Parallel Processing of Adaptive Meshes with Load Balancing

Sajal K. Das and Danicl J. Harvey Rupak Biswas
Dept. of Computer Science & Engineering NASA Ames Research Center
The University of Texas at Arlington Mail Stop T27A-1
Arlington, TX 76019 ' Moffett Field, CA 94035
{das, harvey}@cse.uta.edu rbiswas@nas.nasa.gov
Abstract

Many scientific applications involve grids that lack a uniform underlying structure. These applica-
tions arc often also dynamic in nature in that the grid structure significantly changes between successive
phases of execution. In parallel computing environments, mesh adaptation of unstructured grids through
selective refinement/coarsening has proven to be an effective approach. However, achicving lo ad balance
while minimizing interprocessor communication and redistribution costs is a difficult problem. Tradi-
tional dynamic load balancers are mostly inadequate because they lack a global view of system loads
across processors. In this paper, we propose a novel and general-purpose load balancer that utilizes
symmetric broadcast networks (SBN) as the underlying communication topology, and compare its per-
formance with a successful global load balancing environment, called PLUM, specifically created to
handle adaptive unstructured applications. Our experimental results on an [BM SP2 demonstrate that
the SBN-based load balancer achieves lower redistribution costs than that under PLUM by overlapping
processing and data migration.

Key words: Dynamic load balancing, cxperimental study, IBM SP2, job migration and redistribution, sym-
melric broadcast networks, unstructured mesh adaptation

1 Introduction

Mesh partitioning is @ common approach to parallelizc many scientifi ¢ applications which are gencrally
modeled discretely using a mesh (or grid) of vertices and edges. For maximum cffi ciency, the computational
workloads on the processors have to be balanced and the number of edges that are cut (and hence the overall
interprocessor communication cost at runtime) needs to be minimized. For this purpose, each vertex is
usually assigned a weight that indicates the amount of computation required to process it. Similarly, each
edge in the mesh has an associated weight indicating the amount of interaction between adjacent vertices.
To achieve load balance dynamically, portions of the mesh have to be migrated among processors during the
Course of a computation. Thus, in a multiprocessing environment, the verteX weight contains an additional
component that models the cost of redistributing the vertex from ONc processor to another. These weights
are used to minimize the data redistribution cost during the remapping phase.

With adaptive meshes, the grid topology changes during the course of a computation. Traditionally, this
class of problems is processed by load balancing the mesh after cach adaptation. A number of partitioners
designed for this purpose has been proposed in the literaturc [8, 11, 14,17, 21]. A majority of the success-
ful partitioners are based on a multilevel approach that has proven to be extremely effective in producing
good partitions at reasonable cost. In a multilevel scheme, the grid is first contracted to a small number of
vertices and edges, the coarsened grid is next partitioned, and is then fi nally refi ned to the original using the
Kemighan-Lin replacement algorithm [12]. However, other partitioning methods have also been developed,
and excellent surveys are provided in |1, 191



Although several dynamic load balancers have been proposed for multiprocessor platforms {3, 9, 13, 19,
201, most of them are inadequate for adaptive mesh applications because they lack a global view of system
loads across processors. Furthermore, job migration in such approaches does not take into account the
structure of the adaptive grid. This motivates our present work. In this paper, we overcome these defi ciencics
by proposing a novel, dynamic load balancer which makes use of a symmetric broadcast network (SBN) as
a robust and topology-independent communication pattern among processors [6]. Section 2 describes this
SBN-based load balancing algorithm. Our earlier experiments with synthetic loads [5] have demonstrated
that such an SBN strategy achieves superior performance when compared to other popular techniques such
as Random, Gradient, Receiver Initiated, Sender Initiated, and Adaptive Contracting.

The SBN-based load balancing algorithm provides an architecture-independent solution in that it gen-
erates portable codes which can be run without modifi cation on any paraliel/distributed platform. This is
because typical communication patterns such as mesh, hypercube, tree, and torus can be embedded effi -
ciently within the SBN topology. It is true that the proposed load balancing scheme in its current form may
not be optimal for a given architecture; however, it can be made so by fi ne tuning the algorithm and property
mapping it on the machine by utilizing its hardware specifi cations,

Recently, experiments that measure the effectiveness of load balancing adaptive meshes have been pre-
sented in [2, 16] using an automatic portable environment, called PLUM [15], developed at NASA Ames
Resecarch Center. PLUM uses a novel strategy for load balancing which consists of two separate phases:
repartitioning and remapping. A brief overview of PLUM, and a description of its salient differences with
the SBN-based load balancer are given in Section 3.

We have conducted several experiments on an IBM SP2 to compare the performance of the SBN-based
load balancer to that of PLUM. The results, presented in Section 4, demonstrate that the SBN-based al-
gorithm achieves excellent load balance, and that the redistribution cost is signifi cantly lower than those
obtained under PLUM when using two state-of-the-art partitioners, PMeTiS [11] and DMeTiS [17]. How-
ever, the edge cut percentages are higher than those for PMeTiS, indicating that the SBN strategy reduces the
redistribution cost at the expense of greater communication. In many adaptive mesh applications where the
data redistribution cost dominates the processing and communication cost [15, 16, 18]. this is an acceptable
trade-off.

2 SBN-Based Load Balancer

Our proposed SBN-based load balancer, targeted for adaptive miesh computations, can be classifi ed as:
(1) adaptive, since processing aufomatically adjusts to the allocated workload; (ii) decentralized, since load
balancing can bc initiated by any processor in the system and is shared by all; (iii) stable, since excessive
load balancing traffi ¢ does not burden the network; and (iv) effective, since systemn performance does not
degrade due o load balancing activitics. In this section, we give the defi nition of an SBN, and present
the SBN-based load balancing algorithm. We also describe a pre-partitioner that can optionally be used to
assign subdomains to the individual processors before each adaptation step.

2.1 SBN Definition

A symmetric broadcast nerwork (SBN), fi rst presented in [6], defi nes a (logical or physical) communication
pattern among the P processors in a multicomputer system. It is defi ned as follows,

Definition 1 An SBN(d) of dimension d > 0, is a (d + 1)-stage interconnection network with P = 2¢
processors in each stage, and can be constructed recursively. A single processor forms the basis network
SBN(0). For d > 0, SBN(d) is obtained from a pair of SBN(d — 1)s by (i) relabeling the processors in the
second SBN(d — 1) from 241 10 2% — 1; (ii) incrementing the identifiers of the existing stages by one and
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creating a new stage 0 containing processors 0 1o 2@ _1; (iii) connecting processor i in stage 0 1o processor
7 = (i + P/2) mod P of stage 1, and (iv) connecting processor j in stage I to the processor in stage 2(f
present) which was the stage 0 SUccessor of processor  in SBN(d — 1).

Fig. 1(a) illustrates how an SBN(2) is recursively constructed from two SBN(1)s, while Fig. 1(b) shows
the construction of an SBN(3) from two SBN(2)s.

Stage O Stage 1 Stage 0 Stage 1 Stage 2

(@ L)

Figure 1: (a) Construction of SBN(2) from a pair of SBN(1)s, and (b) SBN(3) from a pair of SBN(2)s. The
new connections are shown by solid lines and the original connections by dashed lines.

Note that an SBN(d) defi nes unique communication patterns (or broadcast trees) among the processors
in the network. In other words, for any root processor z at stage 0, where 0 < z < P, there exists a unique
broadcast tree T, of height d = log P such that each of the 24 processors appears exactly once. Furthermore,
the SBN communication pattern for z can be derived from the template broadcast tree with processor 0 as
the source [5]. The predecessor and successors of each processor arc also uniquely defined by specifying

the root and the communication stage. Finally, SBN communication patterns can be effi ciently cmbedded
into different parallel architectures in a topology-independent manner 4,71

2.2 Proposed Load Balancing Algorithm

Our SBN-based load balancer adapts its behavior according to the system load. Under heavy (light) load,
the balancing activity is primarily initiated by processors that are lightly (heavily) loaded, and is controlled
by two system load thresholds, MinTh and MaxTh. Performance is influenced by the choice of values for
MinTh and MaxTh. If MinTh is too small, a processor could become idle before recciving additional jobs
for processing. On the other hand, a large value of MinTh could trigger unnecessary balancing activity.
Similarly, if MaxTh is too small, an excessive number of jobs will be migrated; if too large, jobs will not be
adequately migrated under light system loads. Moreover, once there is suffi cient load in the system, very
little load balancing activity should be required.

The load balancer processes two types of messages: (i) load balancing messages and (ii) job distribution
messages. A load balancing message is broadcast when a processor p determines that its weighted queue
length QWgt(p) < MinTh. Such messages are also broadcast if QWgt (p) > MaxTh, orif distribution of ¢xcess
jobs causes other processors to exceed MaxTh. As the load balancing mesSage passes from onc processor to
another, the average weighted system load, WSysLL, is computed.
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Job distribution messages are used to distribute jobs when QWgt(p) > MaxTh. They are also used to
complete the load balancing process. After the WSysLL value is calculated, a distribution message is broad-
cast through the SBN so that jobs are routed to lightly-loaded processors and the systém control variables
(MinTh, MaxTh, and WSysLL) can be globally updated. As a result, all processor workloads are balanced. To
reduce message traffi ¢, a processor does not initiate additional load balancing activity until all the previous
messages that have passed through it have been completely processed.

Note that it is possible to encounter a situation when there are so many jobs in the system that at least one
processor will have its MaxTh value exceeded. This would lead to thrashing, where jobs are unnecessarily
routed back and forth among processors. To prevent this situation, if a processor at the last SBN stage
determines that its MaxTh has exceeded, it triggers a load balancing message instead of distributing the
excess load. As aresult, WSysLL and MaxTh are globally recomputed.

Let us now discuss the various parameters and implementation details involved in the SBN-based load
balancer. These parameters are necessary to provide a global view of the system and make the SBN approach
effective for adaptive mesh applications.

2.2.1 Weighted Queue Length and System Load

The queue length (computation time) of a processor p is not an accurate estimate of the amount of time
required to complete its work, particularly in applications where the mesh is adapted. To achieve a better
load balance, we defi ne a new metric called weighted queue length, QWgt(p), that also considers the com-
munication and redistribution costs. Let Wgt” be the computational cost to process a vertex v, Commy be the
communication cost to interact with the vertices adjacent to » but whose data sets arc not local to p, and
Remap;, be the redistribution cost to copy the data set for v to p from another processor. Then

Qugt{p) = Z (Wgt” + Comm;, + Remap,).

v assigned to p

Clearly, if the data set for v is already assigned to p, no redistribution cost is incurred, i.e., Remapy, = 0.
Similarly, if the data sets of all the vertices adjacent to v are already assigned to p, there is no communication
cost, i.c., Commy = 0.

The weighted system load, WSysLL, is computed as

1 P
WSysLL = {— W )
ys 7 p; Qugt (p)
where P is the total number of processors used.

2.2.2 Prioritized Vertex Selection

When selecting vertices to be processed, the SBN-based load balancer utilizes the underlying structure of the
adaptive mesh to defer execution of boundary vertices as long as possible since they could be migrated for
more effi cient execution. Thus, selection of the queued vertex to be processed next is based on the goal that
the overall edge cut of the adapted mesh is minimized. A priority min-queuc is maintained for this purpose,
where the priority of a vertex v in processor p is given by (Commy + Remapp)/Wgt”. Therefore, vertices
with no communication and redistribution costs are processed fi rst, while those with high communication
or redistribution overhead relative to their computational weight are executed last. Conceptually, internal
vertices arc processed before those on partition boundaries.



2.2.3 Differential Edge Cut

To balance the system load among processors, an optimal policy for vertex migration needs to be established.
When vertices are being moved between processors, assume that processor p is about to reassign some of
its vertices to another processor . The SBN-based load balancer running on p randomly picks a subset
of vertices from those queued locally. For the experiments reported in this paper, picking a subset of ten
vertices worked best. This random procedure reduces the vertex selection overhead since a sorted list of
vertices (by migration priority) does not have to be maintained. The motivation was not to fi nd the absolute
best vertex to migrate, but rather to identify a vertex that would improve the edge cut as well as the load
balance when moved.
For each selected vertex v, the differential edge cut', ACut(v), is calculated as

ACut(v) = Remapy — Remap, + Comm, — Commy.

The parameters Remap; and Remap’q’ will either be zero or equal to the redistribution cost of moving the data
for v from p to q. As an example, letp = 3 and ¢ = 6. Assuming that the data for v reside on p = 1 and its
redistribution cost is 8, then Remap}, = Remap) = 8. On the other hand, if the data for v resides on p = 3,
then Remapy = 0 but Remapy = 8.

A negative ACut(v) value indicates a reduction in communication and redistribution costs if v is mi-
grated from p to ¢: hence, migration of vertices with the largest absolute reduction in these costs is favored.
Once the differential edge cut values are calculated for all the randomly chosen vertices, the vertex v/ with
the smallest value is chosen for migration. Next, following a breadth-fi rst search, the SBN load balancer
selects the vertices adjacent to v' that are also queued locally for processing on p. The breadth-fi rst search
stops either when no adjacent vertices are queued for local processing at p, or if a suffi cient number of ver-
tices have been found for migration. If more work needs to be transferred out of p, another subset of vertices
are randomly chosen and the procedure is repeated. This migration policy therefore strives to maintain or
improve the cut size during the execution of the load hatancing algorithm.

2.2.4 Data Redistribution Policy

The redistribution of data is performed in a lazy manner. In other words, the data set for a vertex v in
processor p is not moved to another processor ¢ until the latter is about to execute v (¢ notifi es p when this
happens). Furthermore, the data sets of all vertices adjacent to v that are also assigned to g are migrated
with the data set of v. This policy greatly reduces the redistribution and communication costs by avoiding
multiple data migrations, and having resident on ¢ all adjacent vertices of v while v is being processed by gq.
Data migration is implemented by broadcasting a job distribution message when a vertex is about to
be processed and its corresponding data set is not resident on the local processor. A locate-message is
then broadcast to indicate the new location of the data set, so that all processors can update their records.
This policy is expected to maximize the number of adjacent vertices that are local when a given vertex is
processed. Hence, by considering the underlying mesh structure, the communication overhead is reduced.

2.3 An Illustrative Example

Fig. 2 illustrates the SBN-based load balancer just described. It shows a mesh of 16 vertices and 20 edges
that is partitioned among four processors, PO through P3. For each vertex, the processing and redistribution
costs are represented as a two-tuple. Adjacent vertices are connected by edges which are labeled with the
associated communication cost, provided the data sets for the two vertices reside on different processors
when cither one is processed.

TWe are deviating from the usual defi nition of edge cut to account for the dynamic nature of the SBN load balancer.
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Figure 2: An example to illustrate the SBN-based load balancer.

Table 1 shows the Wgt”, Commy, and Remap) values for each vertex v, under the cument vertex-1o-
processor assignment. We assume that the data for vertex 7 is resident on P1, the data for vertex 10 is on
P2, while the data for vertices 9, 11, and 16, are resident on P0. The data sets for the remaining vertices
reside on the corresponding processor to which they are assigned. Table 1 also shows the QWgt(p) values
for each processor p, as defi ned is Section 2.2.1. The weighted system load, WSysLL, for this example is 24.

Table 1: Various Costs for Each Vertex v, and the Weighted Queue Length for Each Processor p

Processor p PO Pl P2 P3

verlex v 0 13 14 15| 2 1 s 6 9{3 4 7 8 II 12 16
Wgt? 2 1 1 2 1 t 3 112 1 4 1 3 1 1

Commy, 0 3 5 2 6 6 5(3 o0 12 0 3 3 3

Remapy 1 0 0 0 o]0 o o 210 0 7 0 1 0 1

e | 7 [ » s ]

If we assume that MinTh = 10, processor P1 is clearly underloaded. According to the SBN comnunica-
tion pattern shown in Fig. 1(a), P1 sends a load balancing request to P3. Upon receiving it, P3 determines
which of its vertices to transfer to P1 so that their loads will be equidistributed. Let us step through the
process of selecting the fi rst vertex to migrate, using the differential edge cut described in Section 2.2.3. The
ACut(v) values of the vertices v currently assigned to P3 are shown in Table 2. Vertex 7 is found to be
optimal for migration to P1, yielding QWgt(P3) = 23 and QWgt (1) = 18. The new value of WSysLL is

Table 2: Differential Edge Cut for Each Vertex v in Processor P3 if Migrated to P1

{I‘Yﬁ:rtexv~ ” 3 4 7 8 11 12 16 JJ
Remapl, 12 0 3 11 1
ol B
Comm, 30 12 0 3 3 3

[Acesw) [ ¢ 3 -8 9 0 5 -2




22, which reflects a reduction in the total system load. For this example, additional vertex migration is not
required.

2.4 SBN Pre-Partitioner

The SBN-based load balancing algorithm is designed to run dynamically without the need for a separate
partitioning process. This is a signifi cant advantage over existing approaches where processing is temporar-
ily suspended when processor loads become unbalanced. During the suspension, vertices are reassigned and
the corresponding data sets are remapped. The asynchronous nature of the SBN strategy also allows the
computational, communication, and redistribution phases to be overlapped, leading to further reductions in
the overall execution time. Traditional methods [15, 19, 20] cannot achieve this overlap easily because these
phases are processed sequentially. _

To test the behavior of the SBN technique, we implemented a pre-partitioner which can optionally run
prior to each mesh adaptation phase. We wanted to determine whether running a front-end partitioner has
iy signifi cant bencfi ( on the resulling communication and/or redistribution overhead. This pre-partitioner
is unique in (hat it partitions based on QWgt(p) values, which take into considcration all three factors of
comiputation, communication, and redistribution. This is a stronger requirement than that considered in

almost all other approaches [8, 11, 17, 21], where the mesh is partitioned to equalize the total computational

cost while minimizing the total number of cut edges. Such méthods could result in signifi cant idle time

during processing if only a few processors incurred most of the communication overhead.

The pre-partitioner differs from the partitioning capabilities inherent in the SBN-based load balancer in
that multiple iterations are performed to fi nd an optimal P-way partition. Here, an iferation is defi ned as
a sequence of vertex reassignments from one processor to another, During an iteration, each vertex can be
reassigned at most once. Reassignments arc made so that vertices in processor p with QWgt(p) > WSysLL
are assigned to the processor ¢ with the minimum QWgt(g) value. Each vertex to be reassigned is adjacent

to a random subset of vertices chosen from and belonging to g. First, the ACut(v) values arc computed
for all adjacent vertices v assigned to processors other than g. As described in Section 2.2.3, the non-local
adjacent vertex v’ with the smallest ACut(v') is added to the set of vertices assigned to g. In addition, a
breadth-fi rst search is performed on the vertices adjacent to of that are not assigned to ¢ but to p such that
QWgt(p) > WSysLL. These vertices are also assigned to g.

The pre-partitioner is initially set to execute a fi xed number of iterations (four for the experiments in
this paper). However, additional iterations are performed if a new minimum WSysLL is achieved. At the
end of each iteration, the load imbalance factor QWgt(r) /WSysLL for the processor r with the largest valuc
of QWgt(r) is computed. If this factor is greater than a specifi ed threshold (1.75 in our experiments), the
Kernighan-Lin refi nement procedure [12] is invoked (o further reduce WSysLL. Note that the data associ-
ated with each vertex is not migrated after the pre-partitioning process is completed. Instead, actual data
movement takes place during mesh adaptation as vertices are processed with SBN load balancing in effect.

3 PLUM Framework

We experimentally compare the performance of our SBN-based load balancer with PLUM [15], a portable
and paralle load balancing framework for adaptive unstructured grids. In PLUM, when processor workloads
become unbalanced due to adaptation, the mesh is repartitioned and the subgrids reassigned to the proces-
sors. If the estimated remapping cost exceeds the expected computational gain, execution continues without
remapping. Otherwise, the grid is remapped among the processors before the computation is resumed. For
the sake of completeness, a brief description of the important features of PLUM is given below.



3.1 Reusing the Initial Graph

PLUM repeatedly utilizes the initial mesh for the purpose of load balancing. The computational weight,
Wgt?, of a vertex v in the corresponding dual graph, is the number of leaf elements in the refi nement tree
because only those clements with no children participate in the numerical computation. The redistribution
cost, Remap?, is the total number of elements in the refinement tree because all descendents of the root
element must be moved from one partition to another when the load is to be rebalanced. Lastly, the commu-
nication cost, Comm?, of a dual graph edge e, is set to the number of corresponding faces in the computational
mesh. These weights are used to determine an optimal partitioning that achieves balanced workloads among
processors, to minimize the resulting communication, and to optimize the data movement cost.

3.2 Parallel Mesh Repartitioning

PLUM can use any general-purpose partitioner to rebalance processor workloads after a mesh adaptation.
In [2], PMeTiS [11] and DMeTiS [17] were used. Both partitioners are parallelized and highly optimized for
maximum effi ciency, and have proven effective for adaptive grids. DMeTiS is a diffusive scheme designed
to modify existing partitions, while PMeTiS is a global from-scratch partitioner that makes no assumptions
on how the mesh is initially distributed. Both are multilevel algorithms that operate in three phases: (i) a
coarsening phase, where the original mesh is reduced by collapsing adjacent vertices to a suffi ciently small
mesh; (ii) a partitioning phase, where the coarsened mesh workload is balanced among the processors and
the edge cut size is minimized, and (iii) a projection phase, where the partitioned mesh is gradually restored
to its original size.

DMeTiS and PMeTiS differ mainly in how they perform the partitioning phase. DMeTiS uses a di-
rected 2-norm minimization algorithm [10] which provides a global picture of the existing mesh. Vertices
in heavily-loaded partitions that are adjacent to neighbors in more lightly-loaded partitions are randomly
visited. The diffusion process computes a flow value for possible reassignment to neighboring partitions. If
the flow value relative to the vertex weight is high, the vertex is reassigned. This process continues until the
partition is balanced or no further progress can be made. If a balanced partitioning cannot be achieved at
the current level of the mesh, it is projected to the next fi ner level and the partitioning process is repeated.
PMeTiS, on the other hand, utilizes a greedy recursive bisection algorithm to create a partition of the graph
from scratch. The time complexity for both algorithms is minimal since the partitioning is performed on a
coarse graph containing a small number of vertices and edges.

3.3 Processor Remapping

The goal of processor reassignment is to fi nd a mapping between partitions and processors that minimizes
the cost of data redistribution. To achieve this, PLUM computes a similarity matrix S, where entry S;; is
the sum of the Remap” values of all vertices in the new partition 7 that alrcady reside on processor 7. Various
cost functions [16] are usually needed to solve the reassignment problem using 5 for different machine
architectures. In [2], an effi cient heuristic algorithm was developed to minimize the volume of data that
is moved among the processors. This algorithm has been shown to be no worse than twice the optimal
performance.

3.4 Cost Model

Predicting the expected redistribution overhead is diffi cult because of the large number and complexity of the
costs involved. For example, it includes the cost for rebuilding intemnal data structures and updating shared
boundary information. Furthermore, the total redistribution cost depends on the architecture and on the
many-to-many communication pattems used by the remapper. In PLUM, the equation -y x MaxSR+ 0 is uscd



to model the total cost [2, 16]. Here, v represents the computation and communication overhead to process
cach redistributed element, MaxSR is the maximum number of elements sent and received by any processor,
and O is the predicted sum of all other constant overheads such as data compaction, communication latency,
and barrier synchronization. A least squares fi t can be used to approximate -y and O for various architectures,
while MaxSR is computed from the similarity matrix S.

Once the redistribution cost is computed, it can be compared with the expected computational gain
achieved by reducing the load imbalance among the processors. If the computational gain is larger than the
redistribution cost, the new partitioning and mapping are accepted. Otherwise, the computation is resumed
on the unbalanced mesh.

3.5 Differences with SBN-Based Load Balancer

The SBN load balancing algorithm differs from PLUM in several ways. Here we itemize the salient differ-
ences:

e Processing is temporarily halted under PLUM while the load is balanced. During the suspension, a
new partitioning is generated and data is redistributed among the processors. The SBN approach, on
the other hand, allows processing to continue asynchronously with load balancing. This feature allows
the possibility of utilizing latency-tolerant techniques to hide communication and redistribution costs
during processing.

« With PLUM, the suspension of processing and subsequent repartitioning does not guarantce an im-
provement in the quality of load balance. If it is determined that the estimated remapping cost exceeds
the expected computational gain, processing continues using the original mesh assignment. This could
result in unnccessary idle time. In contrast, the SBN approach, when active, always reduces the exe-
cution time for the application.

e PLUM redistributes all necessary data to the appropriatc processors before processing is restarted.
SBN, however, distributes work in a lazy manner, i.e., data is migrated to a processor only when itis’
ready to process the data. In this way, some of the redistribution and communication overhead can be
avoided.

4 Experimental Study

The SBN-based load balancing algorithm has been implemented using MPI on the wide-node IBM SP2
located at NASA Ames Research Center, and tested with actual workloads obtained from an adaptive
unstructured-grid calculation.

4.1 Test Case

The computational mesh used for the experiments reported in this paper simulates an unsteady environment
where the adapted region is strongly time-dependent. This goal is achieved by propagating a simulated shock
wave through the initial mesh as shown in Fig. 3. The test case is generated by refi ning all elements within
a cylindrical volume moving left to right across the domain, while coarsening previously-refi ned clements
in its wake. Performance is measured at nine successive adaptation levels, during which the weighted sum
of the vertices increased from 50,000 to 1,833,730 The levels shown in Tables 3 and 4 indicate successive

positions of the shock wave as it progresses through the cylindrical volume. This test case was chosen so
that results could be compared with those compiled in [2] under the PLUM environment.



Figure 3: Initial and adapted meshes (after levels 1 and 5) for the simulated unsteady experiment.

4.2 Performance Metrics

The following metrics were chosen to evaluate the effectiveness of the SBN-based load balancer when
processing an unsteady adaptive mesh. Recall that v denotes a vertex to be processed and P is the total
number of processors.

e Cut percentage: The runtime interaction between adjacent vertices residing on different processors
is represented by this metric as:

Cut%=100x > > Comm) Y Comn® ,

pEP v assignedto p ¢ in mesh

where Comm® is the weight of edge e in the adaptive mesh. The Cut% value should be as small as pos-
sible, The PrePartCut% (see Table 3} is the projection of the mesh edge cut before running the SBN
pre-partitioner. On the other hand, PreExecCut% computes the mesh edge cut immediately before
processing a mesh adaptation level, while PostExecCut% is the actual cut realized after processing
the given adaptation level. o

s Maximum redistribution cost: The goal of this metric is to capture the total cost of packing and
unpacking data, separated by a barrier synchronization. Since a processor can cither be sending or
receiving data, the overhead of these two phases is modeled as a sum of two costs as:

— U v
MaxSR = max { E Remapp} + max { 2 Remapp}.
pcP pEP
v sent from p v recv by p

Since MaxSR pertains o the processor that incurs the maximum remapping cost, a reduction in the
total data redistribution overhead can be guaranteed by minimizing MaxSR.

o Load imbalance factor: This metric is the ratio of the work on the most heavily-loaded processor to
the average Toad across all processors, and is formulated as:
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LoadImb = max Qwgt(p) / WSysLL.
p

The LoadImb factor should be as close to unity as possible.

4.3 Summary of Results

Table 3 presents performance results of processing the adaptive mesh using the SBN-based load balancer,
with and without the SBN pre-partitioner running between adaptations. Table 4 charts the results achieved
using the PMeTiS and DMeTiS partitioners within the PLUM environment. Note that Table 4 does not
contain results corresponding to all the processor sets shown in Table 3. We have included only those values
that were available to us.

The LoadImb factors are not shown in Table 3 since they were consistently between 1.00 and 1.02,
indicating that the quality of load balance with the SBN-based approach was extremely high. In contrast, this
factor was respectively 1.04 and 1.59 for P = 32 using PMeTiS and DMeTiS under the PLUM environment
(scc Table 4). Obviously, LoadImb is poorer for DMEeTiS because of its diffusive nature.

Results show that the SBN PostExecCut%, when using the pre-partitioner, is more than double com-
pared to those reported by PMeTiS (21.29 in Table 3 vs. 10.94 in Table 4, for P = 32). The difference is
almost negligible when compared to the results obtained with DMeTiS (20.22 in Table 4). This could re-
flect the effectiveness of the partitioners being used rather than whether the SBN-based load balancer would
always produce higher communication COsts. Note that PostExecCut% is about 1.5 times higher when the
SBN pre-partitioner is not active (see Table 3). This implies that it may be useful to initially partition the
mesh to compute a starting point for subsequent SBN load balancing when high communication cost isa
critical factor.

The MaxSR metric is proportional to the redistribution cost incurred while processing the adaptive mesh.
The SBN lazy approach to migration of vertex data sets produces signifi cantly lower values than thosc
achieved by PMeTiS or DMeTiS under PLUM. For example, when P = 32, Table 3 shows MaxSR = 28,031
without the SBN pre-partitioner, which is signifi cantly less than the corresponding values in Table 4 (63,270
for PMeTiS and 62,542 for DMeTiS). However, when the SBN pre-partitioner is used with the load balancer,
the MaxSR value increases (see Table 3). Thus, there is a trade-off here: the pre-partitioner reduces runtime
interprocessor communication at the expensc of a higher data redistribution cost. Finally, by comparing
prePartCut% and PreExecCut% in Table 3, observe that Cut% degrades as the pre-partitioner executes.
This result is consistent with the observations drawn from the PLUM experiments [2].

In conclusion, our experiments demonstrate that using the SBN pre-partitioner produces lower commu-
nication costs but higher data remapping costs. Although the pre-partitioner may be of limited value for
those adaptive mesh applications where remapping costs dominate communication costs, it could be useful
in scenarios where reducing the communication cost is more jmportant. Overall, these performance results
demonstrate that the proposed SBN-based dynamic load balancer is effective for processing adaptive mesh
problems by providing a global workload view across processors. In many mesh applications where the cost
of data redistribution dominates the cost of communication and processing, the SBN-based algorithm would
be preferred. '

4.4 Complexity Analysis

In this section, we analyze the overhcad associated with the execution of the SBN-based load balancer
while processing the adaptive computational mesh. The overhead has four components: (i) selecting the
next vertex to be processed; (ii) selecting the set of vertices to be migrated: (iii) processing to determine if
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Table 3: Performance Results using the SBN-Based Load Balancer with (without) Pre-Partitioning

[r P H Level n PrePartCut% J PreExecCut% PostExecCut% MaxSR 4“
2 1 0.09 — 1.76 (0.09) 0.95 (4.64) 9,606 (6,974)
2 1.21 — 282 (3.14) 1.60 (6.18) 41,926 (30,538)
3 0.59 — 3.36 (5.36) 2.60 (6.08) 178,631 (57,724)
4 3.28 — 4.00 (3.93) 231 (3.86) 118,679 (20,646)
5 2.94 — 3.02 291 239 (532) 112,437 (76,893)
6 436 — 3.88 (2.33) 2.93 4.62) 87,517  (103,544)
7 276 — 2.53 (2.23) 1.78 (5.86) 75,925  (140,904)
8 0.51 — 3.14 (2.83) 2.08 (6.14) 223,160  (153,735)
9 2.55 — 2.87 (3.10) 218 (6.89) 103,772 (129,374)
Average 2.03 — 3.04 (2.88) 2.09 (5.51) 105,739 (80,037)
I R 2.26 — 3.67 (2.26) 2.58 (8.15) 6,937 (4,078)
2 337 — 4.11 (7.22) 3.13 (10.01) 24,382 (26,187)
3 3.60 — 6.03 (9.44) 4.96 (11.69) 81,348 (64,110)
4 5.73 — 551 (9.16) 4.56 (9.48) 85,345 (46,406)
5 6.23 — 6.58 {6.60) 4.89 (11.86) 101,070 (149,042)
6 6.25 — 6.29 9.83) 5.12 (10.89) 51,018 (94,269)
7 595 — 8.22 (6.58) 6.72 (8.00) 145,850 (50,337)
8 7.45 — 8.36 (2.79) 6.86 (1531 92,430  (170,408)
9 6.05 — 9.63 (11.53) 499 (11.48) 69,413 (85,152)
Average | 5.21 — 6.49 (7.27) 487 (10.76) 73,088 (76,665)
8 1 6.66 — 7.16 (6.66) 6.05 (10.77) 6,939 (2.518)
2 7.60 — 756  (13.93) 6.17 (14.98) 22,833 (11,109)
3 7.85 — 848  (15.1D) 7.33 (18.16) 90,132 (46,088)
4 7.78 — 1 1735 (14.65) 14.67 (15.83) 139,439 (53,032)
5 12.64 — 12.19  (11.09) 11.58 (16.48) 138,671 (69,583)
6 7.97 — 1 1119 (11.02) 9.88 (15.91) 123,433 (85,982)
7 12.09 — 1 1181 (13.75) 10.74 (18.13) 130,199  (105,946)
8 12.39 — 1099  (12.84) 9.93 (195D 123,223 (28,974)
9 7.93 — ] 1006 (1534 8.90 (17.35) 158,867 (80,477)
Average || 9.21 — | 1075 (127D 9.47 (16.35) 103,748 (53,745)
16 1 15.36 — 1 1148  (1536) 11.01 (20.61) 5.647 (1,767
2 13.15 — 11.71 (24.82) 11.37 (25.56) 26,263 (7,259)
3 12.89 — | 13.02 (2440 12.59 (27.45) 107,173 (36,031)
4 8.38 — | 2260  (2060) | 21.39 (22.77) 209,028 (43,943)
5 17.08 — 1405 (16.11D) 14.28 (24.27) 122,902 (71,736)
6 14.66 — 13.14  (17.83) 12.55 (22.28) 100,962 (66,211)
7 13.08 — | 2137  (19.75) 19.12 (25.00) 135,900 (55,361)
8 16.63 — 13.57  (17.83) 14.76 (25.30) 126,161 (64,796)
9 12.13 — | 2336 (1787)| 2157 (21.59) 102,203 (74,316)
Average || 13.71 — 16.03  (19.40) 15.41 (23.87) 104,027 (46,824)
32 1 3159 = 1337  (21.59) 1550 (26.74) 3,764 (1,184)
2 18.20 — 1449  (30.35) 14.28 (32.32) 10,784 (4,387)
3 14.59 — | 2025  (30.06) 19.78 (34.04) 53,423 (8,445)
4 13.43 — | 2114  (2728)| 2335 (31.43) 154,009 (41,783)
5 15.95 — | 2807 (2135)] 29.09 (29.40) 196,821 (42,843)
6 19.94 — | 2165  (2404)| 2219 (29.42) 117,254 (42,688)
7 17.07 — | 2323 (22.35) 23.82 (30.45) 90,404 (41,347)
8 18.44 — 17.62  (20.59) 20.30 (30.48) 90,322 (37,006)
9 14.58 — | 2374 (2219 | 23.31 (29.43) 116,354 (32,594)
Average || 17.09 — | 2042 (2442 21.29 (30.41) 92,571 (28,031)
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Table 4: Performance Results using PMeTiS (DMeTiS) under the PLUM Environment

P Level PreExecCut% PostExecCut% MaxSR LoadImb TW
16 1 3.16 4.38 10,088 1.02
2 5.34 7.20 25,875 1.02
3 7.27 9.71 58,887 1.03
4 5.24 8.62 134,808 1.03
5 5.77 8.17 153,154 1.04
6 4.70 8.06 122,151 1.02
7 4.47 8.45 159,037 1.02
8 5.31 7.97 132,987 1.01
9 4.18 7.75 130,824 1.01
Average L 5.05 7.81 103,090 L 1.02
32 1 4.78 (4.65) 6.45 (15.70) 5,097 (5,047 1.01 (1.88)
2 7.56 (19.26) 10.05 (20.50) 16,758 (17,393) 1.02 (2.12)
3 10.28 (21.14) 13.13 (25.26) 39,565 (44,413) 1.05 (2.12)
4 8.14 (17.13) 11.60 (28.21) 73,074 (99,232) 1.06 (1.87)
5 7.59 (29.08) 11.13 (26.46) 92,581 (97,280) 1.05 (1.68)
6 6.51 (25.31) 11.60 (24.38) 82,751 (86,204) 1.06 (1.41)
7 6.66 (20.55) 11.43 (14.17) 88,642 (78,312) 1.03 (1.11)
2 6.88 (10.04) 11.39 (13.08) 91,301 (72,474) 1.05 (1.05)
9 6.19 9.41) 11.66 (14.18) 79,662 (62,522) 1.04 (1.05)
Average 718 (17.40) 10.94 (20.22) 63,270 (62,542) 1.04 (1.59)

Joad balancing is necessary; and (iv) load balancing and job distribution messages (communication) among
processors. Where possible, both analytical formulas and experimental data are presented.

The vertex v to be processed next is selected using a priority min-queue. Let Vp be the set of vertices
10 be processed at a given processor p, and F, be the set of all internal and border edges that are adjacent
to the vertices in V,. Heap operations like create and insert/delete-min require O(V,) and O(log V) time,
respectively. The (non-standard) removal operation can be implemented in O(log V), provided a direct
pointer to the entry to be removed is maintained. However, for SBN processing, the sum (Wgt" + Commy +
Remap}) must be computed so that the value of QWgt(p) can be obtained (see Section 2.2.1). Also, (Commp -+
Remapg) /Wgt” is needed to correctly control the ordering of the priority min-queue (sce Section 2.2.2). Each
of these calculations requires O (4, ) time, where &, is the degree of v, Therefore, the SBN priority min-queue
(heap) creation requires O(Vp + Lycy, 00) = O(V, + Ep) time. Similarly, each heap insertion, delete-min,
and removal operation completes in O(log Vp + d,) time.

SBN vertex migration involves first selecting a random set, R, of vertices from those qucued locally.
The vertex, v’ € R, with the smallest ACut(v") value is chosen for migration (see Section 2.2.3). Each
AcCut(r) calculation completes in O(6,) time, where r € R. Therefore, the total time required to select the
initial vertex for migration is (X ¢ g ) & O(| R} X davg), where Saug is the average degree of a vertex in
the mesh. Next, the local queue is searched in a breadth-fi rst manner to choose an additional set, Vg, Of
vertices for migration with v’. In our experiments, [Vi,,| averaged less than ten to satisfy the requirements
of a load balancing operation. Furthermore, a single search almost always found enough vertices to migrate.
Thus, the time required to complete the breadth-fi rst search is O(|Vinigl + Zvevinig 8y) = O(|Vinigl x (1 +
Javg)). Finally, each vertex to be migrated must be removed from the priority min-queuc so that they will
no fonger be considered for local processing. Since |Vinig| + 1 removal operations are required, the time
complexity for this step is O((|Vinig)-+1) x10g Vo + ey, 80) 2 O|Vinigl % (10g Vp+8any)). Combining

mig
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the above three terms and considering that |R| is a constant, the overall asymptotic time complexity for job
migration is O(|Vimigl x (log Vg + Gavg))-

Each processor must periodically check whether a load balancing operation should be initiated or if
messages from other processors need to be processed. If processors check too frequently, the associated
overhead could be too high. On the other hand, infrequent checks for load balancing activity could lead
to excessive idle time. The following analysis can be used to minimize this overhead without signifi cantly
increasing processor idle time. If f is the frequency of a processor checking for load balancing activity, the
average response time to process a message is 2/ f. Each time the SBN-based load balancer is invoked, bal-
ancing and distribution messages pass through 3 log P communication stages. Therefore, the total response
time to balance the system load is (6log P)/f. If J,y, is the average number of jobs processed per unit
time, the MinTh threshold should be set such that load balancing will be triggered when QWgt(p) < MinTh,
to avoid excessive idle time (see Section 2.2). In other words, MinTh > [6log P x Jaug/f1.

The communication overhead due to message passing is measured experimentally. Table 5 shows the
number of Mbytes that were transferred between processors during the load balancing and job distribution
phases. The data volumes are also expressed as percentages of the available bandwidth. A wide-node SP2
has a bandwidth of 36 Mbytes/sec and a latency of 40 usecs. As expected, the cost of workload migration
is signifi cantly larger than the cost of actually balancing the system load. An extrapolation of the results
using an exponential curve-fi tting program indicates that parallel speedup will not scale past 128 processors.
Most of the overhead is due to the latency associated with transmitting many small messages; however, it
is asymptotically sublinear in the total number of processors used. Future research will investigate utilizing
latency-tolerant techniques to allow for bulk transfers.

Table 5: Communication Overhead of the SBN-Based Load Balancer

Load Balancing Phase Job Distribution Phase
P Volume (MBytes)  Bandwidth (%) | Volume (MBytes)  Bandwidth (%)
2 0342 0.00 3919 367
4 0.150 0.00 7.939 7.44
8 0.463 0.01 25.397 23.79
16 0.581 0.02 30.454 28.53
32 1.550 0.12 38.244 35.83

Table 6 shows the fraction of time spent in the SBN-based load balancer compared to the total exccution
time of the mesh adaptation application. The three columns in the table correspond to three categories
of load balancing activity: (i) time needed to handle load balancing messages, (ii) time needed to migrate
verlices from one processor to another, and (iii) time needed to select the next vertex to be processed. Results

Table 6: Percentage Overhead of the SBN-Based Load Balancer

Balancing Migration Vertex

P Activity Activity Selection
2 0.0153 0.0414 0.8490
4 0.0187 0.1065 1.1361
8 0.1245 0.1969 1.9886
16 0.6369 0.2829 2.1145
32 0.1554 0.3774 2.8543
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show that processing related to the selection of vertices is the most expensive phase. The SBN algorithm
dynamically chooses the next vertex to be processed, depending on specifi ¢ runtime criteria. Thus, verlex
selection is not as effi cient as parallel multilevel partitioning. However, the data movement cost in the SBN
approach is substantially smaller than that of traditional remapping schemes since it allows processing to
continue while the load is dynamically balanced, thereby overlapping processing and migration. Overall,
the total overhead of our load balancer is relatively small compared to the time spent processing the mesh.

5 Summary

In this paper, we have described a novel topology-independent approach to solving the dynamic load bal-
ancing problem for adaptive meshes. Our thorough experimental investigation with an unstructured adaptive
mesh application showed that the proposed SBN-based load balancer achieves a lower redistribution cost
than that under the PLUM cnvironment. This was possible by overlapping processing and data migration.
However, the communication costs using SBN were signifi cantly higher than those reported under PLUM.
Overall, the SBN approach was demonstrated to be a viable option in load balancing dynamic irregular
applications.

The SBN-based load balancer is not purely diffusive, in that work is not necessarily migrated to neigh-
boring processors. In fact, a vertex is usually redistributed to a processor that owns an adjacent vertex.
While diffusive strategies are fairly common, scratch-remap techniques (similar to that used in PLUM) have
also been used successfully to load balance adaptive mesh applications. Our more recent work on the SGI
Origin2000 system is consistent with the performance results presented here, showing the portability of the
SBN-based load balancing algorithm.

Because of its latency-tolerance feature, it seems natural to evaluate the performance of the SBN ap-
proach on a heterogencous cluster of computers. Another research arena includes strategies to adapt the
processing to situations wherc some of the processors in the network become unavailable during a compu-
tation. Such fault tolerance would allow applications to make use of resources that are constantly changing
during execution. Finally, the techniques presented here could be applied to other practical applications,
such as multimedia image processing and data mining, where load balancing is an important issue. These
will be the focus of future research.
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