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Abstract

Many scientific applications involve grids that lack a uniform underlying structure. These applica-
tions are often also dynamic in nature in that the grid structure significantly changes between successive
phases of execution. In parallel computing environments, mesh adaptation of unstructured grids ti_rough
selective refinemcnttcoarsening has proven to be an effective approach. However, achieving load balance
while minimizing interprocessor communication and redistribution costs is a difficult problem Tradi-
tional dynamic load balancers are mostly inadequate because they lack a global view of system loads
across processors. In this paper, we propose a novel and general-purpose load balancer that utilizes
symmetric broadcast networks (SBN) as the underlying communication topology, and compare its per-
formance with a alccessful global load balancing environment, called PLUM, specifically created to
handle adaptive unstructured applications, Our experimental results on an IBM SP2 demonstrate that
the SBN-based load balancer achieves lower redistribution costs than that under PLUM by overlapping
processing anti data migration.

Key words: Dynanaic load balancing, experimental study, IBM SP2, job migration and redistribution,

metric broadcast networks, unstructured mesh adaptation
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1 Introduction

Mesh partitioning is a common approach to parallelize many scientific applications which are generally

modeled discretely using a mesh (or grid) of vertices and edges. For rnaxinmm efficiency, the computational
workloads on the processors have to be balanced and the number of edges that are cut (and hence the ovendl

interprocessor communication cost at runtime) needs to be minimized. For this purpose, each vertex is

usually assigned a weight that indicates the amount of computation required to process it. Similarly, each

edge in the mesh has an associated weight indicating the an_ount of interaction between adjacent vertices.

To achieve load balance dynamically, portions of the mesh have to be migrated among processors during the
course of a computation. Thus, in a nmltiprocessing environment, the vertex weight contains an additional

component that models the cost of redistributing the vertex from one processor to another. These weights
are used to minimize the data redistribution cost during the remapping phase.

With adaptive meshes, the grid topology changes during the course of a computation. Traditionally, this

class of problems is processed by load balancing the mesh after each adaptation. A number of partitioners

designed for this purpose has been proposed in the literature [8, 11, I4, 17, 21]. A majority of the success-

ful partitioners are based on a multilevel approach that has proven to be extremely effective in producing

good partitions at reasonable cost. ht a multilevel scheme, the grid is first contracted to a small nmnber of

vertices and edges, the coarsened grid is next partitioned, and is then finally refi ned to the original using the
Kemighan-Lin replacement _dgorithm [12]. However, other partitioning methods have also been developed,

and excellent surveys ,are provided in [1, 19].



Although several dynamic load balancers have been proposed for multiprocessor platforn_s [3, 9, 13, 19,

201, most of them are inadequate for adaptive mesh applications because they lack a global view of system

loads across processors. Furthermore, job migration in such approaches does not take into account the

structure of the adaptive grid. This motivates our present work. In this paper, we overcome these deft ciencies

by proposing a novel, dynamic load balancer which makes use of a synmletric broadcast network (SBN) as

a robust ,and topology-independent communication pattern among processors [6]. Section 2 describes this

SBN-based load balancing algorithm. Our earlier experiments with synthetic loads [5] have demonstrated

that such an SBN strategy achieves superior performance when compared to other popular techniques such

as Random, Gradient, Receiver Initiated, Sender Initiated, and Adaptive Contracting.

The SBN-based load balancing algorithm provides an architecture-independent solution in that it gen-

erates portable codes which can be run without modifi cation on any parallel/distributed platform. This is

because typical conmmnication patterns such as mesh, hypercube, tree, and toms can be embedded effi-

ciently within the SBN topology. It is true that the proposed load balancing scheme in its current form may

not be optimal for a given architecture; however, it can be made so by fine tuning the algorithm and properly

mapping it on the machine by utilizing its hardware specifi cations.

Recently, experiments that measure the effectiveness of load balancing adaptive meshes have been pre-

sented in [2, 16] using an automatic portable environment, called PLUM [15], developed at NASA Ames

Research Center. PLUM uses a novel strategy for load balancing which consists of two separate phases:

repartitioning and remapping. A brief overview of PLUM, and a description of its salient differences with

the SBN-based load balancer are given in Section 3.

We have conducted several experiments on an IBM SP2 to compare the performance of the SBN-bascd

load bah'racer to that of PLUM. The results, presented in Section 4, demonstrate that the SBN-based al-

gorithm achieves excellent load balance, and that the redistribution cost is significantly lower than those

obtained under PLUM when using two state-of-the-art partitioners, PMeTiS [11 ] and DMeTiS [ 17]. How-

ever, the edge cut percentages are higher than those for PMeTiS, indicating that the SBN strategy reduces the

redistribution cost at the expense of greater conmaunication. In many adaptive mesh applications where the

data redistribution cost dominates the processing and conmmnicatiori cost [15, 16, 18], this is an acceptable
trade-off.

2 SBN-Based Load Balancer

Our proposed SBN-based load balancer, targeted for adaptive mesh computations, can be classified as:

(i) adaptive, since processing automatically adjusts to the allocated workload; (ii) decentralized, since load

balancing can be initiated by any processor in the system and is shared by all; (iii) stable, since excessive

load balancing traffic does not burden the network; _ld (iv) effective, since system performance does not

degrade due to load balancing activities. In this section, we give the deft nition of an SBN, and present

the SBN-based toad balancing "algOrithm. We ;dso describe a pre-partitioner that Can 0ptiowally be used to

assign subdomaius to the individual processors before each adaptation stcp.

2.1 SBN Definition

A symmetric broadcast network (SBN), fi rst presented in [6], deft nes a (logical or physical) comnmnication

pattern among the P processors in a muiticomputer system. It is deft ned as follows.

Definition 1 An SBN(d) of dimension d > O, is a (d + 1)-stage interconnection network with P = 2 d

processors in each stage, and can be constructed recursively A single processor forms the basis network

SBN(O). For d > O, SBN(d) is obtained from a pair of SBN(d - 1)s by (i) relabeling the processors in the

second SBN(d - 1)_Oom 2 d-1 to 2d - 1; (ii) incrementing the identtfiers of the existing stages by one and



creatinganewstage0containingprvcessors0to2d - 1; (iii) connecting processor i in stage 0 to processor

j = (i + P/2) rood P of stage 1; and (iv) connecting processor j in stage 1 to the processor in stage 2 (if

present) which was the stage 0 successor of processor i in SBN(d - 1).

Fig. 1(a) illustrates how an SBN(2) is recursively constructed from two SBN(1)s, while Fig. 1 (b) shows

the construction of an SBN(3) from two SBN(2)s.
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C

C
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Figure 1: (a) Construction of SBN(2) from a pair of SBN(1)s, and (b) SBN(3) from a pair of SBN(2)s. The

new connections are shown b.y solid lines and the original connections by dashed lines.

Note that an SBN(d) deft nes unique commtmication patterns (or broadcast trees) ,among the processors

in the network. In other words, for any root processor x at stage 0, where 0 < z < P, there exists a unique

broadcast tree Tz of height d = log P such that each of the 2d processors appears exactly once. Furthermore,

the SBN communication pattern for z can be derived from the template broadcast tree with processor 0 as

the source [5]. The predecessor an dsuccessors of each processor are also uniquely deft ned by specifying
the root _md the communication stage. Finally, SBN communication patterns can be efficiently embedded

into different parallel architectures in a topology-independent manner [4, 7].

2.2 Proposed Load Balancing Algorithm

Our SBN-based load balancer adapts its behavior according to the system load. Under heavy (light) load,

tbc balancing activity is primarily initiated by processors that are lightly (heavily) loaded, and is controlled

by two system toad thresholds, MinTh and MaxTh. Performance is influenced by the choice of values for

HinTh and MaxTh. If M±nTh is too small, a processor could become idle before receiving additional .jobs

for processing. On the other h,'md, a large value of MS.nTh could trigger unnecessary balancing activity.

Similarly, if MaxTh is too small, an excessive number of jobs will be migrated; if too large, jobs will not be

adequately migrated under light system loads. Moreover, once there is sufficient load in the system, very

little load bahmcing activity should be required.

The load balancer processes two types of messages: (i) load balancing messages and (ii) job distribution

messages. A load bal_mcing message is broadcast when a processor p dctermines that its weighted queue

length 0Wgt (p) < MinTh. Such messages are also broadcast if Qtdgt 09) > MaxTh, or if distribution of excess

jobs causes other processors to exceed l'taxTh. As the load balancing message passes from one processor to

another, the average weighted system load, WSysLL, is computed.



JobdistributionmessagesareusedtodistributejobswhenqWgt(p) > MaxTh.Theyarealsousedto
completetheload balancing process. After the WSysLL value is calculated, a distribution message is broad-

cast through the SBN so that jobs are routed to lightiy-loaded processors and the system control variables

(MinTh, MaxTh, and WSysLL) can be globally updated. As a result, all processor workloads are balanced. To

reduce message traffi c, a processor does not initiate additional load balancing activity until all the previous

messages that have passed through it have been completely processed.

Note that it is possible to encounter a situation when there are so many jobs in the system that at least one

processor will have its MaxTh value exceeded. This would lead to thrashing, where jobs are unnecessarily

routed back and forth among processors. To prevent this situation, if a processor at the last SBN stage

determines that its MaxTh has exceeded, it triggers a load balancing message instead of distributing the

excess load. As a result, WSysLL and MaxTh are globally recomputed.

Let us now discuss the various paraaneters and implementation details involved in the SBN-based load

balancer. These parameters are necessary to provide a global view of the system and make the SBN approach

effective for adaptive mesh applications.

2.2.1 Weighted Queue Length and System Load

The queue length (computation time) of a processor p is not an accurate estinmte of the amount of time

required to complete its work, particularly in applications where the mesh is adapted. To achieve a better

load balance, we deft ne a new metric called weighted queue length, qWgt(p), that _dso considers the com-

munication and redistribution costs. Let Wgt v be the computational cost to process a vertex v, Comm_ be the
cormnunication cost to interact with the vertices adjacent to v but whose data sets are not local to p, and

Remap_ be the redistribution cost to copy the data set for, to p from another processor. Then

[_Wgt (p) = _ (W_-t v -5 Com_ H- Remap_).

v a_,_igned to p

Clearly, if the data set for v is already assigned to p, no redistribution cost is incurred, i.e., Remapg = 0.
Similarly, if the data sets of all the vertices adjacent to v are already assigned to p, there is no communication

cost, i.e., Comm_, -- 0.

The weighted systern load, WSysLL, is computed as

1 e i
WSysLL= y QWgt(p)' ,

where P is the loud number of processors used.

2.2.2 Prioritized Vertex Selection

When selecting vertices to be processed, the SBN-based load balancer utilizes the underlying structure of the

adaptive mesh to defer execution of boundary vertices as long as possible since they could be migrated for

more efficient execution. Thus, selection of the queued vertex to be processed next is based on the goat that

the overall edge cut of the adapted mesh is minimized. A priority rain-queue is maintained for this purpose,

where the priority of a vertex v in processor p is given by (Comm_ + Remap_)/Wgt v. Therefore, vertices
with no communication and redistribution costs are processed first, while those with high communication

or redistribution overhead relative to their computational weight are executed last. Conceptually, internal

vertices are processed before those on partition boundaries.



2.2.3 Differential Edge Cut

To balance the system load among processors, an optimal policy for vertex migration needs to be established.

When vertices are being moved between processors, assume that processor p is about to reassign some of

its vertices to another processor q. The SBN-based load balancer running on p randomly picks a subset

of vertices from those queued locally. For the experiments reported in this paper, picking a subset of ten

vertices worked best. This random procedure reduces the vertex selection overhead since a sorted list of

vertices (by migration priority) does not have to be m_tained. The motivation was not to find the absolute

best vertex to migrate, but rather to identify a vertex that would improve the edge cut as well as the load
balance when moved.

For each selected vertex v, the differential edge cu0, ACut(v), is calculated as

ACut(v) = Remapq - Remap_ + Comm_ - Comm_.

The parameters Remapp and Remap_ will either be zero or equal to the redistribution cost of moving the data
for v from p to q. As an example, let p = 3 and q = 6. Assuming that the data for v reside on p = 1 and its

redistribution cost is 8, then Retaap_ = Kemap_ = 8. On the other hand, if the data for v resides on p = 3,

then Remap_ = 0 but Remap_ = 8.
A negative ACut(v) value indicates a reduction in communication and redistribution costs if v is n-d-

grated from p to q; hence, migration of vertices with the largest absolute reduction ha these costs is favored.

Once the differential edgc cut values ,are calculated for all the randomly chosen vertices, the vertex _J' with

the smallest value is chosen for migration. Next, following a brcadth-fi rst search, the SBN load balancer

selects the vertices adjacent to v' that are "also queued locally for processing on p. The breadth-fi rst search

stops either when no adjacent vertices are queued for local processing at p, or if a suffieient number of ver-

tices have been found for migration. If more work needs to be transferred out of p, another subset of vertices

are randomly chosen and the procedure is repeated. This migration policy therefore strives to maintain or

improve the cut size during the execution of the load balancing algorithm.

2.2.4 Data Redistribution Policy

The redistribution of data is performed in a lazy manner. In other words, the data set for a vertex v in

processor p is not moved to another processor q until the latter is about to execute v (q notifies p when this

happens). Furthermore, the data sets of all vertices adjacent to v that are also assigned to q are migrated

with the data set of _. This policy greatly reduces the redistribution and communication costs by avoiding

multiple data migrations, and having resident on q all adjacent vertices of v while v is being processed by q.

Data migration is implemented by broadcasting a job distribution message when a vertex is about to

be processed and its corresponding data set is not resident on the local processor. A locate-message is

then broadcast to indicate the new location of the data set, so that all processors can update their records.

This policy is expected to maximize the number of adjacent vertices that are local when a given vertex is

processed. Hence, by considering the underlying mesh structure, the communication overhead is reduced.

2.3 An Illustrative Example

Fig. 2 illustrates the SBN-based load balancer just described. It shows a mesh of 16 vertices and 20 edges

that is partitioned among four processors, P0 through P3. For each vertex, the processing and redistribution

costs are represenled as a two-tuple. Adjacent vertices are connected by edges which are labeled with the

associated communication cost, provided the data sets for the two vertices reside on different processors

when either one is processed.

1V_re ale deviating from the usu',d deft nititm of edge cut to account for the dynamic nature of the SBN h)ad balancer.
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Figure 2: An example to illustrate the SBN-based load balancer.

Table 1 shows file Wgt", Com_, and Remap_ values for each vertex v, under the current vertex-m-

processor assignment. We assume that the data for vertex 7 is resident on P1, the data for vertex 10 is on

P2, while the data for vertices 9, 11, and 16, are resident on P0. The data sets for the remaining vertices

reside on the corresponding processor to which they are assigned. Table 1 also shows the QWgt(p) values

for each processor p, as deft ned is Section 2.2.1. The weighted system load, WSysLL, for this example is 24.

Table 1 : Various Costs for Each Vertex v, and the Weighted Queue Length for Each Processor p

[[ vertex v I0 13 14 15

P2
1 5 6

I Wgt" f 2 1 1 2 _ 1 1 3
Comm'_ 0 3 5 2 6 3 6
Remap_ 1 0 0 0 0 0 0

P3
4 7 8 11 12 169 3

l 2

5 3
2 0

1 4 1 3 1 1
0 12 0 3 3 3

0 7 0 1 0 1

If we assume that MinTh = 10, processor P1 is clearly underloaded. According to the SBN communica-

tion pattern shown in Fig. 1(a), P1 sends a load balancing request to P3. Upon receiving it, P3 determanes

which of its vertices to transfer to P1 so that their loads will be equidistributed. Let us step through the

process of selecting the first vertex to migrate, using the differential edge cut described in Section 2.2.3. The

ACut(v) v_dues of the vertices v currently assigned to P3 are shown in Table 2. Vertex 7 is found to be

optimal for migration to P1, yielding (_Wgt(P3) = 23 and qWgt(P1) = 18. The new value of WSysLL is

Table 2: Differential Edge Cut for Each Vertex v in Processor P3 if Migrated to P1

_ ve_r_x v .... l. 3 4 7 8 1I 12 16
tl

Remap_3 t] 0 0 7 0 1 0 l
Comm_l 6 l 11 6 3 7 1
Comm_3 3 0 12 0 3 3 3



22,whichreflectsareductionin thetotalsystemload.Forthisexample,additionalvertexmigrationisnot
required.

2.4 SBN Pre-Partitioner

The SBN-based load balancing algorithm is designed to run dynamically without the need for a separate

partitioning process. This is a signifi cant advantage over existing approaches where processing is temporar-

ily suspended when processor loads become unbalanced. During the suspension, vertices are reassigned and

the corresponding data sets are remapped. The asynchronous nature of the SBN strategy ,also "allows the

computational, communication, and redistribution phases to be overlapped, leading to further reductions in

the overall execution time. Traditional methods [15, 19, 20] cannot achieve this overlap easily because these

phases are processed sequentially.

To tes_!_e behavior of the SBN technique, we implemented a pre-partitioner which can optionally run

............. pri0rt-o each mesh adaptation phasel we Wanted to determine whether running a front-end partitioner has

.........._y_tgnifi c-ant benefit on the resulting communication and/or redistribution overhead. This pre-partitioner

is uni-_n=i]iatif p,'fftitio_-Zas6t_n:_gt (p) values, which take into consideration "all three factors of

compUtation, communication, and redistribution. This is a stronger requirement than that considered in

almost all other approaches [8, 11, 17, 21], where the mesh is partitioned to equalize the total computational

cost while minimizing the total number of cut edges. Such methods could result in signifi cant idle time

duri_.g pr0cessing if only a few processors incurred most of the communication overhead.

The pre-partitioner differs frorii thepartitioning capabilities inherent in the SBN-based toad balancer in

that multiple iterations are performed to find an optimal P-way partition. Here, an iteration is deft ned as

a sequence of vertex reassignmenLs from one processor to another. During an iteration,, each vertex can be

reassigncd at most once. Reassignments are made so that vertices in processor p with QWgt(p) > WSysLL

are assigned to the processor q with the minimum QWgt(q) value. Each vertex to be reassigned is adjacent

to a random subset of vertices chosen from and belonging to q. First, the ACut (v) v_dues are computed

for all adjacent vertices _ assigned to processors other than q. As described in Section 2.2.3, the non-local

adjacent vertex _J' with the smallest ACut(v') is added to the set of vertices assigned to q. In addition, a

breadth-fi rst search is performed on the vertices adjacent to v' that are not assigned to q but to p such that

QWgt(p) > WSysLL. These vertices are also assigned to q.

The prc-partitioner is initially set to execute afi xed number of iterations (four for the experiments in

this paper). However, additional iterations are performed if a new minimum _/SysLL is achieved. At the

end of each iteration, the load imbalance factor qWgt(r)/WSysLL for the processor r with the largest value

of I_/gt(r) is computed. If this factor is greater than a specified threshold (1.75 in our experiments), the

Kernighan-Lin refincment procedure [ 121 is invoked to further reduce WSysLL. Note that the data associ-

ated with each vertex is not migrated after the pre-partitioning process is completed. Instead, actual data

movement takcs place during mesh adaptation as vertices are processed with SBN load balancing in effect.

3 PLUM Framework

We experimentally compare the performance of our SBN-based load balancer with PLUM [ 15], a portable

and parallel load balancing framework for adaptive unstructured grids. In PLUM, when processor workloacks

become unbalanced due to adaptation, the mesh is repartitioned and the subgrids reassigned to the proces-

sors. If the estimated rcmapping cost exceeds the expected computational gain, execution continues without

remapping. Otherwise, the grid is remapped among the processors before the computation is resumed. For

the sake of completeness, a brief description of the important features of PLUM is given below.



3.1 Reusing the Initial Graph

PLUM repeatedly utilizes the initial mesh for the purpose of load balancing. The computational weight,

WgC, of a vertex v in the corresponding dual graph, is the nmnber of leaf elements in the refi nemem tree

because only those dements with no children participate in the numerical computation. The redistribution

cost, Remap v, is the total number of elements in the refinement tree because all descendents of the root

element must be moved from one partition to another when the load is to be rebalanced. Lastly, the commu-

nication cost, Comme, of a dual graph edge e, is set to the number of corresponding faces in the computational

mesh. These weights are used to determine an optimal partitioning that achieves balanced workloads among

processors, to minimize the resulting communication, and to optimize the data movement cost.

3.2 Parallel Mesh Repartitioning

PLUM can use any general-purpose partitioner to rebalance processor workloads ;trier a mesh adaptation.

In [2], PMeTiS [11] and DMeTiS [17] were used. Both partitioners are parallelized and highly optimized for

maximum efficiency, and have proven effective for adaptive grids. DMeTiS is a diffusive scheme designed

to modify existing partitions, while PMeTiS is a global from-scratch partitioner that makes no assumptions

on how the mesh is initially distributed. Both are multilevel algorithms that operate in three phases: (i) a

coarsening phase, where the original mesh is reduced by collapsing adjacent vertices to a sufficiently small

mesh', (ii) a partitioning phase, where the coarsened mesh workload is balanced anaong the processors and

the edge cut size is minimized; and (iii) a projection phase, where the partitioned mesh is gradually restored

to its original size.

DMeTiS and PMeTiS differ mainly in how they perform the partitioning phase. DMeTiS uses a di-

rected 2-norm minimization algorithm [10] which provides a global picture of the existing mesh. Vertices

in heavily-loaded partitions that are adjacent to neighbors in more lightly-loaded partitions are randomly

visited. The diffusion process computes a flow value for possible reassignment to neighboring partitions. If

the flow value relative to the vertex weight is high, the vertex is reassigned. This process continues until the

partition is balanced or no further progress can be made. If a balanced partitioning carmot be achieved at

the current level of the mesh, it is projected to the next finer level and the partitioning process is repeated.

PMeTiS, on the other hand, utilizes a greedy recursive bisection algorithm to create a partition of the graph

from scratch. The time complexity for both algorithms is minimal since the partitioning is performed on a

coarse graph containing a small number of vertices and edges.

3.3 Processor Remapping

The goal of processor reassignment is to fi nd a mapping between partitions and processors that minimizes

the cost of data redistribution. To achieve lifts, PLUM computes a similarity matrix S, where entry 5'_j is

the sum of the Remap v vMues of all vertices in the new partition j that already reside on processor i. Various

cost ftmctions [16] are usually needed to solve the reassignment problem using S for different machine

architectures. In [2], an efficient heuristic algorithm was developed to minimize the volume of data that

is moved among the processors. This algorithm has been shown to be no worse than twice the optimal

perlbrmance.

3.4 Cost Model

Predicting the expected redistribution overhead is diffi cult because of the large number and complexity of the

costs inw)lved. For example, it includes the cost for rebuilding internal data structures and updating shared

boundary information. Furthermore, the total redistribution cost depends on the architecture and on the

many-to-many comnmnication patterns used by the remapper. In PLUM, the equation "7× blaxSR+ O is used



tomodelthetotalcost [2, 16]. Here, 7 represents file computation and communication overhead to process

each redistributed element, MaxSR is the maximum number of elements sent and received by any processor,

and O is the predicted sum of all other constant overheads such as data compaction, communication latency,

and barrier synchronization. A least squares 15t can be used to approximate 7 and O for various architectures,

while t-faxSR is computed from the similarity matrix S.

Once the redistribution cost is computed, it can be compared with the expected computational gain

achieved by reducing the load imbalance among the processors. If the computational gain is larger than the

redistribution cost, the new partitioning and mapping are accepted. Otherwise, the computation is resumed
on the unbalanced mesh.

3.5 Differences with SBN-Based Load Balancer

The SBN load balancing algorithm differs from PLUM in several ways. Here we itemize the salient differ-
ences:

Processing is temporarily halted under PLUM while the load is balanced. During the suspension, a

new partitioning is generated and data is redistributed among the processors. The SBN approach, on

the other hand, allows processing to continue asynchronously with load balancing. This feature allows

the possibility of utilizing latency-tolerant techniques to hide communication and redistribution costs

during processing.

With PLUM, the suspension of processing and subsequent repartitioning does not guarantee an im-

provement in the quality of load balance. If it is determined that the estimated remapping cost exceeds

the expected computational gain, processing continues using the original mesh assignment. This could

re_lt in unnecessary idle time. In contrast, the SBN approach, when active, always reduces the exe-

cution time for the application.

PLUM redistributes all necessary data to the appropriate processors before processing is restarted.

SBN, however, distributes work in a lazy manner, i.e., data is migrated to a processor only when it is "

ready to process the data. In this way, some of the redistribution and communication overhead can be
avoided.

4 Experimental Study

The SBN-based load balancing algorithm has been implemented using MPI on the wide-node IBM SP2

located at NASA Ames Research Center, and tested with actual workloads obtained from an adaptive

unslructured-grid calculation.

4.1 Test Case

The computational mesh used for the experiments reported in this paper simulates an misteady environment

where the adapted region is strongly time-dependent. This goal is achieved by propagating a simulated shock

wave through the initial mesh as shown in Fig. 3. The test case is generated by refining all elements within

a cylindrical wflume moving left to right across the domain, while coarsening previously-refi ned elements

in its wake. Performance is measured at nine successive adaptation levels, during which the weighted sum

of file vertices increased from 50,000. to 1,833,730. The levels shown in Tables 3 and 4 indicate successive

positions of the shock wave as it progresses through the c3,1in_cal Volume. This les[Case was chosen so

that results could be compared with those compiled in 1-2]under the PLUM environment.



Figure3:Initialandadaptedmeshes(afterlevels1and5)forthesimulatedunsteadyexperiment.

4.2 Performance Metrics

The following metrics were chosen to evaluate the effectiveness of the SBN-based load balancer when

processing an unsteady adaptive mesh. Recall that v denotes a vertex to be processed and P is the total

number of processors.

J Cut percentage: The runtime interaction between adjacent vertices residing on different processors

is represented by this metric as:

cu,%=Ioo×Z Z co= / Z co=",
p6P _J as._igned to p e in mesh

where Comme is the weight of edge e in the adaptive mesh. The Cut% value should be as small as pos-

sible. The PrePartCut% (see Table 3) is the projection of the mesh edge cut before running the SBN

pre-partitioner. On the other hand, PreExecCut% computes the mesh edge cut immediately before

processing a mesh adaptation level, while PostExecCut% is the actual cut realized after processing

the given adaptation level.

Maximum redistribution cost: The goal of this metric is to capture the total cost of packing and

unpacking data, separated by a barrier synchronization. Since a processor can either be sending or

receiving data, the overhead of these two phases is modeled as a sum of two costs as:

MaxSR : max { _ Remap_} + max{ Z Remap_}.
p6 P p6 P

v sent from p v t'ecv by p

Since MaxSR pertains to the processor that incurs the maximum remapping cost, a reduction in the

total data redistribution overhead can be guaranteed by minimizing MaxSR.

Load imbalance factor: This metric is the ralio of the work on the most heavily-loaded processor to

the average load across all processors, and is formulated as:

10



Loadlmb=maxQWgt(p)/ WSysLL.
pcP

The LoadIrnb factor should be as close to unity a_spossible.

4.3 Summary of Results

Table 3 presents performance results of processing the adaptive mesh using the SBN-based load balancer,

with and without the SBN pre-partitioner running between adaptations. Table 4 charts the results achieved

using the PMeTiS and DMeTiS partitioners within the PLUM environment. Note that Table 4 does not

contain results corresponding to all the processor sets shown in Table 3. We have included only those values

that were available to us.

The Loadlmb factors are not shown in Table 3 since they were consistently between 1.00 and 1.02,

indicating that the quality of load balance with the SBN-based approach was extremely high. In contrast, this

factor was respectively 1.04 and 1.59 for P = 32 using PMeTiS and DMeTiS under the PLUM environment

(see Table 4). Obviously, Loadlmb is poorer for DMeTiS because of its diffusive nature.

Results show that the SBN PostExecCut%, when using the pre-partitioner, is more than double com-

pared to those reported by PMeTiS (21.29 in Table 3 vs. 10.94 in Table 4, for P = 32). The difference is

almost negligible when compared to the results obtained with DMeTiS (20.22 in Table 4). This could re-

flect the effectiveness of the partitioners being used rather than whether the SBN-based load b',dancer would

always produce higher communication costs. Note that PostExecCut% is about 1.5 times higher when the

SBN pre-partitioner is not active (see Table 3). This implies that it may be useful to initially partition the

mesh to compute a starting point tor subsequent SBN load balancing when high conununication cost is a
critical factor.

The MaxSFt metric is proportional to the redistribution cost incurred while processing the adaptive mesh.

The SBN lazy approach to migration of vertex data sets produces significantly lower values than those

achieved by PMeTiS or DMeTiS under PLUM. For example, when P = 32, Table 3 shows MaxSrt = 28,031

without the SBN pre-partitioner, which is significantly less than the corresponding values in Table 4 (63,270

for PMeTiS and 62,542 for DMeTiS). However, when the SBN pre-partitioner is used with the load b_dancer,

the MaxSrt value increases (see Table 3). Thus, there is a trade-off here: the pre-partitioner reduces runtime

interprocessor communication at the expense of a higher data redistribution cost. Finally, by comparing

PrePaxtCut% and PreExecCut% in Table 3, observe that Cut% degrades as the pre-partitioner executes.

This result is consistent with the observations drawn from the PLUM experiments [2].

In conclusion, our experiments demonstrate that using the SBN pre-partitioner produces lower conmm-

nication costs but higher data remapping costs. Although the pre-partitioner may be of limited value for

those adaptive mesh applications where remapping costs dominate communication costs, it could be useful

in scenarios where reducing the communication cost is more important. Overall, these performance results

demonstrate that the proposed SBN-bascd dynamic load balancer is effective for processing adaptive mesh

problems by providing a global workload view across processors. In many mesh applications where the cost

of data redistribution dominates the cost of communication and processing, the SBN-based algorithm would

be preferred.

4.4 Complexity Analysis

In this section, we analyze the overl_ead associated with the execution of the SBN-based load balancer

while processing the adaptive computalional mesh. The overhead has four components: (i) selecting the

next vertex to be processed; (ii) selecting the set of vertices to be migrated; (iii) processing t_) determine if
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Table 3: Performance Results using file SBN-Based Load Balancer with (without) Pre-Partitioning

P 11 Level

2 I

2

3

4

5

6

7

8

9

Average

4 1

2

3

4

5

6

7

8

9

Average
=.....

8 1

2

3

4

5

6

7

8

9

Average

16 1

2

3

4

5

6

7

8

9

Average

32 1

2

3

4

5

6

7

8

9

'F
Averagc

PrePartCut%

0.09

1.21

0.59

3.28

2.94

4.36

2.76

0.51

2.55

PreExecCut%

-- 1.76

-- 2.82

-- 3.36

-- 4.00

-- 3.02

-- 3.88

-- 2.53

-- 3.14

-- 2.87

(0.09)

(3.14)

(5.36)

(3.93)

(2.91)

(2.33)

(2.23)

(2.83)
(3.1o)

PostExecCut%

0.95 (4.64)

1.60 (6.18)

2.60 (6.08)

2.31 (3.86)

2.39 (5.32)

2.93 (4.62)

1.78 (5.86)

2.08 (6.14)

2.18 (6.89)

MaxSR

9,606

41,926

178,631

118,679

112,437

87,517

75,925

223,160

103,772

(6,974)

(30,538)

(57,724)

(20,646)

(76,893)

(lO3,544)
(140,904)

(153,735)

(129,374)

2.03

2.26

3.37

3.60

5.73

6.23

6.25

5.95

7.45

6.05

5.21

6.66

7.60

7.85

7.78

12.64

7.97

12.09

t2.39

7.93

9.21

15.36

13.15

12.89

B

m

l

m

w

B

3.04

3.67

4.11

6.03

5.51

6.58

6.29

8.22

8.36

9.63

6.49

7.16

7.56

8.48

17.35

12.19

11,19

11.81

10.99

10.06

10.75

11.48

11.71

13.02

(2.88)

(2.26)

(7.22)

(9.44)

(9.16)

(6.60)

(9.83)

(6.58)

(2.79)

(11.53)

(7.27)

(6.66)
(13.93)
(15.11)
(14.65)
(11.09)
(11.02)
(13.75)
(12.84)
(15.34)

(12.71)

(15.36)

(24.82)

(24.40)

2.09 (5.51)

2.58 (8.15)

3.13 (10.01)

4.96 (11.69)

4.56 (9.48)

4.89 (11.86)

5.12 (10.89)

6.72 (8.00)

6.86 (15.31)

4.99 (11.48)

4.87 (10.76)

6.05 (10.77)

6.17 (14.98)

7.33 (18.16)

14.67 (15.83)

11.58 (16.48)

9.88 (15.91)

10.74 (18.13)

9.93 (19.51)

8.90 (17.35)

9.47 (16.35)

11.01 (20.61)

11.37 (25.56)

12.59 (27.45)

105,739

6,937

24,382

81,348

85,345

101,070

51,018

145,850

92,430

69,413

73,088

6,939

22,833

90,132

139,439

138,671

123,433

130,199

123,223

158,867

103,748

5,647

26,263

107,173

(80,037)

(4,o78i-
(26,187)

(64,11 O)

(46,406)

(149,042)

(94,269)

(50,337)

(170,408)

(85,152)

(76,665)

(2,518)

(11,109)

(46,088)

(53,032)

(69,583)

(85,982)

(105,946)

(28,974)

(80,477)

(53,745)

(1,767)

(7,259)

(36,031)

8.38

17.08

14.66

13.08

16.63

t2.13

m

m

M

22.60

14.05

13.14

21.37

13.57

23.36

(20.60)

(16.11)

(17.83)

(19.75)

(17.83)

(17.87)

21.39 (22.77)

14.28 (24.27)

12.55 (22.28)

19.12 (25.00)

14.76 (25.30)

21.57 (21.59)

209,028

122,902

100,962

135,900

126,161

102,203

(43,943)

(71,736)

(66,211)

(55,361)

(64,796)

(74,316)

13.71

21.59

18.20

14.59

13.43

15.95

19.94

17.07

18.44

14.58

17.09

n

m

m

m

m

16.03

13.57

14.49

20.25

21.14

28.07

21.65

23.23

17.62

23.74

20.42

(19.40)

(21.59)

(30.35)

(30.06)

(27.28)

(21.35)

(24.04)

(22.35)

(20.59)

(22.19)

(24.42)

15.41 (23.87)

15.50 (26.74)

14.28 (32,32)

19.78 (34.04)

23.35 (31.43)

29.09 (29.40)

22.19 (29.42)

23.82 (30.45)

20.30 (30.48)

23.31 (29.43)

21.29 (30.41)

104,027

3,764

10,784

53,423

154,009

196,821

117,254

90,404

90,322

116,354

92,571

(46,824)

(1,184)

(4,387)

(8,445)

(41,783)

(42,843)

(42,688)

(41,347)

(37,006)

(32,594)

(28,031 )
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Table 4: Performance Results using PMeTiS (DMeTiS) under the PLUM Environment

P

16

32

Level

Average

Average

PreExecCut_

3.16
5.34
7.27

5.24
5.77

4.70
4.47
5.31

4.18

5.05

4.78 (4.65)"

7.56 (19.26)
10.28 (21.14)

8.14 (17.13)
7.59 (29.08)
6.51 (25.31)
6.66 (20.55)

6.88 (10.04)
6.19 (9.41)

7.18 (17.40)

PostExecCut_

4.38
7.2O
9.71
8.62

8.17
8.06
8.45

7.97
7.75

7.81

6.45 i15.70)

10.05 (20.50)
13.13 (25.26)

11.60 (28.2i)
11.13 (26.46)
11.60 (24.38)

11.43 (14.17)
11.39 (13.08)
11.66 (14.18)

10.94 (20.22)

ffaxSR.

10,088
25,875
58,887

I34,808

153,154
122,151
159,037
132,987

130,824

103,090

5,097 i5,047)

16,758 (17,393)
39,565 (44,413)

73,074 (99,232)
92,581 (97,280)
82,751 (86,204)

88,642 (78,312)
91,301 (72,474)
79,662 (62,522)

63,270 (62,542)

LoadImb

1.02
1.02
1.03
1.03

1.04
1.02
1.02

1.01
1.01

1.02

1.01 (1.88)

1.02 (2.12)
1.05 (2.12)

1.06 (1.87)
1.05 (1.68)
1.06 (1.41)

1.03 (1.11)
1.05 (1.05)
1.04 (1.05)

1.04 (1.59)

load balancing is necessary; and (iv) load balancing and .job distribution messages (conununication) among

processors. Where possible, both analytical fommlas ,and experimental data are presented.

The vertex v to be processed next is selected using a priority rain-queue. Let Vp be tile set of vertices

to be processed at a given processor p, and/i7 v be the set of all internal and border edges that are adjacent

to the vertices in W. Heap operations like create and insert/delete-min require O(Vv) and O(log Vp) time,

respectively. The (non-standard) removal operation can be implemented in O(log Vp), provided a direct

pointer to the end' to be removed is maintained. However, for SBN processing, the _m (Wgt v + Co_ +

Remap_) must be computed so that the value of QWgt (p) can be obtained (sec Section 2.2. I). Also, (Comm_ +

Remap_)/Wg-t" is needed to correctly control the ordering of the priority rain-queue (see Section 2.2.2). Each
of these calculations requires O ((f,,) time, where (_,_is the degree of v. Therefore, the SBN priority min-queue

(heap) creation requires O(V v + _,c_9 ¢I_) = O(V v + Ev) time. Similarly, each heap insertion, delete-rain,

and removal operation completes in O(log Vp + 6v) time.

SBN vertex migration involves first selecting a random set, R, of vertices from those queued locally.

The vertex, v _ E R, with the smallest ACut(v _) value is chosen for migration (see Section 2.2.3). Each

ACut(r) calculation completes in O((fr) time, where r E R. Therefore, the total time required to select the

initial vertex for migration is O(_rc R cfr) _ o(IRt × where (fa,,9 is the average degree of a vertex in

the mesh. Next, the local queue is searched in a breadth-fi rst manner to choose an additional set, Vm_g, of

vertices for migration with v _. In our experiments, IV,,_ia] averaged less than ten to satisfy the requirements

of a load balancing operation. Furthermore, a single search almost always found enough vertices to migrate.

Thus, the time required Io complete the breadthfi rst search is O(]Vrnigl + _,,cvh_, _,) "_ o(Iv,_gl × (x +
_avq)). Finally, each vertex to be migrated must be removed from the priority rain-queue so that they will

no longer bc considered for local processing. Since IV,_ig[ + i removal operations are required, the time

complexity for this step is O((]Vmig [ -k J) × log Vp + E_,c_,9 5v) ,._ O(]_,,ig] × (log V v +Say:l)). Combining
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theabovethreetermsandconsideringthat[R[isaconstant,theoverallasymptotictimecomplexityforjob
migrationiso(Ivmigl x 0ogVp +

Each processor must periodically check whether a load balancing operation should be initiated or if

messages from other processors need to be processed. If processors check too frequently, the associated

overhead could be too high. On the other hand, infrequent checks for load balancing activity could lead

to excessive idle time. The following analysis can be used to minimize this overhead without signifi cantly

increasing processor idle time. If f is the frequency of a processor checking for load balancing activity, the

average response time to process a message is 2/f. Each time the SBN-based load balancer is invoked, bal-

ancing and distribution messages pass through 3 logP communication stages. Therefore, the total response

time to balance the system load is (6 log P)/f. If Ja,_u is the average number of jobs processed per unit

time, the MinTh threshold should be set such that load balancing will be triggered when QWg-e(p) < NinTh,

to avoid excessive idle time (see Section 2.2). In other words, MinTh > [6 log P x .la_g/f].

The communication overhead due to message passing is measured experimentally. Table 5 shows the

number of Mbytes that were transferred between processors during the load balancing and job distribution

phases. The data volumes are also expressed as percentages of the available bandwidth. A wide-node SP2

has a bandwidth of 36 Mbytes/sec and a latency of 40/_secs. As expected, the cost of workload migration

is significantly larger than the cost of actually balancing the system load. An extrapolation of the results

using an exponential curve-fi tting program indicates that parallel speedup will not scale past 128 processors.

Most of the overhead is due to the latency associated with transmitting many snmll messages; however, it

is asymptotically sublinear in the total number of processors used. Future research will investigate utilizing

latency-tolerant techniques to allow for bulk transfers.

Table 5: Communication Overhead of the SBN-Based Load Balancer

P

2 0.342 0.00

4 0.150 0.00
8 0.463 0.01

16 0.581 0.O2

32 1.550 0.12

Load Balancing Phase Job Distribution Phase

Volume (MBytes) Bandwidth (%) Volume 0VlBytes) Bandwidth (%)

3.919 3.67
7.939 7.44

25.397 23.79
30.454 28.53
38.244 35.83

Table 6 shows the fraction of time spent in the SBN-based load balancer compared to the total execution

time of the mesh adaptation application. The three columns in the table correspond to three categories

of load balancing activity: (i) time needed to handle load balancing messages, (ii) time needed to migrate

vertices from one processor to another, mad (iii) time needed to select the next vertex to bc processed. Results

Table 6: Percentage Overhead of the SBN-Based Load Balancer

Balancing Migration Vertex

P Activity Activity Selection

2 0.0153 0.0414 0.8490
4 0.0187 0.1069 1.1361
8 0.1245 0.1969 1.9886

16 0.6369 0.2829 2.1145
32 0.1554 0.3774 2.8543
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showthatprocessingrelatedtotheselectionof verticesis theroostexpensivephase.The SBN algorithm

dynamically chooses the next vertex to be processed, depending on specific runtiroe criteria. Thus, vertex

selection is not as efficient as parallel multilevel partitioning. However, the data movement cost in the SBN

approach is substantially smaller than that of traditional rernapping schemes since it allows processing to

continue while the load is dynamically balanced, thereby overlapping processing and migration. Overall,

the total overhead of our load balancer is relatively small compared to the time spent processing the mesh.

5 Summary

In this paper, we have described a novel topology-independent approach to solving the dynamic load bal-

ancing problem for adaptive meshes. Our thorough experimental investigation with an unstructured adaptive

mesh application showed that the proposed SBN-based load balancer achieves a lower redistribution cost

than that under the PLUM enviroronent. This was possible by overlapping processing and data migration.

However, the communication costs using SBN were signiti cantly higher th,'m those reported under PLUM.

Overall, the SBN approach was demonstrated to be a viable option in load balancing dynamic irregular

applications.

The SBN-based load balancer is not purely diffusive, in that work is not necessarily migrated to neigh-

boring processors. In fact, a vertex is usually redistributed to a processor that owns ,an adjacent vertex.

While diffusive strategies are fairly common, scratch-remap teclmiques (similar to that used in PLUM) have

also been used successfully to load balance adaptive mesh applications. Our more recent work on the SGI

Origin2000 system is consistent with the performance results presented here, showing the portability of the

SBN-based load balancing algorithm.

Because of its latency-tolerance feature, it seems natural to evaluate the performance of the SBN ap-

proach on a heterogeneous cluster of computers. Another research arena includes strategies to adapt the

processing to situations where some of the processors in the network become unavailable during a compu-

tation. Such fault tolerance would allow applications to make use of resources that are constantly changing

during execution. Finally, the techniques presented here could be applied to other practical applications,

such as multimedia image processing and data mining, where load balancing is an iroportant issue. These

will be the focus of future research.
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