), and (2.8), respec-
tively, with the symbols Q* and ¢" in these equations being replaced by A%* and t"~1/2,
respectively. As a result, each Rf, and therefore each (u,)g-, an independent marching
variable at the nth time level, is a function of several independent marching variables at
the (n — 1/2)th time level, i.e., (um)ar, (Ums)ay- and (Umy)ap, m,€=1,2,3,4.

2.4. Evaluation of (un;)o- and (upmy)o-

A finite-difference approach similar to that given in [10] is employed here to evalu-
ate (Umz)Q+ and (Umy)-. First, we perform a spatial translation of the quadrilateral
ATA3 AT A} so that the centroid of the resulting new quadrilateral A7 AJA$AZ coincides
with @Q* (see Fig. 4(c)). Let the centroid of the quadrilateral ATJAJA}A} and its spatial
coordinates be denoted by A* and (z «,y4~), respectively. Then (zA;,yA;:), the spatial
coordinates of A}, are

Ta; =Ta; + 2@~ — T4+, and yaz =ya; +yQr —ya-, €=1,23,4 (2.16)

To proceed, let
(tm)as & ul(Tas, yas, 5 AF),  mL=1,23,4 (2.17)
Next, for any m = 1,2,3,4, consider the three points in the z-y-u space with the coor-

dinates (zq«,yq+,(um)q@+), (Za2,yas,(um)as) and (z a3, yas, (um)ag ), respectively. The
values of u/0z and Ou/dy on the plane that intercepts the three points are given by

(ull (1) Mo i Az /A and (u (1))Q' def Ayl (A#0) (2.18)
where
A def [ZAs —ZQ+ YAz —UYQ (2.19a)
FaAr —IQ Yaz —Yo-
A, def (um)A‘l’ =3 (um)Q‘ Ya; —Yor (2.19b)
(um)ag — (um)@~ Yag — Yor
and
A, & (um)a; — (um)@+ T+ —Tag (2.19¢)
(um)ag — (um)q- T+ — Tag
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Note that: (i) A = 0 if and only if the spatial projections of A}, 45 and Q* are collinear;
and (11) similarly, (u.(,,lfl.)Q- and (u(,,lf_,),)Q., k = 2,3,4, are defined, respectively, by replacing
the points A7 and A3 in the above operations with (i) A7 and A$; (ii) A and A$; and (iii)
A and A9, respectively.

With the above preliminaries, for each m = 1,2,3,4, (umz )@+ and (umy)g+- may be
evaluated by

4 4
1 1
(umr e Z Z (k) Umy 1 Z (k) )Q' (220)

Alternatively, for a flow with steep gradients or discontinuities. the simple averages in
Eq. (2.20) may be replaced by weighted averages, i.e.,

0, il =0M=T1.28,4
(um:t)Q‘ =
ot [(W(k))a( S’rlfz)Q'] /Zi=1(W1(,,k))" otherwise
(2.21a)
and
0, if Oy =0,k = 1,2,3,4
(Umy)g+ = (2.21b)
4 Zk ; [(W(k) (uE,’f,),)Q.J /E:zl(W,(nk))"‘ otherwise
Here (i) @ > 0 is an adjustable constant (usually @ = 1 or a = 2); (ii)
. 2 2
g \/[(ugr’fl)q'] +|@®e-],  mk=1,2,34 (2.22)

and (iii)

WD E 0,020m30ma, W E 030mabmi, WD E 0040m10m2, W L 0,010m26ms
(2.23)
Note that: (i) to avoid dividing by zero, in practice a small positive number such as 1075°
is added to the denominators that appear in Eqgs. (2.21a) and (2.21b); and (ii) Egs. (2.21a)
and (2.21b) reduce to Eq. (2.20) if « = 0.
2.5. Remarks and Discussions

The present 2D Euler solver is formed using Eqgs. (2.14), (2.21a) and (2.21b). Stability
of the solver generally requires that (i) @ > 0, and (ii) the maximal CFL number < 1.
Also, (i) with @ > 1, the solver is capable of suppressing numerical oscillations near a
discontinuity; and (ii) solutions generated by the solver tend to become more smeared as
the C FL number decreases or the value of a increases. Other key properties of this solver
are given in the following remarks:

12
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(a)

The stencil of the present explicit solver is formed by one point at the upper time level
and four points at the lower time level. Because the spatial projections of the four
points at the lower time level are the immediate neighbors of that of the point at the
upper time level, the stencil is staggered in space-time, and it is most compact among
the schemes using quadrilateral meshes. As a result, the solver is ideal for parallel
computations.

For a uniform mesh, points such as @}, Q* and A* referred to earlier coincide with one
another. In this case, the present solver can be greatly simplified. Also, by using the
arguments presented in [8,9] and also by numerical experiments, it can be shown that
the simplified scheme is second order in accuracy.

The present scheme 1s applicable to both structured and unstructured meshes. For
a structured mesh, the set 2* may be divided into two disjoint subsets Q% and Q*
with the following property: If any point, say point @*, belongs to 3 (2% ), then the
six space-time solution mesh points immediately neighboring to point @Q*, i.e., points
Q"™, Q" and A}, £ = 1,2,3,4, belong to Q* (Q%). Because, for each £ = 1,2,3,4,
points A} and A} are immediate neighbors of each other and thus they must belong to
different subsets, one concludes that points Q*, and A}, £ = 1,2, 3,4, which form the
stencil of the present marching scheme, belong to the same subset. From the above
observations, it is seen that each of 21 and QY represents a staggered space-time
mesh. As such, the entire space-time mesh is a dual space-time mesh [9], i.e., the
union of two disjoint staggered space-time meshes. Furthermore, it is also obvious
that the marching over 2% is completely decoupled from that over 2 , i.e., marching
needs to be carried out only over one of these two staggered space-time meshes, unless
the decoupling is prevented by other factors such as the boundary conditions imposed.
Note that boundary values generally are not updated using the main marching scheme.
As a result, solution values of % and 2* may become coupled near a boundary (see
Sec. 4).

Consider the decoupling case referred to in item (c). Let a space-time mesh point
belong to Q4 (£2_) if and only if its associated space-time solution mesh point belongs
to Q3 (22). Then it is obvious that the set {2 is formed by the two disjoint sets
Q4 and Q_. Moreover, the CCEs of the mesh points in Q4 (2_) do not overlap
among themselves and they can fill any domain in E3. Furthermore, because the
surface integration over any interface separating two neighboring and nonoverlapping
CCE:s is evaluated using the information from the same SE (i.e., the flux leaving a
CCE through its interface with a neighboring CCE is the negative of the flux leaving
the neighboring CCE through this interface), a summation of the local conservation
conditions Eq. (2.13) over the mesh points @ € 4 (2_) leads to a global conservation
condition, i.e., for each m = 1,2, 3,4, the total flux of E:n leaving the boundary of
any space-time region that is the union of any combination of the CCEs associated
with Q4 (_) vanishes. Note that a similar discussion for the general case in which
decoupling may not occur will be given in the Appendix.

(e) The present solver and the triangular-mesh-based solver described in [10] are con-
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structed using similar techniques. Using these techniques and their trivial extensions,
one can easily develop a 2D CE/SE solver for spatial meshes formed by polygons of
different shapes. An advantage of using such a mixed mesh is that a geometrically
complex spatial subdomain can be filled easily using triangles while a less complex sub-
domain, such as a near-wall region, can be filled using more regular shaped polygons
such as quadrilaterals.

(f) Because of the space-time staggering nature of the stencil of the present scheme, a
solution of the present scheme may appear as the overlapping of two distinctively dif-
ferent solutions (especially in a high-gradient region) after many marching steps. The
significance of this “solution decoupling” problem and how to handle it are discussed
in the Appendix. Note that this problem could occur even in the absence of a complete
2% -Q* decoupling referred to earlier. Also because the solution decoupling problem
is not significant for the test problems discussed in Sec. 4, the numerical results pre-
sented there are generated without using the post-marching procedure described in

the Appendix.
3. The 3D Unsteady Euler Solver
For the current 3D case, Egs. (2.1)-(2.3) are replaced by

u f+g+q

=0, =1,2,3,4,5 3.1

ot * Oz Jy 0z m 1#1)
f hm-d5=0, m=123,4,5 (3.2)
S(V)

and

Tont = Ofm/Ous, Gm,e & Ogm/[Oue, qm,e f 0¢m/Oue m,£=1,2,3,4,5 (3.3)

respectively. Here (i) Pm def (fms9msqm,um); and (ii) the three dimensional Euclidean
space F3 referred to in Sec. 2 is replaced in the current case by the four dimensional
Euclidean space E4 with 21 =z, 29 =y, z3 = z, and z4 = .

3.1. Conservation Elements and Solution Elements

The spatial computational domain is divided into nonoverlapping convex hexahedrons
of arbitrary shape with the understanding that any two neighboring hexahedrons share a
common face. In Fig. 5, @ (marked by a circle) is the centroid of a typical hexahedron
B,B,B;B,B.B;B.B; (hereafter referred to as the central hexahedron). Each of the
central hexahedron’s six neighboring hexahedrons is arbitrarily assigned an identification
index ¢ = 1,2,...,6, i.e., the neighboring hexahedron with the index ¢ is referred to as
the /th neighbor of the central hexahedron. Also the centroid of the ¢th neighbor will be
denoted by A4,. As an example, the central hexahedron and its first neighbor is separated
by the quadrilateral B, B, By B: in Fig. 5.

With the above preliminaries, we proceed with the following definitions:
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(a) Point Q and the two end points (say points B, and B,) of any of the twelve edges
of the central hexahedron form a triangle. Each of the twelve triangles so formed is

arbitrarily assigned an index j = 1,2,3,...,12 and denoted by A(7).
(b) Given any ¢ = 1,2,...,6, a triangle is formed by the point 4, and the two end points

of any of the four edges of the interface (a quadrilateral) that separates the central
hexahedron and its ¢th neighbor. Each of the four triangles so formed with the same ¢
is arbitrarily assigned an index k = 1,2, 3,4, and denoted by A(k,#). As an example,
AA,B,B,, AA,B,By, AA,BgBs, and AA,B;B, depicted in Fig. 5 have the same
¢ = 1. Therefore they may be denoted by A(1,1), A(2,1), A(3,1), and A(4,1),
respectively.

(c) The centroid of the 24-faced polyhedron B,B,B3;B,B;BsB,;BgA A, A3 A A Ag is
referred to as the solution point associated with point ). Note that (1) the above
24-faced polyhedron hereafter is denoted by V/(24); and (ii) the centroid of V(24) is
denoted by Q" and marked by a cross in Fig. 5.

(d) Given any ¢ = 1,2,...,6, points @), A, and the four vertices of the quadrilateral
interface that separates the central hexahedron and its ¢th neighbor are the vertices

of a octahedron. This octahedron hereafter is denoted by V(8;#).

In the space-time computational domain, again we assume that ¢t = nat at the nth
time level (n =0,1/2,1,3/2,...). Also, for a given n > 0, let Q, @', and Q" (not shown),
respectively, be the points on the nth, (n —1/2)th, and (n + 1/2)th time levels with point
@ being their common spatial projection. Other space-time mesh points such as (1) @* and
Qi) By, Bl and BY . k= 1,2,8,4,5,6,7, 8; and [fii) Ay, A}, Ay and AP, £=1.2,...,6,
are defined similarly. Because geometric objects in E, generally are difficult to visualize,
they will be described analytically in the following discussions.

To proceed, note that a “plane” (termed a hyperplane) in E4, by definition, is a
subspace of E, defined by a linear equation, i.e.,

a1z + ay + a3z + agt = ay ((a1)* + (a2)* + (a3)* + (aq)* # 0) (3.4)

where ax, k = 0,1,2,3,4, are constants. As a result, a hyperplane in E4 is a three
dimensional subspace. The unit normal to the hyperplane is

- (alaa23a37a4)
n==+ 385
PTG (3.5)

Note that a hyperplane segment, by definition, is a bounded region of a hyperplane.

Two types of hyperplane segments in E4 are involved in the definition of SEs to be
given shortly. A hyperplane segement of type I, denoted by I'(V;t.), is formed by all the
points (z,y, z,t) that satisfy the conditions (i) t = t; and (ii) (z,y,z) € V, where . is
a constant and V denotes a 3D spatial region. Obviously the equation ¢t = t. is a special
form of Eq. (3.4). Also it can be shown that:

(a) The unit normal to I'(V;t.) is (0,0,0, £1).
(b) The “area” of I'(V;t.) is the volume of V.

-
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(¢) The coordinates of the centroid of T'(V;t.) are (x.,y,, 2., t.) where (&.,y.,2.) are the
coordinates of the centroid of V.

On the other hand, a hyperplane segment of type II, denoted by I'(S;¢_,%y), is formed
by all the points (z,y, z,t) that satisfy the conditions: (i) (z,y,2) € S;and (ii) t— <t < t,,
where S denotes a spatial plane segment, and ¢t_ and ¢, (- < t4) are constants. Note
that every point (r,y,z) on the spatial plane segment S satisfies a linear equation of the
form

1z + cy + €3z = ¢ ((c1)? + (c2)® + (e3)* #£0) (3.6)

where cx, £ = 0,1,2,3, are constants. Thus every point (z,y,2,t) on I'(S;t_,t4) also

satisfies a special form of Eq. (3.4), i.e., Eq. (3.6). Moreover, it can be shown that:

(a) The unit normal to ['(S;t_,t4) i1s (,0) where 7 is the unit normal to the spatial
plane segment S, i.e.,

(c1,¢2,¢3)

V(e1)? + (c2)? + (e3)?
(b) The “area” of I'(S;t_,t4) is the area of S multiplied by (¢4 —#_).

(c) The coordinates of the centroid of I'(S;t_,t;) are (zc,Yc, 2c, (t— + t4+)/2) where
(zc,Ye, z.) are the coordinates of the centroid of S.

==

ISy

(3.7)

In addition to the above two types of hyperplanes, we shall also consider “hyper-
cylinders” in E4. A hypercylinder, denoted by A(V;t_,t), is formed by all the points
(r,y, z,t) that satisfy the conditions: (i) (z,y,z) € V; and (ii) t—- <t < t,, where V is a
3D spatial region, and ¢_ and t4 (¢— < t) are constants.

With the above preliminaries, SE(Q*), the solution element of point @*—the point
that lies on the nth time level and has Q* as its spatial projection, is defined to be the
union of ['(V/(24);t") and T(A(j);t"~1/2,¢"+t1/2) j =1,2,3,...,12, and their immediate
neighborhoods. Moreover, the six basic conservation elements (BCEs) of point @, denoted
by CE((Q), ¢ = 1,2,...,6, are defined to be the hypercylinders A(K(8;€);t"‘1/2,t"),
¢ =1,2,...,6, respectively. In addition, the compounded conservation element (CCE) of
point @, denoted by CE(Q), is defined to be A(K(24);t""1/2,t"), i.e., the union of the
above six BCEs.

In this section, (1) the set of the space-time mesh points whose spatial projections are
the centroids of the hexahedrons that fill the 3D spatial computational domain is denoted
by §2; and (ii) the set of the space-time mesh points whose spatial projections are the
solution points of the centroids referred to in item (i) is denoted by Q*. Note that the
BCEs and the CCE of any mesh point € 2 and the SE of any mesh point € 2* are defined
in a manner identical to that described earlier for point () and Q*.

3.2. Approximations Within a Solution Element
For any Q* € Q* and (2,4,2,%) € SE(Q"), Um(,y,2,8), fm(2,9,2,8), gm(2, 1, 71),

galTu sz, 1), and Em(x,y.z.t) are approximated by u} (z,y,2,t;@Q*), fm(z,y,2,tQ%),
gm(z,y,2,t,Q%), gr(z,y,2,t;Q%), and A (z,y, 2,t; Q*), respectively (see below). For any
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m=1,2,3.4.6, let

def

U rtl, 2,0 G ) =g, Jo- + (umr)Q.(x = IQ') L (umy)Q-(y —yg-) (3.8)
= (umz)Q‘(3 ek ) * (u'mt)Q'(t Bl tn)
fa(@y 5t QD) % (e + (e (2 = 20) + (fmider (W =ve) (g,
+ (fmz)@=(2 — 2@+) + (fmt)q+(t — ")
9@ 9,2 Q") = (gm)gr + (Ime)@r (¢ = 20) + (gmy)e- (¥ — va-) (310}
- (gmz)Q'(: - ZQ') - (gmt)Q'(t A tn)
Gm(2,9,2,6Q7) = (4m)o- + (4ma)or (z = 20) + (4my)o- (v — yo+) (3.11)
' + (gm=z)@(z — 2@+) + (gme)@-(t — t7)
and
(2,9, 2, Q%) E (fa(z,y, 2, 1,Q), 01,45 2,8 Q%) 0 (2, ¥, 2, £ Q%) uln (2,9, 2, £, Q"))
(3.12)

be the 3D extension of Egs. (2.4) and (2.7)-(2.9). Note that, in this section it is implicitly

assumed that any notation that has a similar 2D version is defined similarly. The definition

of such a notation will not be given explicitly here unless confusion could occur.
Moreover, we assume that, for any (z,y, z,t) € SE(Q*), and any m = 1,2, 3,4, 5,

Ouiz, u,5Q%) o afniz,0.4,9") e g (z,y,t; Q%) B Ogm(z,y, 1 Q%) _ 0

ot Ox Ay 0z (3:1)
Thus, for any m = 1,2, 3,4, 5,
(umt)Q‘ = _(fmz)Q‘ ER (gmy)Q‘ o (sz)Q‘
(3.14)

==Y [(fme)o- (uez)gr + (gm.)- (uey)or + (@m,e)q- (ue:)or]
E==1i

Using the equations given above, it can be shown that, for the current 3D case, the only
independent discrete variables associated with the space-time solution point Q* are (um, )g-,
(Umz)Q*; (Umy)Q+, and (um:)g~, m =1,2,3,4,5.

3.3. Evaluation of (u,)g-

We begin with the following preliminaries:

(a) The boundary of CE(Q) is formed by the “top face” I'(V(24);¢"), the “bottom face”
I'(V(24);t"~1/2), and the 24 “side faces” T(A(k,£);t" /2 t*), k = 1,2,3,4 and £ =
1,2,...,6. Because V(24) is the union of V(8;¢), ¢ = 1,2,...,6, the top (bottom)
face is the union of T'(V(8;¢);t") (T(V(8;€):t"~'/2)), £ =1,2,...,6. From the above
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observations, one concludes that the boundary of CE((Q) belongs to the union of
SECQ*), and SE(A*), £=1,2,..., 6. Specifically, (i) T'(V(24):t") belongs to SE(Q*);
and (ii) for-each £ = 1,2,...,6, P(V(8;£);t"/2) and T(A(R£:t" 2 %), k =

1,2,3,4, belong to SE(A}*). Note that: (1) I'(V(8;¢);t"), £ = 1,2,...,6, the union
of which is I'(V/(24);t"), also belong to SE(A4j), £ =1,2,..., 6, respectively; and (ii)
[(V(24); t"~1/2), which is the union of L(V(&1); 8" '/2) {=1,2,...,6, also belongs
to SE(Q"™). However, in the evaluation of Eq. (3.16) (see below), by assumption,
['(V(24);t") is considered to be a subset of SE(Q*) while I'(V(24); t"~'/2) is considered

to be the union of subsets of SE(A}*), ¢ =1,2,...,6.

(b) Let T be a hyperplanc segment lying within SE(Q*). Let (i) A be the area of T
(11) (¢, Yo, 2¢, te) be the coordinates of the centroid of T'; and (iii) 7 be a unit vector
normal to I'. Then it can be shown that

/ﬁ;-ds—‘: B (ZerYer Zerte; @) - AT (3.15)
F

where ds = do 7 with do being the area of a surface element on T'.

(c) Let V denote the volume of V(24), i.e., the area of the top face I'(V(24);t") of CE(Q).
(see comments (a)—(c) given following Eq. (3.5)). Because the unit outward normal
vector (outward from the interior of CE(Q)) of this face is (0, 0,0, 1), its surface vector
(i.e., the unit outward normal vector multiplied by the area) is (0,0,0, V).

(d) Let V¢ and (z%, 4% 2%), repectively, denote the volume and the spatial coordinates
of the centroid of any V(8;¢). Then the surface vector, and the coordinates of the
centroid of T'(V/(8;£);t"~1/2), respectively, are (0,0,0,—V*) and (z¢,y¢, Vet 5w

(e) Let S§, (nf,, nf;y, nt ), and (zf,y%, z5), respectively, denote the area, the spatial unit
outward normal, and the coordinates of the centroid of any A(k,#). Then the sur-
face vector, and the coordinates of the centroid of the side face T'(A(k, £);t"~1/2;¢7),
respectively, are (At/?)Sﬁ(nf;I,nf;y,nf;z,O) and (z£,y%,2f,t" — at/4) (see comments
(a)—(c) given following Eq. (3.6)).

(f) Note that: (i) (zg+,yg-.2¢-,t") are the coordinates of the centroid @Q* of the top
face I'(V(24),t") of CE(Q); (ii) uy,(zqQ=,yq*,2Q+,t"; Q%) = (um)g+ (see Eq. (3.8));
and (iil) the surface vector of the top face is (0,0,0,V). As a result, Eq. (3.12) and
(3.15) imply that the flux of l_;*m leaving CE(Q) through its top face is (um )@=V
Similarly, by using the information presented in items (a), (b), (d) and (e), the flux
of E*,‘n leaving the other faces of CE(Q) can be evaluated in terms of the independent
marching variables at points A}*, ¢ = 1,2,3,4,5,6.

Let

f{ h* -ds=0, m=1234,5 (3.16)
S(CE(Q)

i.e., the total flux of E:‘n leaving CE(Q) through its boundary vanishes. Then, with the aid
of the above preliminaries, it can be shown that

(Um) Q- _(ZR Ve  m=1,2,345 (3.17)
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where, for any m =1,2,3,4,5and any ¢ =1,2,...,6,

R N R N T SRNST gy ¢ 0 ¢ .
an =~ “’m('l Y 52 ~tn / !‘_ll* Z ? [nkf m('l"k~;’/k- :k-tn g At/4; A~IZ )

+ niy gL uE, 25, 1" — atf4; AY) 4 nf gt (el uh 2f, 1™ — at)4; AT

Here uy,(z,y, 2,8 Ay), fm(Z,y, 2,8 AY), gm(z,y, 2,t; AY), and ¢} (z,y, 2,t; AY) are de-
fined using Eqs. (3.8)-(3.11), respectively, with the understanding that the symbols Q*
and ¢" in these equations be replaced by A}* and t"~!/2 respectively. As a result, each
R!, and therefore each (u,,)q-, an independent marching variable at the nth time level,
is a function of several independent marching variables at the (n — 1/2)th time level, i.e.,
(um),{;-, (Umz)A;" (umy)A‘:{-, and (umZ)A;-, e =1,2.3:405 and £= 1.2, ...,6:

3.4. Evaluation of (umz)g+s (Umy)o- and (um.)o-

First, we perform a spatial translation of the polyhedron ATAZA3ZA}A%Af so that
the centroid of the resulting new polyhedron AJA§AJASA2AL coincides with Q*. Let (i)
the centroid of the polyhedron A’{‘A;A;AZA;A; and its spa.tia.l coordinates be denoted
by A* and (z 4+,ya-, 24+ ), respectively; and (ii) 0z = g+ — T4+, Oy = yg+ — ya~, and
6z = zg~ — za+. Then (z42,y42,24¢), the spatial coordinates of A7, £ = 1,2,...,6 are
given by

TA: = TA; - 51,', Ya: = Ya; - 6y and ZA3 = 243 + 6z (319)

As a preliminary for the following discussions, for m = 1,2,3,4,5 and £ = 1,2,...,6, let

def n *
(Um)Ag = um(mA;’ayAfva;”t s A7) (3.20)
Suly, = (um)ag — (um)or (3.21)

pR def def def
5.'Z:g ﬁ LZIAo —ZQ-, 6ye é yA: = Yo, 52@ —e- ZAo — 2Q* (3.22)

Next consider the vertex B, depicted in Fig. 5. This vertex is the common vertex of
the central hexahedron and three of its neighbors. As an example, let the identification
indices ¢ of these three neighbors be 1, 2, and 3. Then, for any m = 1,2, 3,4, 5, consider
the four points in the z-y-z-u space with the coordinates (zg-«,yg-,2zq*,(um)g+), and
(zag,Yas,243, (um)ag), £ =1,2,3. It can be shown that the values of Ou/0z, Ou/0y, and
Ou/0z on the hyperplane that intercepts the above four points are given by

def def def
(vad)es = Az/B, (ul))e- = AY/A, (uid)e- = A:/A  (A#£0)  (3.23)
where
bz1 by, 6z
AY 6z, by, 62 (3.24)
5.’133 5y3 633
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2):/,,]” oy, 0z o, (5'(1},1 0z or| oy, (‘fu}n
of ey 5 2 ef : ‘ > - .
in S e éufn 0y, Oz27|, Ay = 0Ty 5ufn dzo| 0 A i dxy Oy, éufn (3.25)
bU:n éy'; (523 bl‘; (S'Ltfn 623 (51‘3 6:{/3 611,‘:”

Note that: (i) A = 0 if and only if the spatial projections of A{, Ag, A and Q* are
coplanar; and (ii) For each k = 2,3,...,8, (u&,’fi)q-, (u(k) )@=, and (u,m @+ are defined by
the above definition procedure except that B, is replaced by B,.

With the above preliminaries, for each m = 1,2,3,4,5, (Umz)g+: (Umy)g-. and

(4m=)g+ may be evaluated by

8 8

(umedar = 5 3 (uH)ar, (umy)ar = Z(u“) Jor, (umeler = 5 Y () (3.26)

k=1 k=1

Alternatively, for a flow with steep gradients or discontinuities, the simple averages in
Eq. (3.26) may be replaced by weighted averages, i.e.,

0, el g = 0.Ffr= 1.2 "...8
(ume)ar = s (K)vay, (k) (F)ra .
gty [( m ) (u mz)Q‘] /E re1(Wm’)® otherwise
(3.27a)
0, Fi i1 &
(um )Q' =
; Zi:l {(W&k))a(u%c;)@] /Zi:l(wr(nk))a otherwise
(3.27b)
and
0, =0 k=12 .2 8
(umsz)gr = (B)yary, () 8 (k) .
Zk 1 [(W )*(um )Q'] [ k=1(Wm’)* otherwise
(3.27¢)

Here (i) @ > 0 is an adjustable constant (usually @ =1 or a = 2); (ii)

O \/{(uﬁ,’f)) ] +[(i)e r+ [(uﬁ,’fl)Q-]2 (3.28)

and (i11) for each k, Wik is the product of 0,,1,60m2,...,0ms excluding 6,,;. Note that:
(i) to avoid dividing by zero, in practice a small positive number such as 107°° is added to
the denominators that appear in Eqgs. (3.27a)—(3.27c); and (i1) Eqgs. (3.27a)—(3.27¢) reduce
to Eq. (3.26) if a = 0.
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3.5. Remarks and Discussions

The present 3D Euler solver is formed using Eqs. (3.17) and (3.27a)-(3.27¢). With
some trivial modifications, most of the discussions about the 2D scheme given in Sec. 2.5
and the Appendix are also applicable to the present 3D scheme. In particular, the concept
of local and global flux conservation can also be established for the present 3D scheme by
using a redefinition procedure similar to that presented in the Appendix.

4. Numerical Results

The capabilities of the present 2D and 3D schemes will be demonstrated using the
numerical examples presented in the following subsections.

4.1. Shock Reflection on a Flat Plate

This steady-state test problem was proposed by Yee et al. [28]. By imposing suitable
upstream conditions, oblique incident and reflected shocks will appear above a flat plate.
The spatial computational domain is a 4.0 x 1.0 rectangle containing 19200 uniform rect-
angles. For the resulting space-time mesh, (i) Q* = , and (ii) 2* can be divided into two
disjoint sets 27 and Q27 (see Sec. 2.5).

The flow conditions at ¢t = 0 are [9]

(4.1)

(4, v, p, p) = { (2.9,0.0,1.0,0.71428), ahead of the incident shock

(2.6193,—-0.50632,1.7,1.5282), behind the incident shock

where u, v, p and p, are z-velocity, y-velocity, mass density and static pressure, respectively.
For t > 0, (i) the flow conditions given in the first and second rows on the right side of
Eq. (4.1) are imposed on the left and the top boundaries, respectively; (ii) the reflecting
boundary conditions (see the bottom half of p.124 in [9]) are imposed on the bottom
boundary (a solid wall); and (iii) the non-reflecting conditions [9,13] are imposed on the
right boundary (a supersonic outlet).

Note that, for the reflecting boundary conditions used here, no mesh point lies on
the solid wall. In addition, for each interior mesh point immediately neighboring to the
solid wall, at the same time level there is a mirror image ghost mesh point lying just
below the wall. Because (i) the solution values at the ghost point are assigned to be the
mirror-image values of its corresponding interior mesh point, and (ii) one of the above two
points belongs to 2} while the other belongs to Q, the solution values of 2} and Q%
are coupled by the present reflecting boundary conditions. In spite of this disadvantage,
as explained in [9], the set of reflecting boundary conditions used here (which will also be
used in the following numerical examples) is the most robust among several sets of the
reflecting boundary conditions described in [9]. Note that, because the marching over 7
and that over Q* are completely decoupled from each other except for the mesh points
immediately neighboring to the solid wall, only the solution values of one of 2} and Q%
are involved in producing Fig. 6(b), although the numerical time-marching itself involves
both Q% and Q. Here it should be emphasized that, for the current special problem in
which only one straight solid wall is present, only one of 2} and Q* needs to be used in
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the computation if, instead, one uses the reflecting boundary conditions similar to that
described on p.122 in [9].

The pressure contours generated using the present 2D scheme with a« = 2 are shown in
Fig. 6(a). The angle between the computed reflected shock and the horizontal line is 23.28°,
which is very close to the analytical value [27]. Furthermore, as shown in Fig. 6(b), (i) the
numerical values of the pressure coefficient at the horizontal mid-section of the rectangular
domain agree very well with the analytical values; (ii) no numerical oscillations are detected
near either the incident or the reflected shock; and (iii) both the incident and reflected
shocks are resolved by a single data point.
4.2. Shock Wave Diffraction over a Wedge

This test problem, which was originally used by Wang [6], is based on a flow field
given in the flow album edited by van Dyke [29]. A planar shock wave at M, = 1.3 moves
toward a wedge with the angle § = 26.565 (see Fig. 7(a)). Taking advantage of symmetry,
only half of the flow field is simulated. The spatial computational domain is a rectangle
with —0.8 <z < 3.2 and 0 < y < 1.1, excluding the wedge. The whole domain is divided
into 248, 750 non-uniform quadrilaterals and a = 1 is assumed.

At t = 0, the incident planar shock is placed at z = —0.5. For ¢ > 0, (i) the
constant behind-the-shock flow conditions are maintained at the the left boundary; (i1)
the reflecting boundary conditions are imposed on the upper and lower boundaries (note:
the lower boundary is the symmetric center line), and also on the surfaces of the wedge;
and (iii) the non-reflecting boundary conditions are imposed on the right boundary, a
supersonic outlet.

To enhance the visual effect, the density countours of the entire flow field at three
different times are presented in Figs. 7(b)-(d). When the planar shock reaches the wedge, a
circular reflection wave is generated. As the shock passes the wedge, the flow separates and
vortices are formed around the two sharp corners. Further interaction between shocks and
vortices produces increasingly elaborate patterns of shock waves, slip lines and vortices.
These results agree well with the experimental result [29] except for those phenomena
induced by the viscous effect. Here, it should be pointed out that the exact locations of
the upper and lower walls in the experiment are not given in [29] (we only know that these
walls are actually above and below the top and bottom edges of the photograph frame,
respectively). As a result, the spatial domain assumed in the current simulation (which is
slightly lareger than the photograph frame) is only an approximation of the actual physical
domain.

4.3. Three-Dimensional Detonation

The 3D scheme described in Section 3 has been extended to become a solver for
conservation laws with source terms. Previously, we have reported numerical simulations
of 1D and 2D detonation waves by using the CE/SE method [25]. Those results have been
validated by comparing them with analytical solutions and numerical solutions reported by
other researchers. In the present paper, 3D simulation of a detonation wave is performed
by solving the reacting Euler equations. The chemical reactions are modeled by single-step,
irreversible and finite-rate kinetics. Two chemical species are considered, i.e., the reactant
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and the product. The Euler equations and one species equation are solved simultaneously.
With proper non-dimensionalization, it can be shown that the defining parameters of this
detonation wave are the overdriven factor f, the specific heat ratio v, the activation energy
E*, and the heat release rate ¢. In the present simulation, f = 1.6, v = 1.2, ET = 50,
and ¢ = 50 are assumed.

In the current simulation, @ = 1 is assumed. Also the spatial computational domain,
a 8 X 8 x 6 rectangular box, is divided into 6.4 million hexahedrons. Reflecting boundary
conditions are imposed on the four lateral wall boundaries. The fresh reactant travels from
top to bottom, and is consumed by the frame front. On the top surface, the incoming flow
conditions are specified. On the bottom surface, a non-reflecting boundary condition is
imposed. The coordinate system is chosen such that the frame front stays in the horizontal
mid-section of the rectangular box.

A snap shot of temperature countours is shown in Fig. 8. The flow field is composed
of the quiescent state of the reactant ahead of the shock, a flame zone with finite rate
reaction, and the equilibrium state behind the reaction zone. Due to cellular structure of
the detonation, the flow field is very complex. The shock front is characterized by triple
points traveling in transverse directions. The colliding triple points create tremendous
vortices. We observe the classical picture of “explosions within explosions” sustained by
the propagating triple points at the detonation front. It is seen that a high-temperature
region exists around triple points. At each collision of triple points, vortices with opposite
signs are created and propagated downstream. Due to these vortices, unburnt reactant is
pushed into the flame zone. The continuous burning of the pockets of the unburnt reactant
behind the flame zone greatly extends the effective flame zone.

5. Concluding Remarks

In this paper, the original 2D and 3D CE/SE Euler a-a schemes (which use triangular
and tetrahedral meshes, respectively) were extended to solve the 2D and 3D unsteady Euler
equations using quadrilateral and hexahedral meshes, respectively. It has been shown that
the present schemes retain many key advantages of other CE/SE schemes, i.e., efficient
parallel computing, ease of implementing non-reflecting boundary conditions, high-fidelity
solutions, and a genuinely multidimensional formulation without using Riemann solvers.
The only key disadvantage of the present schemes (and, for that matter, any other a-a
scheme) is that, compared with other more general CE/SE schemes such as the a-e-a-3
schemes [9], they allow for less freedom in adjusting numerical dissipation. As explained in
Sec. 5.5 of [9], this inflexibility may impose a constraint on the performance of the current
schemes in numerical simulations involving highly nonuniform meshes.

In addition, it was pointed out that, by combining the techniques used to construct
the present and earlier CE/SE solvers, one could easily develop 2D and 3D mixed mesh
solvers. An advantage of using such a mixed mesh is that a geometrically complex spa-
tial subdomain can be filled easily using triangles or tetrahedrons while a less complex
subdomain, such as a near-wall region, can be filled using quadrilaterals or hexahedrons.

Also, a rigorous discussion about the concept of local and global flux conservation as
applied to the present 2D scheme using an unstructured mesh is given in the Appendix. As
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a part of this discussion, a post-marching procedure was introduced to handle a “solution
decoupling” problem that may arise after a long marching involving many time steps.
Without any exception, the discussions given in the Appendix can be extended to 3D
easily.

Appendix

In this appendix, using a similar technique presented in [10], local and global flux
conservation will be established for the present 2D scheme using an unstructured mesh.
Also a post-marching procedure will be introduced to handle the “solution decoupling”
problem referred to in comment (f) of Sec. 2.5.

Note that, for the case in which the Q% -Q* mesh decoupling referred to in comments
(¢c) and (d) of Sec. 2.5 does not occur, generally the space-time computational domain
cannot be filled by the union of a combination of nonoverlapping CCEs. As a result,
global flux conservation cannot be established by summing over a set of local conservation
conditions Eq. (2.13). However, even in the nondecoupling case, the computational domain
can still be filled by the union of a combination of nonoverlapping BCEs. As a result,
through a process of flux redefinition to be shown, one can manage to preserve the concept
of local and global flux conservation over the BCEs and the union of any combination of
them.

As a preliminary, first we introduce the following definitions (see Fig. 4(b)):

(a) For any m,?¢ = 1,2,3,4, let F5(Q*) denote the flux of h* leaving CE(Q) through the
top face of CEy(Q), assuming that this top face belongs to SE(Q*). Note that the top
faces of CE,(Q), ¢ = 1,2,3,4, are the quadrilaterals A;B1QBy, A2B;QB;, A3B3;QB,
and A4B,Q Bj, respectively.

(b) For any m,¢ = 1,2,3,4, let F4(A}) denote the flux of h*, leaving CE(Q) through
the bottom face of CE/(Q), assuming that this bottom face belongs to SE(A}*). Note
that the bottom faces of CE,(Q), £ = 1,2,3,4, are the quadrilaterals A} B|Q'Bj,
ALB)Q'B;, A3B;Q'B) and A B,Q'Bj, respectively.

(¢) For any m,¢ = 1,2,3,4 and any k = 1,2, let F,(nk’e)(A'e*) denote the flux of f_{;‘n
leaving CE(Q) through its (k,¢) side face, assuming that this side face belongs to
SE(A}). Note that the (k,¢) (k=1,2, £=1,2,3,4) side faces of CE(Q) are defined
in Comments (e) of Sec. 2.3.

With the above definitions, local flux conservation over CE(Q), i.e., Eq. (2.13), implies
that

S B (Qnar)=10 (A1)
=1
where
SLUR*, Ar) S FLQY) + FLOAY) + FLAUAL) + FO A (A.2)

Note that Eq. (A.1) says nothing about local flux conservation over CE,(Q), ¢ = 1,2, 3,4.
As will be shown, local flux conservation over these BCEs can be realized with a proper
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(lssigmm nt of “artificial fluxes” over the four interfaces that divide CE(Q) into CE(Q),
l =432 34,

To proceed, note that the boundary of each CE,(Q) is formed by the top face, the
bottom face and the four side faces. Among these four side faces, two are also the side
faces of CE(Q) while the other two belong to the set of the four interfaces that divide
CE(Q) into CE((Q), ¢ = 1,2,3,4. Hereafter, the first pair and second pair of the above
four side faces, respectively, are referred to as the “exterior” and “interior” side faces of
CE¢(Q). Obviously, for each m, the four terms on the right side of Eq. (A.2) represent
the fluxes leaving CE,(Q) through its top face, bottom face, and two exterior side faces,
respectively.

Next, for any m = 1,2, 3,4, let F}2(Q) represent a flux (as yet to be defined explicitly)
leaving CE, (@) (and entering CE»(Q)) through the interface dividing CE, (Q) and CE,(Q).
F23(Q), F2*(Q) and F'(Q) are similarly defined. In addition, for any m = 1,2, 3,4, let

Sm(Q%, AT) + Fr*(Q) = Fr' (Q) = 0 (A.3a)
Sm(@", A7) + F(Q) — Fr*(Q) = 0 (A.30)
Sm(Q, 45) + F, ' (Q) - Fo2(Q) = 0 (A.3¢)
Sm(Q", AY) + F(Q) - F*(Q) =0 (A.3d)

Note that (i) S;,(Q*, A}*) represents the sum of the fluxes leaving CE;(Q) through its top
face, bottom face and two exterior side faces; and (ii) F12(Q) and —F*1(Q), respectively,
represent the fluxes leaving CE;(Q) through its two interior side faces. Thus, for each m,
Eq. (A.3a) represents a local flux conservation relation over CE;(Q). Similarily, for each
m, Egs. (A.3b)-(A.3d), represent local flux conservation relations over CE,(Q), CE3(Q)
and CE4(Q), respectively.

Note that a summation over Eqs. (A.3a)—(A.3d) results in Eq. (A.1)—the known local
conservation condition over CE(Q). Thus, for each m, Eqs. (A.3a)-(A.3d) contain only
three independent conditions for four unknowns Fr2(Q), F23(Q), F34(Q) and FX1(Q).
In other words, there still is a degree of freedom left for these unknowns.

To proceed, note that the interfaces that divide CE(Q) into CE,(Q), ¢ = 1,2,3,4,
all belong to SE(Q*). As a result, even though they are not used in the construction of
the present scheme, the fluxes of A%, at these interfaces can be evaluated in terms of the
independent marching variables at point @*. In the following discussion, the evaluated
flux of h}, leaving CE,(Q) (and entering CE;(Q)) through the interface dividing CE;(Q)
and CE,(Q) will be denoted by F!?(Q*). Similarily, one also define F23(Q*), Fa*(Q*)
and Fr1(Q*).

With the above definitions, the degree of freedom referred to earlier is removed by
requiring that, for each m, F?(Q), F2*(Q), F3*(Q) and F¥'(Q) be the solution to
Eqgs. (A.3a)—-(A.3d) with the minimal value of

L ‘*e‘{Fl %)~ F”Q)]2+[F”(Q F“’Q)V

3:4 - 34 2 4:1 4l 2 (4.4)
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It can be shown that the last requirement amounts to imposing the extra condition

FiA(Q) + FEY(Q) + Fi'(Q) + FXY(Q)

m m

=F (0% F L") + F (0 + FR oY)

m

(A.9)

By using Eq. (A.5) and any three of Eqs. (A.3a)-(A.3d), for each m, F%(Q), F23(Q),
F“(Q) and F¥'(Q) can be uniquely defined in terms of known parameters FL2(Q*),
Fadary), 240, FrU(R"), and SE(@%, A)), £ = 1,2,3,4.

'\Ie\(t‘ note that a space-time region may be the common BCE of two different mesh
points (these two mesh points are referred to as the cohosts of the common BCE). As an
example, the space-time cylinder 4, B; QB4 A| B]Q'B} depicted in Fig. 4(b) was designated
as CE,(Q). However, it also can be designated as a BCE of point A;, say CE;(4;). As will
be shown in the following remarks, for each m, how the flux is assigned to each face of the
space-time cylinder, along with the resulting flux conservation relation over the cylinder,
is dependent on whether it is designated as CE;(Q) or CE;(4,):

(a) At the top face of CE;(Q) (CE;(A;)), the flux is evaluated assuming that the face
belongs to SE(Q*) (SE(AY})).

(b) At the bottom face of CE;(Q) (CE;(A;)), the flux is evaluated assuming that the face
belongs to SE(AT*) (SE(Q™))

(¢) The exterior (interior) side faces of CE;((Q) are the interior (exterior) side faces of
CE (A4,).

(d) At each of the exterior side faces of CE,(Q) (CE;(A;)), the flux is evaluated assuming
that the side face belongs to SE(A}*) (SE(Q*)).

(e) A local conservation condition over CE;(A4;) (different from that over CE,(Q), i.e.,
Eq. (A.3a)) will result if the artificial flux at each interior side face of CE;(A4,) is also
assigned using a procedure parallel to that used to assign the flux at each interior side
face of CE,(Q).

Consider a common BCE of two cohosts lying in the interior of the computational
domain. From the above discussion, one concludes that, for each m, (1) two different fluxes
are assigned to each face of the BCE, and (ii) corresponding to the two cohosts, there are
two different conservation relations over this BCE. Hereafter, the simple average of the
two fluxes at each face will be referred to as the generalized flux at this face. By summing
the two local conservation relations over the BCE, one concludes that the total generalized
flux leaving the BCE through its boundary vanishes.

Furthermore, note that: (i) only one generalized flux is defined at any interface divid-
ing two neighboring BCEs; and (ii) the generalized flux leaving a BCE through an interface
dividing this BCE and a neighboring BCE is the negative of the generalized flux leaving
the neighboring BCE through the same interface. Thus, one arrives at the following global
flux conservation relation: for each m, the total generalized flux leaving the boundary of
any space-time region that is the union of any combination of BCEs (with each of these
BCEs having two interior cohosts) vanishes.

To proceed further, note that, for each m, corresponding to its two cohosts, the
boundary of a BCE is assigned two sets of fluxes. Because of the space-time staggering
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nature of the stencil of the present scheme, the above two sets along with the solution values
at 1ts two cohosts may become decoupled locally after many marching steps. Note that one
may argue that this decoupling does not matter, because the amount of decoupling usually
is of the order of the discrepancy between the numerical solution and the exact solution
and, as such, it does not exacerbate the actual simulation errors. However, in practice,
the decoupling can cause a substantial problem in solution display. The decoupling can
manifest itself as what appear to be small-wavelength oscillations when the solution at
the final time level is displayed using the solution values of both Q7 and Q*. As will
be shown immediately, not only does the above definition of a unique generalized flux at
any boundary of a BCE provide a way to avoid the problem of “flux decoupling”, it also
provides a way to handle the problem of “solution decoupling”.

Consider the top face of any BCE with two cohosts. For any m, the two fluxes assigned
to this face, respectively, are evaluated assuming that the face belongs to the SEs of its
two cohosts, respectively. It can be shown that these two fluxes, respectively, are equal
to the area of the face multiplied by the two values of u,, at the centroid of the top face
evaluated assuming that the centroid belongs to the two cohosts, respectively. Let the
simple average of the above two values of u,, be referred to as the coupled solution value
of u,, at the centroid of the top face of this BCE. Then it can easily be shown that, for
each m, the generalized flux at this face is simply the area of the face multiplied by the
new solution value. Also, because of how they are defined, solution decoupling generally
is no longer a problem if the numerical data are taken from these new solution values.

Finally, it should be emphasized that the above definition of generalized fluxes and
coupled solution values, by no means implies any change in the marching scheme. In fact,
evaluation of the locations of the centroids of the top faces of the BCEs along with that
of the associated coupled solution values represents only a post-marching procedure.
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Figure 1.—A surface element on the boundary S(V)
of a volume V in a space-time Ea.
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Figure 2.—Space-time geometry of the conventional
finite volume method in Ej. (a) A rectangle in Ej.
(b) A spatial cylinder aligned in the x-direction,

(c) A regular space-time mesh.
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Figure 3.—The SEs and CEs of the a scheme. (a) A staggered
space-time mesh. (b) SE(j,n). (c) CE_(j,n). (d) CE+(j,n). (e) CE(j,n).
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Figure 4. —Space-time geometry of the 2D scheme.
(a) Representative grid points in the x-y plane.
(b) SEs and CEs. (c) Spatial translation of the
quadrilateral A7 A A3 Aj.
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Fig. 6: The Euler solution of a steady-state shock reflection problem: (a) pressure contours; (b)

Pressure contours
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pressure coefficient distribution at the mid-section of the computation domain (y=0.5).
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Fig. 7: Schematic and density contours at three different times compared with the experimental
photographs.




Fig. 8: A simulated three-dimensional detonation wave in a square duct: temperature contours.



