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Abstract

This paper describes and discusses the textbook, Fundamentals of Computational

Fluid Dynamics bv Lomax, Pulliam, and Zingg, which is intended for a graduate-

level first course in computational fluid dynamics. This textbook emphasizes funda-

mental concepts in developing, analyzing, and understanding numerical methods for

the partial differential equations governing the physics of fluid flow. Its underlying

philosophy is that the theory of linear algebra and the attendant eigenanalysis of

linear systems provides a mathematical framework to describe and unify most nu-

merical methods in common use in the field of fluid dynamics. Two linear model

equations, the linear convection and diffusion equations, are used to illustrate con-

cepts throughout. Emphasis is on the semi-discrete approach, in which the governing

partial differential equations (PDE's) are reduced to systems of ordinary differential

equations (ODE's) through a discretization of the spatial derivatives. The ordinary

differential equations are then reduced to ordinary difference equations (OAE's) us-

ing a time-marching method. This methodology, using the progression from PDE

through ODE's to OAE's, together with the use of the eigensystems of tridiagonal

matrices and the theory of OAE's, gives the book its distinctiveness and provides a

sound basis for a deep understanding of fundamental concepts in computational fluid

dynamics.



distinctive. Topicscovered,in this paper,include the modelequations,matrix differ-
ellceoperators,Taylor Tables,the semi-discreteapproach,converting tinm-marching
methodsto ordinary differenceequations(OAE's), solutionof linear O'_lE's, the k-a
relation, and numericalstability concepts.Although this omits a significant portion
of the material coveredin the book, it is sufficient to illustrate the basicframework.
.llost of the material presentedis excerpteddirectly from the book.

2 The Model Equations

Many concepts are presented in the context of two one-dimensional model equations,

the linear convection equation and the diffusion equation. These two equations are

commonly used in understanding CFD algorithms, primarily' because they are linear,

scalar, and they represent phenomena of importance to the analysis of certain aspects

of fluid dynamics. The linear convection equation can be written as:

Ou Ou

O-7+a =0 (1)

where u(x, t) is a scalar quantity propagating with constant speed a. Emphasis is on

periodic boundary conditions, which permit the study of many of the basic properties

of numerical methods applied to problems involving convection without consideration

of boundaries. The diffusion equation is:

0_ 02u

a-7= (2)

where u is a positive real constant. Consideration is given to both Dirichlet (specified

u) and Neumann (specified Ou/i)x) boundary conditions.

3 Finite-Difference Operators

Finite-difference operators are presented initially through linear combinations of Tay-

lor series expansions, producing, for example, the three-point centered difference op-

erator for a second-derivative:

(6_,_)j = ,_ (,_;+_ - 2_,j + uj_,) (3)

The idea of a local order of accuracy is also defined based on the leading term in the

Taylor series expansion" of the error.

"The discrete Taylor series expansion is definedas ui+l, = uj + (k"kz)( a_'T.) j + ½(k_x)" .('_" - ,_"+

"'" + _.,_ J t =_g'z/j + "'" for a general increment k



notation is used:

Bp (M • a, b, c) =

b c a

a b c

a b c

c a b M

(s)

With this notation, the matrix difference operator for a first derivative with periodic

boundary conditions on an M-point grid can be written as

1

(5,.)p - 2AxB,,(M • -1,0, 1) (9)

Notice that there is no boundary condition vector (b_) since this information is inte-
rior to the matrix itself.

3.2 Taylor Tables

A Taylor table is a simple and convenient way of forming linear combinations of

Taylor series on a term by term basis. This enables one to derive finite-difference

expressions for specified derivatives with a specified stencil. An example is given

below. The table i.s constrticted so that some of the algebra is simplified• At the

top of the table we see an expression with a question mark. This represents one of

the questions that a study of this table can answer; namely, what is the local error

caused by the use of this approximation? Notice that all of the terms in the equation

appear in a column at the left of the table (although, in this case, Ax 2 has been

multiplied into each term which simplifies the terms to be put into the table). Then

notice that at the head of each column there appears the common factor that occurs

in the expansion of each term about the point j, that is,

Am_ t,Ozk ] _ k = 0,1,2,...

The columns to the right of the leftmost one, under the headings, make up the Taylor

table• Each entry is the coefficient of the term at the top of the corresponding column

in the Taylor series expansion of the term to the left of the corresponding row. For

example, the last row in the table corresponds to the Taylor series expansion of c uj+l:

- c. • +c.(1) 2. Am2-

+c (1) 3 _Axa fO3u'_ • fO4u'_• - • +c.(1) 4 LAx'. +.-- (I0)



4 The Semi-Discrete Approach

One strategy for obtaining finite-difference approximations to a partial differential

equation (PDE) is to start by differencing the space derivatives only, thereby con-

verting the PDE to a set of coupled ordinary differential equations (ODE's). We refer

to this as the semi-discrete approach. For some methods it is not possible to sepa-

rate the spatial and temporal discretization, and two of these, the Lax-Wendroff and

MacCormack methods, are discussed later in the book. However, we primarily con-

centrate on the semi-discrete approach, reducing the PDE's to ODE's by discretizing

the spatial terms and using the well developed theory of ODE solutions to aid us in

the development of an analysis of accuracy and stability.

For the model PDE's, we can approximate the space derivatives with difference

operators and express the resulting ODE's with a matrix formulation. This is a

natural formulation when the ODE's are linear. For example, using the 3-point

central-differencing scheme to represent the second derivative in the diffusion equation

leads to the following ODE diffusion model

da - " B(1,-') + (£) (13)
(It A.r2 -'

with Dirichlet boundary conditions folded into the (b_) vector.

The generic matrix form of a senti-discrete approximation is expressed bv the

equation

dt

Note that the elements in the matrix A depend upon both the PDE and the type of

differencing scheme chosen for the space terms. The vector f(t) is usually determined

by the boundary conditions and possibly source terms. In general, even the Euler

and Navier-Stokes equations can be expressed in the form of Eq. 14. In such cases

the equations are nonlinear, that is, the elements of A depend on the solution ff and

are usually derived by finding the Jacobian of a flux vector. Although the equations

are nonlinear, linear analysis leads to diagnostics that are surprisingly accurate when

evaluating many aspects of numerical methods as they apply tothe Euler and Navier-

Stokes equations.

When the M x M matrix A is independent of ff and t and has a complete set

of linearly independent eigenvectors, the generic system can be written as a set of

independent first-order equations in the form:
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The numerical solution to a set of linear ODE's (in which A is not a function

of t) is entirely equivalent to tile solution obtained if the equations are decoupled,

solved in uncoupled form, and recoupled. The importance of this concept resides in

its message that we can analyze time-marching methods by applying them to a single,

uncoupled equation and our conclusions will apply in general. This is helpful both

in analyzing the accuracy of numerical time-march methods and in studying their

numerical stability.

As a single representative ODE we choose:

d_ "

d---[= Au + a# "t (21)

where A, #, and a are complex constants, which can be used to evaluate all manner

of time-marching methods. In such evaluations the parameters A and # must be

allowed to take the worst possible combination of values that might occur in the

ODE eigensystem. The exact solution of the representative ODE is (for lz _ A):

aep t

_(t) : ce_' + _ (22)
/.t - A

Although it is cluite simple, the numerical analysis of Eq. 21 displays many of the

flmdamental properties and issues involved in the construction and study of most

popular time-marching methods.

5 Time-Marching Methods for ODE's

5.1 Converting Time-Marching Methods to OAE's

As we have seen, application of a spatial discretization to a PDE produces a coupled

system of ODE's, which can be solved numerically using a time-marching method.

Application of a time-marching method to an ODE produces an ordinary difference

equation (OAE). In this section, we shall analyze and contrast explicit and implicit

schemes to illustrate these methods. For example, consider the explicit Euler time-

marching method, which can be written as:

u=+_= u_ + hu; (23)

where

d/z

-- =,_' = F(u,,) (24)
dt



5.3 The A-or Relation

Next consider the application of the explicit Euler method to the generic form of

the ODE's obtained using tile senti-discrete approach, Eq. 14, with f independent of

time. The exact solution is

= +. +
where t = nh, while the explicit Euler method produces the solution

_ = c_(a_)_ z_ +-.. + C,,(am)_ Zm +''" + CM(<_) _._ + P.S. (34)

where the cm and the x_ in the two equations are identical, a,_ = (1 + k,,h), and P.S.

denotes the particular solution. Comparing Eqs. 33 and 34, we see a correspondence

between _ and e a'h. Since the value of e ah can be expressed in terms of the series

eXh = l + Ah + _A"h2 + _Aaha +...+ _A_h_ + ... (35)

the truncated expansion _7 = 1 + Ah is an approximation to eAh valid for small Ah.

In general, application of the same time-marching method to all of the equations

in a coupled system of linear ODE's in the form of Eq. 14, always produces one or-root

for every A eigenvalue that satisfies the relation

where k is the order of the time-march method. We refer to the root that has the

above property" as the principal a-root. The property can be stated regardless of the

details of the time-march method, knowing only that its leading error is O(hk+l).

Thus the principal root is an approximation to e)'h up to O(hk). When the time-

marching method incorporates the solution at time level n- 1 or earlier (for example,

the leapfrog method), additional a-roots arise, known as spurious roots. These play

no role in accuracy analysis, but must be considered in stability analysis.

Using O_E theory, a relation between the eigenvalues of the spatial operator

matrix, A, and the a-roots can be found for any time-marching method, including

explicit and implicit linear multi-step, predictor-corrector, and Runge-Kutta methods.

The A-a relation encodes the properties of a time-marching method in terms of both

stability and accuracy of the homogeneous solution. The accuracy of the particular

solution can also be determined from the O-_E solution. Examples of A-or relations

include

= 1 + Ah (37)
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2. \\'ill the numerical solution convergeto tile exact solution of the PDE as the
grid is refined?

The secondquestion leadsto the notion of Lax stability"and Lax's theorem,which can
quickly leadto analvsisthat is quite complexfor a first course.Henceweconcentrate
on the first question, that is, weapproachstability primarily from the ODE point of
view.

This approachleadsto the criteriont

Icrm[< 1 for all ra (44)

for both principal and spurious roots, i.e., all roots must lie on or within the unit

circle in the complex plane. Using the ,_-_ relation for any' time-marching method,

one can plot its stability contour, which is the locus of points for which the largest Icrl,

considering all a-roots, both principal and spurious, is equal to unity. This contour

is plotted in the complex ,_h plane and divides this plane into stable and unstable

regions. For a given ODE in the form of Eq. 14, the spectrum of eigenvalues of .4

must lie within the stability" contour of the time-marching method. This requires the

choice of an appropriate method and time step.

For example, consider the family of one-step time-marching methods given by the

following expression

= [/- ']u_+, u,_+h 1 0)u'n +Su,_+,

t
This family includes the explicit EuIer (0 = 0), the trapezoidal (8 = _), and the

implicit Euler methods (0 = 1). Its A - c, relation is

1+ (1 - e)Ah
= 1 - _Ah (46)

Fig. 1 displays the corresponding stability contours. The explicit Euler method is

stable for a finite portion of the left half-plane. This leads to conditional stability.

For a given set of A-eigenvalues, there is always an upper bound on the time step

above which the method is unstable. Note that for imaginary eigenvalues the explicit

Euler method is unconditionall!_ unstable. Hence it is inappropriate for application

to the linear convection equation with periodic boundary conditions and centered

space differencing, since this leads to pure imaginary A-eigenvalues, as shown in Eq.

20. Both the trapezoidal and implicit guler methods are stable for the entire left

half-plane and are thus unconditionally stable. These examples show typical stability

characteristics for explicit and implicit methods, which must be weighed against the

increased cost per time step associated with implicit methods. The deciding factor is

often the stiffness of the ODE system being solved.

tActually the criterion is ]a_l < 1 if one includes defective systems, which are covered in the
book.
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