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Abstract

Vacuum ultraviolet (VUV) radiation of wavelengths
between 115 and 200 nm produced by the sun in
the space environment can cause degradation to
polymer films producing changes in optical,
mechanical, and chemical properties. These
effects are particularly important for thin polymer
films being considered for ultra-lightweight space
structures, because, for most polymers, VUV
radiation is absorbed in a thin surface layer.
NASA Glenn Research Center has developed
facilities and methods for long-term ground testing
of polymer films to evaluate space environmental
VUV radiation effects. VUV exposure can also be
used as part of sequential simulated space
environmental exposures to determine combined
damaging effects. This paper will describe the
effects of VUV on polymer films and the necessity
for ground testing. Testing practices used at Glenn
Research Center for VUV exposure testing will be
described including characterization of the VUV
radiation source used, calibration procedures
traceable to the National Institute of Standards
and Technology (NIST), and testing techniques for
VUV exposure of polymer surfaces.

Introduction

Polymer films are often used for spacecraft
thermal control as many possess the necessary
optical properties (solar absorptance and thermal
emittance), flexibility, and ease of fabrication and

installation. However, polymer materials can
experience degradation in optical and mechanical
properties when exposed to the space
environment for long periods of time. 1'2 Damaging
space environmental effects include solar
ultraviolet radiation, solar flare x-rays, electron and
proton radiation, atomic oxygen for low Earth orbit
missions, and temperature effects. Teflon FEP
(fluorinated ethylene propylene), a common
thermal control material, has been observed to
become brittle upon long-term space exposure as
observed on the Hubble Space Telescope (HST). 2
Degradation of FEP on HST was found to increase
with increasing dose of electrons, protons,
ultraviolet and x-ray radiation along with thermal
cycling. 2 While the typical polymer film thickness
for thermal control materials ranges between 50
and 127 #m, trends continue toward use of
large ultra-lightweight, inflatable or deployable
structures requiring space-facing thin polymer
films of 25 #m or less such as the sunshield
proposed for use on the Next Generation Space
Telescope. 3 These large area ultra-lightweight
components will rely on the structural integrity of
polymer films that are much thinner than have
typically been used in the past for thermal control.
Thinner materials will be more susceptible to
radiation damage such as that provided by
electrons, vacuum ultraviolet (VUV), and soft x-
rays, because these radiation species can deposit
significantly more energy in the polymer surface
and deposited energy diminishes through the bulk
of the material.4' 5 For thinner polymers, a larger
fraction of the bulk thickness would then be
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affected by deposited radiation. Some very large thus high enough energies to break bonds in
proposed spacecraft components, such as organic molecules. 7 Evidence of degradation and
sunshields and inflatable structures, will require embrittlement of Teflon FEP has been observed

the thin polymer to be seamed, folded, and both in the s0Pace environment, 8, 9 and in the
durable to stresses imposed by the deployed laboratory. 8' The measured thickness of
configuration. 3 These demands pose a number embrittlement in Teflon FEP was 1 _m for material
challenges in the area of space environmentally exposed to the space environment on the wake
durable polymerfilms, side of the Long Duration Exposure Facility

(LDEF) spacecraft where atomic oxygen was
In order to qualify new polymers, and even thinner negligible. ° Exposure of Teflon FEP in the
versions of commonly used polymers, for long- laboratory to 124 nm-VUV radiation of
term space use, all aspects of the space approximately 8800 equivalent sun hours (ESH)
environment must be considered. These resulted in formation of an embrittled layer similar
environmental exposure factors include solar to that observed on the LDEF. 8 Another
ultraviolet radiation, solar flare x-ray radiation, observation indicated that space-induced
electron and proton trapped particle radiation, embrittlement and laboratory VUV-induced
operational temperatures or orbital temperature embrittlement can be as deep as 20 _m for Teflon
cycles, and atomic oxygen for the case of low FEP. 9 Laboratory exposures of polyimides of
Earth orbit missions. While the ideal test would 12.5-25 _m thickness to only approximately 1000
simulate all effects to the same level of equivalent sun hours of VUV radiation have been
acceleration in the same facility, it is not possible observed to cause decreases in spectral
to perfectly replicate all aspects of the space reflectance in the ultraviolet to visible wavelength
environment in this way. Sequential testing is region. 11 Based on the correlation between
often used where it is not convenient or possible to space environment-induced polymer properties
produce simultaneous effects in the same facility, degradation and similar effects observed upon
Also, exposure to single environmental conditions VUV exposure in the laboratory, it is apparent that
is useful for screening, and for determining the VUV testing is an important part of assessing
role of individual environments in causing polymer in-space performance for polymer materials.
film performance degradation. Exposure to

simulated solar ultraviolet radiation in the vacuum As a pre-requisite to damaging a polymer material,
ultraviolet (VUV)portion of the spectrum has been radiation must be absorbed by or deposited into
conducted at NASA Glenn Research Center to the polymer. 12 Therefore, in order to simulate
determine the individual effect of VUV radiation on effects of the space radiation environment on
polymers, and as part of larger test programs polymers, it is important to know the wavelengths
where VUV exposure is used in sequential or energies that are absorbed or deposited,
radiation exposure tests. This paper will describe and the depth of penetration of the radiation
how VUV radiation can affect the properties of being absorbed. In the VUV wavelength
polymer films, and the practices used by NASA region, absorption measurements on Teflon
Glenn Research Center for conducting long- polytetrafluoroethylene (PTFE), very closely
duration VUV radiation durability testing, related chemically to Teflon FEP, have indicated a

strongly absorbing peak centered at approximately
VUV Effects on Polymers 160 nm wavelength, with a weak absorption tail on

the higher wavelength side (above approximately
The extraterrestrial solar spectrum contains 180 nm), and a rising continuous absorption on
ultraviolet (UV)radiation of wavelengths extending the lower wavelength side (below approximately
down to the Lyman-alpha emissions of hydrogen 130 nm). _3 Spectral transmittance measurements
at 121 nm.6 The high-energy portion of the for various thicknesses of Teflon FEP were
ultraviolet spectrum containing wavelengths below measured by the National Institute for Standards
approximately 200 nm is generally referred to as and Technology (NIST)and are shown in Figure 1.
vacuum ultraviolet (VUV) radiation. Polymer It is evident from this figure that nearly all of the
surfaces on spacecraft are particularly vulnerable VUV radiation below 200 nm is absorbed within a
to degradation due to incident solar radiation thickness of 127 _m. Teflon of one tenth this
which contains short enough wavelengths and thickness, 12.7 _m, absorbs nearly all VUV below
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Figure 1" Spectral transmittance of Teflon FEP
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Figure 2: Transmittance as a function of FEP
thickness.

170 nm wavelength, but is still at least 50%

transmitting down to 180 nm wavelength.
Transmittance as a function of FEP thickness for

specific wavelengths is shown in Figure 2.

For wavelengths of 200 nm and below, there is
significantly greater attenuation of the VUV
radiation for the same thickness of FEP as

compared to longer wavelengths. This means that
the shorter wavelength VUV radiation is more

absorbed by thin surface layers as compared to
longer wavelengths.

It is generally thought that most polymers absorb
approximately 95% of incident radiation below

250 nm within 0.3 gm from the surface. 12

However, based on the data shown in Figures 1
and 2, Teflon FEP is an exception as it transmits

ultraviolet radiation to a much greater depth than

0.3 gm. On the other hand, polyimides such as
Kapton, also commonly used in spacecraft thermal

control materials, absorb at least 75% of photons

of 193 nm wavelength within less than 0.1 gm
from the surface. 12

Characterization Of VUV Source

The VUV exposure facilities at NASA Glenn

Research Center use deuterium lamps with
magnesium fluoride windows (Hamamatsu model
L879-01 and its recent replacement, model

L7293) which provide a continuum spectral output
between approximately 115 and 400 nm.

Calibration of one L879-01 lamp and two

Hamamatsu L7293 lamps has been conducted by

NIST. Irradiance, known as the radiant energy
incident on a surface per unit time per area per
bandwidth (J/cm2/nm/s or W/cm2/nm), was
measured using a detector with a circular area

6 mm in diameter. Sources were operated in a

container purged with argon at atmospheric
pressure. Argon will not absorb VUV wavelengths.
For each peak wavelength at which data were
obtained, the bandwidth over which radiation was

detected was approximately 1.6 nm. The

irradiance spectra for these lamps measured using
a 25.4 cm distance from the source to the detector

are shown in Figure 3 as compared to the air
mass zero (AM0) solar spectral irradiance. TM As

shown in Figure 3, these lamps can provide many
times the sun's irradiance for wavelengths of

160 nm and below, and, therefore, they can
facilitate accelerated testing. However, at
wavelengths above approximately 160 nm, the
deuterium lamp spectrum shows a decreased

radiation output with increasing wavelength,
whereas AM0 solar irradiance continues to

increase with increasing wavelength. Despite the
fact that the spectral shape of the lamp does not

match that of the sun, the benefit of this lamp over
single-wavelength VUV sources is the broad

spectral output. Because wavelength dependence

of VUV damage to polymers is not well known, it is
important that the full spectrum be represented
during testing.
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NIST also obtained irradiance at 270 nm as a
function of source-to-detector distance for two

L7293 deuterium lamps as shown in Figure 4.
The source-to-detector distance is defined as the

distance between the center of the lamp body
where discharge is initiated and the detector
surface.

AM0 Solar Irradiance

equation in Figure 4, the lamp output follows a
function of 1/(dist) z_ for the distances measured.

It is also important to know the variation of the

lamp irradiance over a desired exposure area to
determine useable sample area. Irradiance as a

function of distance across the illumination area is
given for an L879-01 lamp in Figure 5a and 5b for
four on-axis source-to-detector distances.
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Figure 3: Deuterium lamp and solar air mass
zero (AMO) spectral irradiance
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Figure 4: Irradiance as a function of on-axis

distance between the VUV source and detector.

120

Because the lamps have a projecting tube of
approximately 5 cm length and 1.5 cm diameter
extending from the lamp body, and the VUV
transmitting magnesium fluoride window is located

at the end of the projecting tube, these lamps do
not function as point sources. As shown in the
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(b)
Figure 5: Irradiance of deuterium lamp at 182 nm
across illumination area at various on-axis source
to detector distances for direction of detector travel

(a) parallel to lamp-body axis and (b) perpendicular
to lamp-body axis.

2O

These data were measured in air using a VUV
sensitive photomultiplier tube (PMT) and a narrow

bandpass filter with a peak wavelength of 182 nm
and a detector area of approximately 19 mm wide
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by 17 mm high. As shown in Figures 5a and 5b,
the lamps produce two peaks of irrad ance across
the detector travel distance. For a given on-axis
source-to-detector distance, the distance between
the two peak irradiance values was averaged for
the case of detector travel parallel and
perpendicular to the lamp-body axis to define the
diameter of illumination. The diameter of
illumination as a function on on-axis source to
detector distance is shown in Figure 6. The data
indicate that at a distance of 25.4 cm from source
(center of lamp body) to sample surface, the
useable exposure diameter is approximately
3.25 cm, whereas at a distance of 40.6 cm, the
useable exposure diameter increases to 5.8 cm.

6

+

!5
+4
-|
Z

3

24 26 28 30 32 34 36 38 40 42

Source-to-Sample Distance (era)

Figure 6: VUV illumination diameter as a function
of distance between the source and sample plane.

Methods And Considerations For VUV Exposure
Testing

Deuterium lamps used for VUV exposure of
materials at GRC are calibrated with cesium iodide
(Csl) phototubes with magnesium fluoride
windows which are sensitive over the wavelength
range of 115-200 nm (Hamamatsu Model R1187),
where the deuterium lamps have their most
significant output. The phototubes themselves are
first calibrated in the GRC facility by measuring the
signal (in amps) from a NIST-calibrated deuterium
lamp with a magnesium fluoride window measured
at the same distance. The spectral irradiance
curve for the NIST-calibration data is integrated in
the sensitive wavelength range of the detector,
115-200 nm, to obtain intensity, or W/cm 2 in that
wavelength range. Then the intensity/signal ratio

W 2(in units of /cm/A) for that detector can be
multiplied by lamp signal (in A) from any

"unknown" lamp to obtain 115-200 nm intensity
(in W/cm 2) for that lamp. Because degradation is
not usually known as a function of intensity, VUV
intensities for polymer exposures are typically
limited to no more than 3-5 times that of the sun in
the 115-200 nm wavelength range. Also, because
output varies from lamp to lamp, the source-to-
sample distance to achieve the desired intensity
will vary, thus necessitating calibration of each
lamp used.

It is important to know how much degradation in
lamp output occurs as a function of operating time
in a test facility. Contaminants in a vacuum
system can build up or "fix" on the lamp's
magnesium fluoride windows significantly
decreasing the lamp output over time. Use of
deuterium lamps with an oil diffusion-pumped
vacuum system without a cryogenic trap produced
greater than one percent decrease per hour in the
VUV transmittance of magnesium fluoride
windows. Replacing the diffusion pump with a
cryogenic pump has reduced the lamp output
degradation in this facility by approximately fifty
percent. Recent testing at NASA GRC has shown
degradation in the measured 115-200 nm VUV
intensity of 0.7% per hour. Cleaning the lamps'
magnesium fluoride windows with 6 micrometer
particle size diamond polishing compound (Metadi
from Buehler Inc.) followed by an alcohol rinse and
drying with nitrogen gas was found to restore the
lamp VUV output to near-new values. This
procedure has been used for VUV lamp
maintenance approximately every 100 operating
hours.

When VUV deuterium lamps were used in
conjunction with atomic oxygen exposure, VUV
output was well-maintained as the atomic oxygen
removed organic contaminants before they built up
on the lamp window. In one case, a lamp used for
over 500 hours along with atomic oxygen showed
a decrease in VUV output of less than 10%.

Although the deuterium lamps are intended to
provide radiation which cannot be transmitted in
air, their lifetime is short when operated fully inside
of a vacuum chamber. A set of 16 deuterium
lamps was found to have an average life of no
more than 75 hours when operated with the lamp
fully inside of a vacuum chamber, although the
reasons for early failure were not able to be
conclusively determined. Alternative to locating
the whole lamp in vacuum, the long projection-
tube can be pushed through an o-ring
compression fitting allowing the body of the lamp

NASA/TM--2002-211337 5



to be outside of vacuum with just the projection-
tube inside the vacuum chamber. Lamps used in
this way have remained functional for at least
several hundred operating hours.

Modifications to the VUV exposure facility at
NASA GRC have incorporated many of these
lessons-learned in order to maximize exposure
time and minimize maintenance down-time. The
facility is a cryopumped vacuum chamber which
achieves a system pressure of approximately 5 x
10.6 torr. It contains four individual VUV exposure
compartments in vacuum separated by water-
cooled copper walls to minimize VUV radiation
and any sample contamination cross interactions
between compartments. Each VUV exposure
compartment contains a VUV deuterium lamp with
a magnesium fluoride window, a motor-controlled
sample stage coupled with a moveable Csl VUV
phototube, and two thermocouples for temperature
measurement. Figure 7a shows the vacuum
chamber and exterior equipment. As shown in the
figure, each VUV lamp is located at the top of the
chamber with its projection-tube pushed through
an o-ring compression fitting. The lamp
assemblies are located on ports which can be
isolated from the rest of the vacuum chamber
permitting maintenance or replacement of the
lamps without breaking vacuum in the main
chamber where the samples are located. Figure
7b shows a view of two of the four interior VUV
exposure compartments including the moveable
sample stages and detector holders. When the
motor moves the sample holder/detector assembly
in the upward direction, the detector "arm" is
rotated to stow the detector under a shield
blocking VUV exposure of the detector. This is the
sample exposure configuration. When the sample
stage/detector assembly is moved downward,
the detector is rotated and repositioned over
the samples. This is the VUV lamp calibration
configuration. The moveable sample
stage/detector assembly facilitates repositioning of
samples closer to the VUV lamps as the lamp
output degrades over time, thus maintaining
desired VUV intensity over time. When the
sample stage reaches the top limit of its position,
further degradation in VUV intensity below the
desired level requires interruption of the VUV
exposure for lamp maintenance. Computer
control of this facility provides for 24-hour
operation, automated lamp calibration and sample
position adjustment, and data acquisition for VUV
lamp intensity and sample temperature over the
course of the VUV exposure time. Further details

(a)

(b)

Figure 7" NASA GRC VUV exposure facility
(a) overview showing exterior components, and
(b) view of two of the four VUV exposure
compartments through access port window.
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on the design and features of this facility are given
in Reference 15.

Summary

Because of the significant effect that VUV

radiation can cause in the mechanical, chemical,

and optical properties of polymer materials, it is

important that VUV radiation exposure testing be
part of comprehensive test programs determining

overall space environmental effects on polymer
surfaces. Because the wavelength sensitivity of
VUV damage is not well known, using a broad-

spectrum VUV source such as a deuterium lamp
with a magnesium fluoride window can assure that

the damaging VUV wavelengths are present
during exposure. Characterization of deuterium

lamps has been obtained through the National

Institute of Standards and Technology and through

measurements at NASA GRC. Spectral irradiance

measurements show that from approximately 115
to 160 nm, deuterium lamp irradiance can be

many times that of air mass zero solar irradiance,

and as wavelength increases above approximately
160 nm, deuterium lamp irradiance decreases in
comparison to the sun. Because the deuterium

lamps used contain a projection-tube, they do not
function as point sources. Irradiance rather

follows a function of 1/(dist) 25. The useable

illumination area for these lamps is limited by the
size of the projection-tube's magnesium fluoride
end-window, the only area through which VUV

radiation is transmitted. Vacuum system
contamination can cause significant degradation in

lamp output over time, but the magnesium fluoride
end-windows can be cleaned to restore output.
Oil-free pumping systems are recommended to

reduce the rate of lamp output degradation. Lamp
lifetime is significantly reduced when lamps are
installed inside vacuum systems. When lamps are

operated with their projection-tubes pushed
through o-ring compression fittings, useful lifetime
is substantially increased. NASA GRC has

re-designed their VUV exposure facility to
incorporate lessons-learned and to maximize VUV

exposure time by minimizing maintenance
downtime.

.
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