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ABSTRACT

An innovative flow-measuring device, a thermocouple
boundary layer rake, was developed. The sensor detects

the flow by using a thin-film thermocouple (TC) array to

measure the temperature difference across a heater strip.
The heater and TC arrays are microfabricated on a constant-

thickness quartz strut with low heat conductivity. The

device can measure the velocity profile well into the
boundary layer, about 65 gm from the surface, which is

almost four times closer to the surface than has been

possible with the previously used total pressure tube.
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INTRODUCTION

Several conventional flow-measuring devices can

measure the flow velocity within the boundary layer: total
pressure boundary layer rakes, hot-wire probes, and hot-

film probes. 1-5 However, all of them have the limitation

that measurement cannot be made very close to the surface.

The physical size of a total pressure probe limits its ability
to get close to the surface, and those that are too small are

impractical because they are easily plugged or damaged.
Therefore, the closest measurement that can be made is
about 250 gm from the surface. The reason that hot-film

and/or hot-wire probes cannot obtain measurements close

to the surface is that inaccuracy is introduced by the rapid

change in the heat convection pattern in the near wall
region (wall proximity effect).

The newly invented thermocouple boundary layer
rake (patent pending) shown in Figure 1 not only can

measure the flow velocities throughout the boundary layer

with great accuracy but also can measure the flow velocity
at least four times closer to the surface than conventional
instruments.

THEORY BEHIND INVENTION

Based on the results from the Navier-Stokes

calculation using the WIND code, the velocity of a fluid
over a constant-velocity region of a constant-thickness
strut matches the velocity of the fluid ahead of the strut at

the same height above the surface of a wind tunnel floor.

Figure 2 shows the three-dimensional particle traces

obtained from the WIND code. Note that streamlines stay
parallel with the floor when they pass over a strut with
constant thickness.

The nondimensional pressure distributions along

streamlines are plotted in Figure 3. The pressure is
nondimensionalized by the static pressure on the same

streamline ahead of the strut P l- Nondimensional pres-
sure equal to 1 is an indication of the recovering static
pressure ahead of the strut along the same streamline after

the leading edge pressure disturbance. The streamline

tracing also indicates that the nondimensional pressure

*Patent pending.
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Figure 1.---Large size thermocouple boundary layer rake.
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Figure 2.--Side view of three-dimensional particle
traces over constant-thickness sensor strut.
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Figure 3.---Pressure distribution based on three-
dimensional calculation on strut with constant
thickness.

distribution is very consistent at different heights from the

surface and that it is very close to 1 as seen in Figure 3.
This small difference from 1 did not affect the calibration

procedure. The constant-velocity region (or constant-
pressure region) spreads over half the sensor strut from
the center. Also, horseshoe vortices, which could occur at

the intersection of the strut and the floor surface, were not

observed on any streamline tracing for the subsonic flow

conditions. The thermocouple pairs are mounted close to

the center in this constant-velocity region to measure the
velocities of the boundary layer flow.

DESCRIPTION OF THERMOCOUPLE (TC)
BOUNDARY LAYER RAKE

The sensor consists of a platinum heater and an array
of platinum and gold thermocouples (Fig. 1). Equal

numbers of thermocouples are placed both upstream and

downstream of the heater. The voltage difference generated
by each pair at the same height from the surface is

indicative of the difference in temperature between the

upstream and downstream thermocouple locations. This

voltage difference is a function of the flow velocity over
the thermocouple pair; therefore, like a conventional total

pressure rake, it can provide the velocity profile of the
boundary layer.

FABRICATION OF FLOW SENSOR

The sensor is fabricated on a fused quartz substrate.

The reason for this substrate choice is that the operation of

the sensor depends upon the flow-induced temperature
difference across the heater, and the low thermal

conductivity of the quartz helps to maintain this difference.

In addition, quartz has a low coefficient of thermal
expansion, so it has excellent resistance to thermal shock

and thermal stress. Thus, even if the heater is operated at
a high temperature, the substrate will not crack.

NASA/TM--2001-211161 2



Theheaterandthermocouplearrayarethinfilms,
onlyafewmicronsthick,soasnottodisturbtheflowover
thesurface.Theheaterandone-halfof thesetof
thermocouplejunctionsareplatinum.Theotherhalfofthe
junctionpairisgold(Fig.1).Platinumisanidealmaterial
fortheheaterbecauseitselectricalresistancevarieswith
temperatureinaveryrepeatablefashion,whichallows
automaticcontroloftheheatertemperatureaspartof a
controlcircuit.Thethermocouplesarefabricatedofpure
metalstoalleviatetheproblemofunevencompositionthat
mightoccurwithalloys;therefore,theplatinum-goldpair
isoneofthemoststableandrepeatablematerials.6

Theactualdepositionof thefilmsisviaaphoto-
lithographicprocessdevelopedespeciallyfor the
productionof thissensor(anotherpatentappliedfor)
becausetheconventionalprocessofusingaphotomask
andpositivephotoresistisverydifficultinthatplatinum
andgoldarealmostimpossibletoetch.Instead,after
copperisdepositedovertheentiresubstrate,thephotoresist
is appliedandpatterned.Next,thecopperunderthe
exposedphotoresistisetchedawaywithdilutenitricacid,
andtheplatinumissputteredovertheentireareaofthe
substrate.Theremainingphotoresistiswashedawaywith
acetone,leavingonlycopperandplatinumonthesubstrate.
Followinganothernitricacidwash,onlytheplatinumis
left.Thisprocessisthenrepeatedforthegoldfilm.

CALIBRATION PROCEDURE

The calibration of a TC boundary layer rake was
conducted inside a wind tunnel 7 side-by-side with a

conventional total pressure boundary layer rake, as shown
in Figure 4. The cross section of the wind tunnel is

14.22 by 20.32 cm. Both the total pressure rake and the

thermocouple boundary layer rake are 6.8 cm from the

closest sidewall so that they will not be affected by the
boundary layer on the sidewall. The radius of the total
pressure tube is 0.0254 cm.

Thermocouple /-Total
rake --_ /

pressure
rake

Figure 4.---Calibration setup on wind tunnel floor
looking downstream.

It is assumed that the total pressure rake can provide
good measurements of the boundary layer flow because
they are used as the reference measurements for the

calibration of the thermocouple boundary layer rake. The

velocity profiles obtained from the total pressure rake at

three Reynolds numbers are shown in Figure 5; the closest

measurement from the surface is 0.0254 cm. The profiles
were smooth and stable during the calibration. The

thermocouple boundary layer rake was placed 6.8 cm
sideways from the total pressure rake such that the axial

location of the center of the sensor strut was at the same

axial location as the tip of the total pressure rake (Fig. 4).
Therefore, a one-to-one correlation could be obtained.

During the calibration, one thermocouple pair was chosen

to be the reference pair to set the voltage of the upstream

TC as constant (constant temperature). The number 9 pair
from the surface was chosen as the reference TC for the

calibration. As shown in Figure 6, not all upstream TC's

could be kept at the same voltage (same temperature).
Therefore, the measurements from this sensor need to be
adjusted as follows.

During each calibration measurement; the temperature
of the upstream thermocouple at each location is recorded

to find out how much the heater temperature varies from

one location to another (Fig. 6). The heater temperature
varies along its length because of the large difference in

flow velocity between the boundary layer and the free
stream; thus, each individual reading must be corrected
for this difference. The correction for zero offset at each

location is made by adjusting the heater current at no flow
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Figure 5.---Measurement from total pressure rake.
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to give the same reading of the upstream TC as occurred

with flow. Then the differential signal is recorded. This is

the zero shift adjustment at that location (Fig. 7), and it is

subtracted from the calibration data.

Figure 8 shows the voltage differentials AV and the

zero shift adjustment for three Reynolds numbers Re. The

corresponding measurements between the total pressure

rake and the TC rake were used to obtain the calibration

lines (Fig. 9). For example, the calibration equation for a

Reynolds number of 1.98×105 is given as

)]1,0.45
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u = (])
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Figure 9.---Calibration lines.

where U is the axial velocity. Using this equation, all the

measurements from the TC rake, including two taken very

close to the surface, can be converted to the flow velocities.

(Some measurements did not correspond to those of the

total pressure rake.) The results in Figure 10 show that the

new rake not only gives measurements identical to those

of a conventional total pressure boundary layer rake but it

also measures four times closer to the surface (i.e., 65

versus 250 _tm). Because the purpose of this paper is to

develop a calibration procedure, no attempt was made to

determine the uncertainty of the TC rake.
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• from Figure 12 and the calibration line similar to Figure 9
0 100 000 200 000 300 000 is determined. As seen from Figure 12, the slope of the

DISCUSSION

The measurements from the TC rake depend on

Reynolds number. During the calibration, Figures 11 and

12 were also obtained and can be used for any flow
conditions. The upstream TC is set at a reference value,

say 0.25 mV. From Figure 11, the velocity of the reference
TC is determined and the AV of the reference TC is

measured. The slope of the calibration line is determined

calibration line decreases as the Reynolds number

decreases, which indicates that the error introduced by this

device is increased for the smaller Reynolds number. The

velocity profile can be obtained from the TC rake by using

a calibration equation that is similar to Equation (1) and is
obtained from the calibration fine. To determine how

accurate the closest measurement to the surface is, the data

are replotted in Figure 13 with different parameters: the

ratio of the velocity to the velocity at the edge of the

boundary layer U/Uoo versus the ratio of the y-coordinate
of the measurement from the surface to the momentum

thickness y/0. The measurement data are fairly close to

the incompressible theory 8 of a flat plate

NASA/TM--2001-211161 5
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Figure 14.--Comparison of thermocouple data
with theory.

U_

and to the calculated results from a computational fluid

dynamics code (WIND) using the Baldwin-Lomax
turbulence model.

Figure 14 presents a plot of nondimensional

U + versus y+. The shear stress -cw obtained from refer-

ence 7 was used to calculate U + and y+"

The measurement data from the TC rake agree very
well with the theory; 8 that is,

U + 11.5(y+) 1/10= (2)

Equation (2) is based on the universal velocity

distribution law for smooth pipes. Although the current

calibration is through a rectangular duct, it agrees very

well even for the closest measurement, which is 65 _tm
from the surface.

An innovative flow-measuring device, a thermocouple
boundary layer rake, was successfully developed and

calibrated. The sensor detects the flow by using a thin-film

thermocouple (TC) array to measure the temperature

difference across a heater strip. The newly invented TC

boundary layer rake (patent pending) can measure the

flow velocities throughout the boundary layer with great
_accuracy. It can also measure four times closer to the

surface (about 65 _tm) than conventional devices, such as
total pressure rakes, hot films, and hot wires.
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