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ABSTRACT 

A study was conducted in the NASA Glenn Research 
Center linear cascade on the intermittent flow on the suction 
surface of an airfoil section from the tip region of a modern low 
aspect ratio fan blade. Experimental results revealed that, at a large 
incidence angle, a range of transonic inlet Mach numbers exist 
where the leading-edge shock-wave pattern was unstable. Flush 
mounted high frequency response pressure transducers indicated 
large local jumps in the pressure in the leading edge area, which 
generates large intermittent loading on the blade leading edge. 
These measurements suggest that for an inlet Mach number 
between 0.9 and 1.0 the flow is bi-stable, randomly switching 
between subsonic and supersonic flows. Hence, it appears that the 
change in overall flow conditions in the transonic region is based 
on the frequency of switching between two stable flow states rather 
than on the continuous increase of the flow velocity. To date, this 
flow behavior has only been observed in a linear transonic 
cascade. Further research is necessary to confirm this phenomenon 
occurs in actual transonic fans and is not the byproduct of an 
endwall restricted linear cascade. 

 
INTRODUCTION 

Modern turbofan engines employ a highly loaded, low-
aspect ratio fan stage with transonic or low-supersonic velocities 
in the blade-tip region. The blade-tip airfoil sections are 
designed for precompression, with a concave suction surface just 
downstream of the leading edge (negative camber), and with 
very little overall camber. These airfoil sections have a sharp 
leading edge and are prone to flow separation at off-design 
conditions. Due to extreme flight envelope requirements military 
engines operate at part speed where the incidence angle is high 
and the blade-tip relative Mach number is high subsonic or 
transonic. These operating conditions make the fan blades 
susceptible to stall flutter. Blade flutter and associated high cycle 
fatigue problems are very detrimental to engine health and must 
be avoided. However, the origins of stall flutter are still not fully 
understood. Therefore, there has been a great deal of interest in 
fan blade stall flutter research in recent years.  

The NASA-GRC linear oscillating cascade facility has 
undertaken an experimental program to further our 
understanding of stall flutter. While conducting experiments at 
transonic Mach numbers a flow behavior was found that may 

contribute to the onset of blade flutter at transonic relative Mach 
numbers. This phenomenon manifested itself as an instability of 
the leading-edge shock-wave pattern, flow intermittency, at 
transonic inlet flows. 

Until now these results have not been supported by 
direct measurements of local unsteady static pressures on the 
airfoil suction side at the blade leading edge. So far, the 
transonic airfoils, with very thin and sharp leading edges, have 
been instrumented with conventional static taps that are not 
capable of recording rapid pressure changes. Conventional static 
taps effectively average the fluctuating pressure, with the 
measured average value depending, to a large extent, on the 
particular configuration of the measurement system. Such data 
cannot reveal any intermittency of a transonic cascade flow.  
To substantiate the intermittent flow behavior in a transonic 
cascade, blades instrumented with miniature pressure transducers 
were used to measure the unsteady pressures on the airfoil 
suction side just downstream of the leading edge. 

NOMENCLATURE 
C [mm] Airfoil chord 

pC  [1] Steady surface pressure coefficient, 
( ) ( )2

111 5.0/)( VPP ρξ −  

h [mm] Blade height 

iFL [dg] Flow incidence angle 
iGM [dg] Geometric incidence angle 
Ma [1] Mach number 
pav [kPa] Average surface static pressure 
px [kPa] Surface static pressure 
S [mm] Blade pitch 
x [mm] Axial distance in cascade frame 
y [mm] Pitchwise distance in cascade frame 

pC∆  [1] Steady surface pressure coefficient 
deviation from blade #5 

γ [dg] Blade stagger angle (from axial direction) 
πTB [1] Cascade pressure ratio, 

12 / PP  

ρ [kg/m3] Air density 
θ [dg] Blade camber 
ξ [mm] Airfoil chordwise distance 
σM [1/s] Rate of sonic crossings 
σpx [kPa] RMS of surface pressure 
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TEST FACILITY UPGRADE 
NASA GRC operates a unique test facility dedicated to 

transonic cascade flutter research. The facility, NASA Transonic 
Flutter Cascade (TFC), has been described in detail in Refs. 1, 2, 
and 3. The facility is a linear cascade of nine blades. A view of 
the cascade test section is in Fig. 1. The airfoil and cascade 
parameters are given in Fig. 2 and Tab. 1 (Ref. 1, 4). Blades in 
the cascade can be oscillated to simulate blade flutter motion. 
For the present study, however, the blades were fixed and no 
forced oscillations of the blades took place. The blades were 
firmly clamped and there is no freedom for torsional movement. 
The uncertainty in the blade setting angle is 0.08 dg. Research of 
flutter phenomena in a linear cascade requires very good overall 
flow uniformity and, in particular, a high degree of flow 
periodicity over many blades. 

The NASA TFC was recently modified and upgraded to 
improve the flow periodicity in the cascade. First, a numerical 
study was carried out to improve the periodicity of the tunnel, 
and to quantify better the inlet and exit conditions needed for 
accurate CFD predictions (Refs. 5, 6). Several configurations of 
the tunnel endwalls were investigated in order to improve the 
periodicity of the cascade. The configurations were designed 
using CFD analyses of the complete tunnel made by McFarland, 
and analyses of isolated blades made by Chima. 

The PCSTAGE turbomachinery analysis panel code, 
developed by McFarland (Refs. 7, 8), was used to model the 
complete tunnel configuration, including all nine blades and the 
endwalls. The endwalls were modeled as a tenth body with one 
surface shaped like the left wall of the tunnel and the other 
surface shaped like the right wall. Calculations were made at  
Ma = 0.5 to minimize compressibility effects. Fig. 3 shows  
Mach number contours calculated for this configuration using 
PCSTAGE. The contours show very uniform flow ahead of  
the cascade. 

The quasi-three-dimensional (Q-3-D) turbomachinery 
analysis code RVCQ3D developed by Chima (Ref. 9, 10) was 
used to analyze the blades. The code solves the thin-layer 
Navier-Stokes equations in finite-difference form. To improve 
the periodicity of the cascade, the endwall turning was adjusted 
to match the turning of a perfectly periodic cascade modeled by 
RVCQ3D. Figure 4 shows blade surface pressure distributions 
measured on blade B5 at inlet Mach numbers of 0.5, 0.8, and 
1.0. Pressure distributions computed with RVCQ3D are also 
shown. Computed static pressure ratios across the cascade 
matched measured values closely, confirming that the endwall 
interference had been minimized. 
 

BLADE LOADING PERIODICITY 
Blade steady loading periodicity was verified by 

measuring surface pressures for all nine blade positions by 
marching the instrumented blades with conventional static 
pressure taps through the cascade. The tunnel operating 
conditions were repeatable to within 1% of the inlet Mach 
number for each blade position. To visualize the differences in 
loading diagrams between blades, the center blade (B5) was 
taken as a reference and compared to the other blades. The 
pressure distribution on blade B5 is shown in Fig. 4 for 
 

Ma = 0.8. The differences between this reference pressure 
distribution and the pressure distributions on the other blades 
were computed, and are plotted in Fig. 5. The sketch at the top 
of the figure identifies individual blades with color-coded 
numbers. The two figures show the measured differences in 
pressure coefficients for the blade suction side, with the left and 
right sides of the cascade shown in the left and right plots, 
respectively. Blade B5 is represented by a straight black broken 
line. The deviation curves for the remaining blades are color 
coded in accordance with the blade numbers in the sketch. For a 
perfectly periodic flow, all deviation curves would collapse to 
the broken straight line of blade B5. Positive values of deviation 
indicate that a particular blade has a higher pressure coefficient 
than blade B5 at the same chordwise station. Negative values 
indicate a lower value than blade B5. All pressures in the 
cascade were measured using absolute pressure transducers with 
a range of 100 kPa, and accuracy better than ±0.4%. This 
indicates an accuracy of ±0.02 for the value of pressure 
coefficient. Therefore, deviations of pressure coefficient less 
than ±0.04 are considered to be insignificant. Blades B2 through 
B5 in the left half of the cascade show excellent agreement of 
pressure distributions on the suction surface. Blades B5 through 
B7 in the right half show acceptable agreement in their suction 
side pressure distributions. Overall the cascade shows excellent 
periodicity over six blades, numbers B2 through B7. The high 
degree of blade loading periodicity boosted the confidence in the 
cascade data and its extrapolation to the transonic fan condition. 
 

UNSTEADY FLOW IN TRANSONIC CASCADES 
Available pressure data from a transonic airfoil, 

measured on the suction side in the leading edge region using 
conventional static taps, exhibit a smooth and continuous drop 
with increasing inlet Mach number. Such data indicates that the 
local flow velocity continuously increases from subsonic to low 
supersonic values. However, this contradicts the observations of 
unsteady and intermittent behavior of the flow shock pattern for 
transonic inlet flow conditions. 

The sequence of photographs in Fig. 6 illustrates shock 
pattern development (Ref. 11). For the subsonic Mach numbers 
of 0.6 and 0.9 (Fig. 6a,b) there are no shocks present in the flow. 
The first appearance of shock waves in the flow occurs for the 
inlet flow Mach number of 1.01 (Fig. 6c). As seen here, the 
shock structure is not periodic; each blade shows a different 
shock pattern. Blades B4 and B5 generate simple normal shocks, 
whereas on blades B6 and B7 the shock structure appears to 
consist of an oblique shock followed by a bow shock. The 
location of the bow shock, particularly on blades B6 and B7, 
varies significantly. Direct observation of the shock structure for 
this inlet Mach number revealed that the shock structure was 
highly unstable and varied rapidly. Once the inlet Mach number 
was raised to 1.05, the shock structure noticeably stabilized and 
exhibited the pattern shown in Fig. 6d. The shock pattern 
appears to be periodic with a period equal to two blade pitches. 
Even blades (B4 and B6) generate normal shocks at 40% of the 
blade chord, whereas odd blades (B5 and B7) clearly show a 
horizontally located oblique (lip) shock attached to the blade 
leading edge and a normal shock (bow) at 25% of the blade 
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chord. For the inlet Mach numbers of 1.12 and higher  
(Fig. 6e,f,g) the shock structure is highly periodic with the 
period of one blade pitch. 

Surface flow visualization using an oil-paint mixture 
clearly shows that there are different flow patterns for subsonic 
and supersonic inlet Mach numbers. Four surface flow patterns 
are shown in Fig. 7 for inlet Mach numbers of 0.5, 0.8, 1.0, and 
1.18. For the subsonic inlet Mach numbers there is a large 
separated flow region on the blade suction surface just past the 
leading edge exhibiting a complex three-dimensional flow 
structure. For the supersonic inlet flow, however, the flow past 
the leading edge is fully attached to the blade for a considerable 
length. This abrupt change of surface flow patterns is also not 
indicative of a smooth velocity increase through the transonic 
flow region. 
 

UNSEADY SURFACE PRESSURES 
Three blades with instrumentation on the suction 

surface were used in this study. One blade had 15 conventional 
static pressure taps along the midspan line, and two blades had 
15 miniature high-frequency pressure transducers (Kulite  
XCQ-062-15A) with a nominal range of 0 to 100 kPa absolute. 
Details of the blade instrumentation and data acquisition 
procedures can be found in Ref. 12. Only data from port 1 
located at the blade midspan 6.0% of the blade chord 
downstream of the blade leading edge are presented here. The 
instrumented blades were marched through the cascade to record 
pressures for various blade positions in the cascade. Data for 
blade positions 3, 4, 6, and 7 will be presented. 

First, the recorded pressure time histories from the 
unsteady pressure transducer were averaged and compared with 
conventional static pressure tap data for each of the investigated 
positions. Fig. 8 presents comparisons of static tap data and 
averaged unsteady data in the form of pressure coefficient versus 
inlet Mach number. As seen here, there is relatively good 
agreement between these sets of data. The differences are not 
larger than those presented previously in Fig. 5. Unsteady 
measurements allow quantification of pressure fluctuations  
(root-mean-square values) as a function of the inlet Mach 
number. This is shown in Fig. 9a,b, where comparison of 
absolute pressure levels is plotted in upper diagrams and levels 
of pressure fluctuations are plotted in lower diagrams. There are 
no noticeable differences among investigated blades.  
The fluctuation levels are shown in pressure units. In relative 
terms, the level of pressure fluctuation is about 1% of the 
average pressure value up to the inlet Mach number of 0.5, but 
then increases to a level of 18 to 20% for the inlet Mach number 
equal to 1.0. Then the fluctuation level abruptly drops to 2% and 
stays at this level up to the maximum Mach number tested  
(Ma = 1.1). 

A series of time resolved pressure signals is presented 
in Fig. 10a,b,c. The series is for a range of inlet Mach numbers 
from 0.5 to 1.02. As seen here, unsteadiness of the pressure 
signals rapidly increases with increasing inlet Mach number up 
to Ma = 0.93. At this inlet Mach number a new phenomenon 
takes place. Starting at this Mach number there are momentary 
pressure level drops to a level for which the flow velocity jumps 
 

to a supersonic value. It should be emphasized here that the 
changes are not smooth and gradual transitions, but sudden 
pressure jumps. These bursts of supersonic velocity are at first 
very short (a few milliseconds) and infrequent. However, with 
increasing inlet Mach number the duration and number of 
appearances of supersonic flow velocities increases dramatically. 
For an inlet Mach number of about 0.95 to 0.97, the local flow 
velocity at the blade leading edge is supersonic half of the time. 
However, it appears that the velocity is still switching randomly. 
As the Mach number increases further, the regions of supersonic 
flow velocity rapidly lengthen with very sporadic instances of 
subsonic velocity pockets. Finally, for inlet Mach numbers of 
1.01 the pressure level has settled at a value of about 20 kPa, 
which corresponds to established continuous supersonic flow. 
 

FLOW INTERMITTENCE 
The jumps in the local pressure level in the blade 

leading edge region are about 20 to 25 kPa for the Mach number 
range from 0.9 to 1.0. It appears that the flow just past the 
leading edge is bi-stable, randomly switching between the 
subsonic and supersonic flows. To reveal the bi-stable character 
of the flow, a threshold was set for the midlevel of pressure 
drops (27 kPa in this particular case), and the measured pressure 
was averaged for segments of pressure level above this threshold 
and segments below the threshold. The results are presented in 
Fig. 11a,b. The upper diagrams show comparison of static tap 
data and overall averages of unsteady data. The lower diagrams 
show three distributions: static tap data, averaged unsteady data 
for subsonic flow, and averaged data for supersonic flow. As 
seen here, a smooth pressure drop in this region measured by the 
conventional static taps is an artifact of the averaging process of 
this pressure measuring method. It appears that in reality the 
change in overall flow conditions in the transonic flow region is 
based on the frequency of switching between two stable flow 
states rather than on the continuous increase of the flow velocity. 

A flow intermittence function for any inlet Mach 
number that indicates flow stability in the region of bi-stable 
switching between high subsonic and low supersonic local 
velocities can be defined. It can be viewed as a time fraction of 
flow being at supersonic velocities in the bi-stable region. It has 
a value of 0 for flow that is fully subsonic and a value of  
1 (100%) for flow that is fully supersonic. Fig. 12a,b presents 
this function for the investigated four blades. The lower 
diagrams in the same figure show the rate of sonic crossings per 
second for the bi-stable region. The rate of sonic crossings is 
actually the rate of pressure jumps. Therefore, it is the rate of 
unsteadiness in blade loading (blade forcing function). If this 
rate is close to any of the blade natural frequencies, blade 
oscillations will be excited. It appears from the data presented 
that the inner blades exhibit a lower rate of zero crossings than 
the blades closer to the cascade endwalls. In other words, it 
depends on the blade position in the cascade. This may indicate 
that the phenomenon of flow intermittency is somehow 
associated with the linear cascade flow conditions. At present, 
this observation is purely speculative, based on this single data 
set, and needs to be confirmed with data from other facilities. 
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CONCLUDING REMARKS 
The phenomenon of flow intermittency in a transonic 

cascade for high-speed subsonic inlet Mach numbers with high 
incidence has not been previously reported in the open literature. 
Flow appears to be bi-stable for these conditions. Pressure 
jumping between two levels in the transonic region generates 
large intermittent loading on the blade leading edge region and 
can lead to the onset of blade vibration. To date, this flow 
behavior has only been observed in a linear transonic cascade. 
Based on these observations the following question arises: Can 
this new model of the flow physics, devised from linear transonic 
fan blade cascade data, be applied to an annular transonic 
cascade or even to an actual transonic fan? No data from annular 
cascades or transonic fans has been reported to confirm it or 
disprove it. In other words, does this phenomenon occur in 
actual transonic fans or is this only a byproduct of an endwall 
restricted linear cascade? At present, this question cannot be 
answered decisively. In either case, this finding will affect future 
research on transonic blading. If the flow intermittence observed 
is a general phenomenon, then it will impact computational 
methods for transonic fans, in particular, blade life prediction 
codes that are not yet fully reliable.  If this phenomenon is 
restricted only to linear transonic cascades, then any linear 
cascade data for high subsonic and sonic inlet Mach numbers 
must be treated with utmost caution. Consequently, future 
research on transonic blading should be conducted in annular 
cascades. 
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Table 1. Airfoil and cascade parameters. 
 

Blade chord, C 89.2mm 
Leading edge camber angle, θ -9.5 dg 
Maximum thickness, tmax 0.048 C 
Location of maximum thickness, ξmax 0.625 C 
Stagger angle, γ 60.0 dg 
Number of blades in the cascade 9 
Blade pitch, S 58.4 mm 
Cascade solidity, C/S 1.53 
Pitching axis, ξpitch 0.5 C 
Blade height, h 95.9 mm 

 
 

 
Figure 1. Test section of the NASA Transonic  

Flutter Cascade. 
 

Figure 2. Airfoil and cascade coordinate system. 
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Figure 3. Mach number contours computed with  
PCSTAGE for final cascade configuration. 
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Figure 4. Computed and measured blade loading  

diagrams for middle blade (B5). 
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Figure 5. Measured blade loading periodicity. 

 
 
 
 

Fig. 10. High solidity cascade shock
patterns
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Figure 6. Shadowgraph visualization of shock wave pattern. 
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Ma = 0.80 Ma = 1.18

Ma = 1.00

 

Ma = 0.50

INLET FLOW

 
Figure 7. Visualized surface flow patterns. 
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Figure 8. Pressure coefficient as a function 

of inlet Mach number. 
 
 

 

100

S
T

.P
R

E
S

S
U

R
E

,
p

[k
P

a
]

x

60

20

10

P
R

E
S

S
.

R
M

S
,

[k
P

a
]

px

6

2

4

8

0

σ

0.4 0.8 1.2 0.4 0.8 1.2

INLET MACH NUMBER, Ma [ 1 ]IN

UNSTEADY DATA

STEADY DATA

RMS DATA

BLADE   # 3 BLADE   # 4

 
Figure 9a. Local surface pressure and pressure  

unsteadiness as a function of Mach number. 
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Figure 9b. Local surface pressure and pressure  

unsteadiness as a function of Mach number. 
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Figure 10a. Time resolved pressure signal at  

Port 1 for different inlet Mach numbers. 
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Figure 10b. Time resolved pressure signal at  

Port 1 for different inlet Mach numbers. 
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Figure 10c. Time resolved pressure signal at  

Port 1 for different inlet Mach numbers. 
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Figure 11a. Pressure distributions for subsonic 
and supersonic intermittent flows. 
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Figure 11b. Pressure distributions for subsonic 
and supersonic intermittent flows. 
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Figure 12a. Intermittency parameters for  

blades B3 and B4. 
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Figure 12b. Intermittency parameters for  

blades B6 and B7. 
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