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Equivalent-Continuum Modeling with Application to Carbon Nanotubes

Gregory M. Odegard, Thomas S. Gates, Lee M. Nicholson 2, and Kristopher E. Wise r

NASA Langley Research Center, Hampton, Virginia

Abstract

A method has been proposed for developing structure-property relationships of nano-structured

materials. This method serves as a link between computational chemistry and solid mechanics

by substituting discrete molecular structures with equivalent-continuum models. It has been

shown that this substitution may be accomplished by equating the molecular potential energy of

a nano-structured material with the strain energy of representative truss and continuum models.

As important examples with direct application to the development and characterization of single-

walled carbon nanotubes and the design of nanotube-based structural devices, the modeling

technique has been applied to two independent examples: the determination of the effective-

continuum geometry and bending rigidity of a graphene sheet. A representative volume element

of the chemical structure of graphene has been substituted with equivalent-truss and equivalent-

continuum models. As a result, an effective thickness of the continuum model has been

determined. The determined effective thickness is significantly larger than the inter-planar

spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a

graphene sheet was determined by equating the molecular potential energy of the molecular

model of a graphene sheet subjected to cylindrical bending (to form a nanotube) with the strain

energy of an equivalent-continuum plate subjected to cylindrical bending.

KEY WORDS: nanotechnology, nanotubes, continuum mechanics, molecular mechanics,

flexural rigidity, graphene sheet

Nomenclature

Molecular model and force field

E el

E g

rlsm

EVdV¢

E o

E o

E •

E _

- Non-bonded electrostatic potential energy

- Molecular potential energy of graphene sheet

- Potential energy of nano-structured material

- Non-bonded van der Waals potential energy

- Bond-angle variation potential energy

- Bond stretching potential energy

- Bond torsion potential energy

- Bond inversion potential energy

- Force constant associated with the stretching of bond m

K2 - Force constant associated with angle variation of bond angle m
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- Force constant associated with bond inversion

- Modified force constant associated with bond inversion

- Length of carbon nanotube

- Number of atoms per carbon nanotube
- Total number of carbon atoms in carbon structure

- Interatomic spacing of carbon atoms in graphite
- Radius of carbon nanotube

- Average inversion angle (radians)

- Angle between _ and rc bonds

- Deformed bond-angle m

- Equilibrium bond-angle m

- Deformed bond length of bond m

- Equilibrium bond length of bond m

Truss and continuum models

a - Elastic rod type of outer portion of truss representative volume element

A m

b

D

I

R n
m

t

yg

Y2

pt

r c

r7
roc
A c

A t

V

- Cross-sectional area of rod m of truss member type n

- Cross-sectional area of carbon nanotube

- Elastic rod type of inner portion of truss representative volume element

- Bending rigidity of a continuum plate

- Moment of inertia of a continuum plate

- Deformed distance between joints of rod m of truss member type n

- Undeformed distance between joints of rod m of truss member type n

- Thickness of a continuum plate (wall thickness of continuum tube)

- Young's modulus of graphene sheet

- Young's modulus of rod m of truss member type n

- Young's modulus of carbon nanotube

- Mid-plane radius of continuum nanotube wall

- Inner radius of continuum nanotube wall

- Outer radius of continuum nanotube wall

- Mechanical strain energy of the continuum model

- Mechanical strain energy of the truss model

- Poison's ratio of graphene sheet

Boundary conditions

u i - Displacement components of equivalent-continuum representative volume element

xi - Cartesian coordinate system of the representative volume element
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- Strain components in the equivalent-continuum representative volume element

- Applied strain

- Applied shear strain

1. Introduction

Nano-structured materials have generated considerable interest in the materials research

community in the last few years partly due to their potentially remarkable mechanical properties

[1]. In particular, materials such as carbon nanotubes, nanotube and nanoparticle-reinforced

polymers and metals, and nano-layered materials have shown considerable promise. For

example, carbon nanotubes could potentially have a Young's modulus as high as 1 TPa and a

tensile strength approaching 100 GPa. The design and fabrication of these materials are

performed on the nanometer scale with the ultimate goal to obtain highly desirable macroscopic

properties.

One of the fundamental issues that needs to be addressed in modeling macroscopic mechanical

behavior of nano-structured materials based on molecular structure is the large difference in

length scales. On the opposite ends of the length scale spectrum are computational chemistry

and solid mechanics, each of which consists of highly developed and reliable modeling methods.

Computational chemistry models predict molecular properties based on known quantum

interactions, and computational solid mechanics models predict the macroscopic mechanical

behavior of materials idealized as continuous media based on known bulk material properties.

However, a corresponding model does not exist in the intermediate length scale range. If a

hierarchical approach is used to model the macroscopic behavior of nano-structured materials,

then a methodology must be developed to link the molecular structure and macroscopic

properties. Even though there is a long history of modeling bulk properties of materials based on

molecular properties, a simple link between the firmly established disciplines of computational

chemistry and solid mechanics has not been established.

In this paper, a methodology for linking computational chemistry and solid mechanics models

has been developed. This tool allows molecular properties of nano-structured materials obtained

through molecular mechanics models to be used directly in determining the corresponding bulk

properties of the material at the macroscopic scale. The advantages of the proposed method are

its simplicity and direct connection with computational chemistry and solid mechanics.

In addition, the proposed method has been demonstrated with two independent examples that

have direct application to the development and characterization of single-walled carbon

nanotubes (SWNT). First, the effective geometry of a graphene sheet has been determined. A

representative volume element (RVE) of the graphene layer has been modeled as a continuous

plate with an effective thickness that has been determined from the bulk in-plane properties of

graphite [2]. Second, the effective bending rigidity of a graphene sheet has been determined.

The bending rigidity of the elastic plate has been described in terms of the atomic interactions

that dominate the overall bending behavior.



2. Carbon nanotubes

In 1991 Iijima [3] obtained transmission electron micrographs of elongated, nano-sized carbon

particles that consisted of cylindrical graphitic layers, known today as carbon nanotubes (Figure

1). Since then, carbon nanotubes have become a primary focus in nanotechnology research due

to their apparent exceptionally high stiffness and strength [ 1]. One of the fundamental issues that

scientists and engineers are confronting is the characterization of the mechanical behavior of

individual carbon nanotubes. Two independent components of this issue, the wall thickness and

bending rigidity of carbon nanotubes, are discussed below.

2.1 Wall thickness

Many experimental [4-8] and theoretical [9-13] studies have been performed on single- and

multi-walled carbon nanotubes. In particular, deformation modes and nanotube stiffnesses have

been closely examined.

Physical properties, such as effective cross-sectional area and moment of inertia, and mechanical

properties, such as Young's modulus and Poisson's ratio, are traditionally associated with the

macroscopic-length scale, where the characteristic dimensions of a continuum solid are well

defined. The determination of these properties has been attempted in many of the studies cited

above without proper regard to an acceptable definition of the nanotube geometry. Accurate

values of macroscopic physical and mechanical properties are crucial in establishing a

meaningful link between nanotube properties and the properties of larger structures, such as

nanotube-reinforced polymer composites. Therefore, caution should be used when applying

continuum-type properties to nano-structured materials.

In many studies, it has been assumed that the nanotube "wall thickness" is merely the inter-

planar spacing of two or more graphene sheets [5, 8-13], which is about 0.34 nm in single-crystal

graphite. While this simple idealization appears to have intuitive merit, it does not necessarily

reflect the effective thickness that is representative of continuum properties. In order to avoid

this problem, Hernandez et al. [10] proposed the use of a specific Young's modulus, i.e.,

Young's modulus per unit thickness. Even though this approach is convenient for studies

concerned with the relative stiffnesses of nanotubes, it is of little use when modeling a nanotube

as a continuum structure. Another proposed solution to this dilemma is to assume that the

nanotube is a solid cylinder [14-16]. This method is certainly convenient, however, significant

inconsistencies arise when comparing moduli data of single wall nanotubes (SWNT) and multi-

walled nanotubes (MWNT) when both are assumed to be solid cylinders.

It follows that in order to properly model the mechanical behavior of a SWNT using continuum

mechanics, the effective geometry must be known. If the nanotube is modeled as a continuous

hollow cylinder with an effective wall thickness, then a simple first step is to model the flat

graphene sheet in order to determine the effective wall thickness. In the current study, the

effective thickness will be calculated as an example of the proposed modeling approach.



2.2 Bending rigidity

Due to the aspect ratio and tube-like geometry of SWNT, many studies have been conducted

concerning the buckling and bending response of nanotubes using both theoretical [12, 14, 16-

19] and experimental [20, 21] approaches. In particular, Overney et al. [17] conducted a

computational study and calculated a bending parameter of a graphene sheet based on the

vibrational modes of a nanotube. Yakobson et al. [18] used computational methods to study the

buckling of carbon nanotubes. They modeled the nanotubes as shells with a bending rigidity

proportional to the Young's modulus and shell-wall thickness. Using the computationally

obtained bending parameters, they calculated the Young's modulus and wall thickness of the

shell. Govindjee and Sackman [16] theoretically investigated the validity of continuum

mechanics at the nano-scale by examining the bending of multi-walled carbon nanotubes. They

also assumed that the bending rigidity of each layer is proportional to the Young's modulus and

moment of inertia. In each of these studies it is clear that the bending and buckling behavior of

carbon nanotubes is highly dependent on the bending properties of the graphene sheet.

Therefore, it follows that the bending behavior of a graphene sheet must be well-understood, and

should be described in terms of the atomic properties of graphene.

According to the classical elasticity theory, it is assumed that the bending rigidity, D, of an

isotropic solid is related to the cross-sectional geometry and the in-plane modulus [22]:

ygi 3

D - (1)
12(1-v 2)

and

D : YgI (2)

which are for the bending of plates and beams, respectively. In equations (1) and (2), Yg, v,/,

and t are the Young's modulus, Poisson's ratio, moment of inertia, and plate thickness of a

graphene sheet, respectively. It seems logical that these equations could describe the bending

properties of graphene sheets and nanotubes due to geometric similarities to solid plates and/or

beams. However, Ru [19] has pointed out that a discrepancy exists in the use of equation (1)

when describing bending properties of carbon nanotubes. If the bending rigidity described by

this equation is used in the bending analysis of carbon nanotubes, then an equivalent wall

thickness must be used that is very small compared to the inter-planar spacing of graphene

sheets. For example, Yakobson et al. [18] performed molecular dynamics simulations and

showed that the bending rigidity of carbon nanotubes is much smaller than that described by

equation (1) if the typically assumed effective thickness of 0.34 nm (the inter-plane spacing of

layers of graphite) of graphene sheets is used. They derived an effective thickness of 0.066 nm

based on an assumed value for Young's modulus of the nanotube (5.5 TPa). The argument of Ru

[19] is further supported by examining the chemical structure of a graphene sheet. At first

glance, it appears that a graphene sheet would have very little bending rigidity since the atomic

C-C bonds lie very close to the neutral axis during cylindrical bending, unlike continuous elastic

plates in which there is material that is not on the neutral axis that contributes a resistance in

bending that is proportional to the in-plane Young's modulus (equations (1) and (2)). Therefore,



theprimary atomicbonds,which are themain contributionto the in-planeelasticpropertiesof

graphene, should provide little, perhaps negligible, contribution to the bending rigidity of

graphene sheets. The resistance to bending must be due to a different atomic interaction, which
is discussed in section 5.

3. Modeling procedure

The proposed method of modeling nano-structured materials with an equivalent-continuum is

outlined below. Since the approach uses the energy terms that are associated with molecular

mechanics modeling, a brief description of molecular mechanics is given first followed by an

outline of the equivalent-truss and equivalent-continuum model development.

3.1 Molecular mechanics

An important component in molecular mechanics calculations of the nano-structure of a material

is the description of the forces between individual atoms. This description is characterized by a

force field. In the most general form, the total molecular potential energy, E nsm, for a nano-

structured material is described by the sum of many individual energy contributions:

E n'm = E ° + E ° + E _ + E" + E vdW+ E _ (3)

where E o, E_, E _, and E '° are the energies associated with bond stretching, angle variation,

torsion, and inversion, respectively (the reader should refer to a molecular mechanics text, e.g.

[23], for a detailed description of these energy terms). The nonbonded interaction energies

consist of van der Waals, E vdW, and electrostatic, E el, terms. Various functional forms may be

used for these energy terms depending on the particular material and loading conditions

considered [23]. Obtaining accurate parameters for a force field amounts to fitting a set of

experimental or calculated data to the assumed functional form, specifically, the force constants

and equilibrium structure. In situations where experimental data are either unavailable or very

difficult to measure, quantum mechanical calculations can be a source of information for

defining the force field.

3.2 Truss model

In order to simplify the calculation of the total molecular potential energy of molecular models

with complex molecular structures and loading conditions, an intermediate model may be used to

substitute for the molecular model. Due to the nature of molecular force fields, a pin-jointed

truss model may be used to represent the energies given by equation (3), where each truss

member represents the forces between two atoms. Therefore, a truss model allows the

mechanical behavior of the nano-structured system to be accurately modeled in terms of

displacements of the atoms. This mechanical representation of the lattice behavior serves as an

intermediate step in linking the molecular potential with an equivalent-continuum model. In the

truss model, each truss element corresponds to a chemical bond or a significant non-bonded

interaction. The stretching potential of each bond corresponds with the stretching of the

corresponding truss element. Traditionally, atoms in a lattice have been viewed as masses that

are held in place with atomic forces that resemble elastic springs [24]. Therefore, bending of



trusselementsis not neededto simulatethe chemicalbonds,andit is assumedthat eachtruss
joint is pinned,not fixed.

Themechanicalstrainenergy,At, of thetrussmodelis expressedin theform:

A_y _ ,, )2
At = ZZ m_(t,, mn_R m

n m ---_m

(4)

where A,_and Ymn are the cross-sectional area and Young's modulus, respectively, of rod m of

truss member type n. The term (_ - R,_) is the stretching of rod m of truss member type n,

where R,_ and r,_ are the undeformed and deformed lengths of the truss elements, respectively.

In order to represent the chemical behavior with the truss model, equation (4) must be equated

with equation (3) in a physically meaningful manner. Each of the two equations are sums of

energies for particular degrees of freedom. The main difficulty in the substitution is specifying

equation (4), which has stretching terms only, for equation (3), which also has bond-angle

variance and torsion terms. No generalization can be made for overcoming this difficulty for

every nano-structured system. A feasible solution must be determined for a specific nano-

structured material depending on the geometry, loading conditions, and degree of accuracy

sought in the model.

3.3 Equivalent-continuum model

For many years, researchers have developed methods of modeling large-area truss structures

with equivalent-continuum models [25-30]. These studies indicate that various methods and

assumptions have been employed in which equivalent-continuum models have been developed

that adequately represent truss structures. In general, the equivalent-continuum model is defined

as a continuum that has the following characteristics:

1. Truss lattices with pinned joints are modeled as classical continua where micropolar [31]

continuum assumptions are not necessary.
2. Local deformations are accounted for.

3. The temperature distribution, loading and boundary conditions of the continuum model
simulate those of the truss model.

4. The same amount of thermoelastic strain energy is stored in the two models when

deformed by identical static loading conditions.

The parameters of the equivalent-continuum model, such as the elastic properties and geometry,

are determined based on the above characteristics. In some cases the strain energy of the

continuum, A c, can be easily formulated analytically and compared directly with equation (4) to

obtain the equivalent-continuum properties. In other cases, especially with complex geometries

and deformations, numerical tools need to be used to determine the continuum parameters. Once

the properties of the equivalent-continuum model have been determined, the mechanical



behaviorof larger structuresconsistingof the nano-structuredmaterialmay be predictedusing
thestandardtoolsof continuummechanics.

4. Example 1: Effective geometry of a graphene sheet

In this section, a graphene sheet is modeled as a continuous plate with a finite thickness that

represents the effective thickness for the determination of continuum-type mechanical and

physical properties. By using the methodology described above, the molecular mechanics model

is substituted with a truss model and subsequently an equivalent-plate model. The continuum

model may then be used in further solid mechanics-based analyses of SWNT.

4.1 Representative volume element

To reduce the computational time associated with modeling the graphene sheet, a representative

volume element (RVE) for graphene was used in this study (Figure 2). The selected RVE allows

each degree of freedom of the carbon atom associated with bond stretching and bond-angle

variation in the hexagonal ring to be completely modeled by truss and continuum finite element

model nodal-displacement degrees of freedom. Also, this RVE allows the displacements on the

boundary of the proposed chemical, truss, and continuum models to correspond exactly.

Furthermore, macroscopic loading conditions applied to a continuous graphene plate can be

easily reduced to periodic boundary conditions that are applied to the RVE.

4.2 Molecular mechanics model

The specific forms of the energy terms in equation (3) used in this example were taken from the

AMBER force field of Kollman and coworkers [32, 33]. Due to the nature of the material and

loading conditions in the present study, only the bond stretching and bond-angle variation

energies were included. Torsion, inversion, and non-bonded interactions were assumed to be

negligible for the case of a graphene lattice subjected to small deformations. For this example,

the molecular potential energy of a graphene sheet with carbon-to-carbon bonds is expressed as a

sum of simple harmonic functions:

Eg EK_(pm_Pm)2 K o 2= +E m(Om--Om)
m m

(5)

where the terms Pm and ®m refer to the undeformed interatomic distance of bond m and the

undeformed bond-angle m, respectively. The quantities Pm and 0m are the bond length and bond-

angle after stretching, respectively (see Figure 3). K_ and K2 are the force constants associated

with the stretching and angle variance of bond and bond-angle m, respectively. Using the

parameters for the AMBER force field [32], the force constants used in this example are:



kcal nJ
K p = - 3.26.10 -7

46900mole. nm 2 bond. nm 2

kcal nJ
K ° =63 -4.38.10 -l°

mole. rad 2 angle, rad 2

(6)

The equilibrium bond length, Pm, is 0.140 nm, and the undeformed bond-angle, ®m, is 120.0

degrees.

4.3 Truss model

In order to express the mechanical strain energy, A t, of the truss model in terms of the variable

truss joint angles that are specified in molecular mechanics (6m-Om), the RVE has been modeled

with additional rods between nearly adjacent joints to represent the interaction between the

corresponding carbon atoms (Figure 3). In order to represent the chemical model, which has

bond stretching and variable angles as degrees of freedom, with a truss model that has stretching

degrees of freedom only, two types of elastic rods, a and b, are incorporated into the truss RVE.

The mechanical strain energy, A t, of the discrete truss system shown in Figure 3 is expressed in

the form of equation (4) as:

At :_AaY2_ a (t"a-Ra) 2mm "}-_ b_(ptbn\ --Rmb) 2

m 2Rm m 2Rm
(7)

where the superscripts correspond to rod types a and b, respectively. Comparing equations (5)

and (7), it is clear that the bond stretching term in the equation (5) can be related to the first term

of equation (7) for the rods of type a:

- A' rd (8)
2R, 

where it is assumed that Pm = r2 and Pm =/_. However, the second terms in equations (5) and

(7) cannot be related directly. In order to equate the constants, the chemical bond-angle variation

must be expressed in terms of the elastic stretching of the truss elements of type b. For

simplicity, it may be assumed that the prescribed loading conditions consist of small, elastic

deformations only. This assumption is not an over-simplification for the graphene sheet since the

deformations for highly stiff linear-elastic materials subjected to many practical loading

conditions are quite small.

In order to express the Young's modulus of the rods of type b in terms of the bond-angle force

constant, a relationship between the change in the bond angle and the corresponding change in

length of the type b truss element is required. If it is assumed that the changes in bond angle are

small, then it can be easily shown that (see Figure 4):



2(_-R_)
0m --®m -- (9)

The right-hand side of equation (9) is four times larger than the right hand side of equation (8)

given by Odegard et al. [34]. This discrepancy is due to an improvement in the assumptions

used to derive equation (9) in the current study. Substitution of equation (9) into equations (5)

and (7) results in the following approximation:

b b b

K ° - RmAmY2 (10)
m 24

Therefore, the Young's moduli of the two rod types are:

p a

y_ - 2KmRm
A2,

y_ - 24K°
b b

RmA_

(11)

The strain energy of the truss model may then be expressed in terms of the force constants:

_, )2 ,v-._12K°/ b R_)2A' = '_'_KP (¢ - R,_ + 2..,7--2TTT,2 [ ¢ -
m m (Rm)

(12)

4.4 Equivalent-plate model

Working with the assumptions discussed herein, the next step in linking the molecular and

continuum models is to replace the equivalent-truss model with an equivalent-continuous plate

with a finite thickness (Figure 3). For this example, it is assumed that the truss and continuum

models are equivalent when the elastic strain energy stored in the two models are equal under

identical displacement boundary conditions. The value of the plate thickness that results in equal

strain energies is the assumed effective thickness of the graphene sheet.

While the mechanical properties of the truss elements have been determined as described above,

those of the graphene sheet were taken from the literature. Values for the in-plane mechanical

properties of graphite have been measured macroscopically, i.e., without any assumptions

regarding the graphene sheet thickness. For this example, the values of the mechanical

properties are [2]:

Yg = 1008 GPa (13)
v =0.145

10



where Yg and v are the Young's modulus and Poisson's ratio of graphite, respectively. For

simplicity, it is assumed that graphite is isotropic since no out-of-plane deformations are

considered here. The isotropic properties of the graphene sheet in equation (13) are based on the

in-plane properties of bulk graphite.

4.5 Boundary conditions

In order to determine an effective plate thickness, both the truss and continuum models were

subjected to three sets of loading conditions. For each set of loading conditions, a corresponding

effective thickness was determined. The loading conditions correspond to the three fundamental

in-plane deformations of a plate, that is, uniform axial tension along xl and x2 and pure shear

loading in the xl and x2 plane.

For a uniaxial deformation along the x: direction (load case I), the RVE may be subjected to the

following boundary conditions (Figure 5):

u 1 =-VeX 1

H 2 : _i_" 2

U3 =-VF_X 3

(14)

where the displacement components are parallel to the corresponding RVE coordinates. The

total strain energy can be calculated using [22]:

A _ _ VY g V 2
2 (1 + V) [ l_-_V ekk + eijeij ] (15)

where V is the volume of the RVE, ij,k = 1,2,3 (using summation notation), and the components

of the strain tensor, e_, are given by:

(16)

For the RVE under the conditions given in equation (14):

A c _ 3,J3
4 (Ra)2 tYge2 (17)

where t is the thickness of the continuum plate. For a uniaxial deformation along the x_ direction

(load case II), the boundary conditions are (Figure 6):

11



U 2 =--VEX 2

u 3 =-Ve_X 3

(18)

The total strain energy of an equivalent-continuum RVE under this condition is given by

equation (17). For a pure shear strain in the xl-x2 plane (Load case III), the RVE may be

subjected to the following boundary conditions (Figure 7):

121 =0

b/3 =0

(19)

The total strain energy of an equivalent-continuum RVE under this condition is:

yg

A_-3x/3(R_)2t_Y28 (20)

4.6 Results and discussion

The strain energy of the truss model was calculated using a finite element analysis (ANSYS 5.7 ®

[35]) for all three boundary conditions. The strain energies of each truss element were summed

to obtain the total strain energy for the RVE. The resulting strain energy was equated with

equations (17) or (20) for Load cases I and II or III, respectively, and the corresponding effective

thickness of the equivalent-continuum plate, t, was determined. Each extensible rod was

modeled using a finite truss element (L1NK1) with two degrees of freedom at each node

(displacements parallel to x_ and Xe). The cross-sectional areas of the type a rods were divided

by a factor of 2, since these rods are sharing their total area with adjacent RVEs. For Load cases

I and II, the resulting effective thickness was calculated to be 0.69 nm. For Load case III, the

effective thickness was 0.57 nm. These values are significantly larger than the widely accepted

value for the graphitic inter-planar spacing, 0.34 nm, and much larger than the value suggested

by Yakobson et al. [18], 0.066 nm.

It may be assumed that during uniaxial loading of a carbon nanotube, with the force and strain

known, the Young's modulus can be calculated using:

Y"' _ (A"') -1 (21)

where A "t is the cross-sectional area of the hollow continuum cylinder with a constant mid-plane

radius, r c . The inner radius, r_c , and outer radius, _, of the tube are (Figure 8):
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t
r/C = rC __

2

t
ro_ =rC+-

2

(22)

where r c ___t/2. The cross-sectional area of the hollow continuum cylinder is:

A" = 2xtr c (23)

The calculated cross-sectional areas using the effective thickness values obtained above are

shown in Table 1. The ratios of the calculated Young's modulus based on the effective thickness

obtained for the three load cases, their average, and from Yakobson et al. [18], to the Young's

modulus based on inter-planar spacing, are also provided in Table 1. The results shown in Table

1 suggest that measured and calculated values of mechanical properties of carbon nanotubes that

are dependent on the dimensions of the continuum tube may differ significantly based on the

assumed geometry.

5. Example 2: Effective bending rigidity of a graphene sheet

In this section, a graphene sheet is again modeled as a continuous plate. The bending rigidity of

the plate is assumed to be independent of the in-plane mechanical properties and thickness of the

plate. By using the proposed modeling method, the molecular mechanics model is used to

determine the effective bending rigidity of the continuum plate.

5.1 Molecular mechanics model

It has been shown that the only significant change in the electronic structure of a flat graphene

sheet when subjected to pure bending is the change in the x-orbital electron density on either side

of the graphene sheet (i.e. inversion, see Figure 9) [36-41]. This indicates that the inversion

alone contributes to the bending resistance of graphene sheets. Bakowies and Theft [36] have

suggested that the increase in the total molecular potential energy per carbon atom of a carbon

cluster (i.e. a structure formed by a single plane of carbon atoms, such as carbon Fullerenes and

SWNT) with respect to a flat graphene sheet may be closely approximated as:

E _' = K_'_2p (24)

where/_ is a force constant and _p is the average inversion angle defined as (in radians):

2/
_v = (25)

P

where p is the total number of carbon atoms in the carbon structure considered and _),,rc is the

angle defined in Figure 9. For simplicity in the specific case of carbon nanotubes, the x-orbital

13



axisvectortechnique[42] canbeusedto showthatthechangein themolecularpotentialenergy
dueto inversioncanbeexpressedin termsof thenanotuberadius,rn':

(O

E Co_

(rnt) 2

(26)

where K _° is a modified inversion force constant given by:

K" = ( O.O012 rad2nm2 ) K '' (27)

Values of the force constant, K _°, have been determined using computational chemistry data

from several studies [36, 43-46] and equation (26). The values are shown in Table 2 along with

the overall average, which is:

2
eV. nm

K _°= 0.018 (28)
atom

The total number of carbon atoms per nanotube is [43]:

4 7crnt Lnt

N - (29)
3o_2

where o_ is the interatomic spacing of carbon atoms and L "t is the nanotube length. Therefore, the

total change in the molecular potential energy of a nanotube due to inversion is:

4rcLntK _°
E'N - (30)

3_2r nt

5.2 Equivalent-continuum plate

In the case of a graphene sheet subjected to pure bending, the total molecular potential energy is

easily described with a single force constant by using equation (30), unlike the example

discussed in the previous section where an intermediate truss model was needed in order to

calculate the strain energy under various loading conditions. Therefore, the truss model is not

needed in this particular example and an equivalent-continuum model has been developed by

equating the total molecular potential energy of the molecular model and the strain energy of the

continuum plate directly.

The strain energy of a plate of length L c subjected to cylindrical curvature (Figure 8) is [47]:
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rcDLc
Ac - (31)

r c

where rC is the radius of curvature, D is the bending rigidity, and the superscript c denotes the

strain energy associated with the continuum plate. In this case, D is not defined by equations (1)

or (2) for the reasons discussed above. In order to determine the bending rigidity of the

equivalent-continuum plate that represents the actual effective bending rigidity of the graphene

sheet, the strain energy of the continuum plate and the increase in the total molecular potential

energy of the graphene sheet must be equivalent when subjected to pure bending. Equating

equations (30) and (31) results in:

4K _°
D - (32)

3(x 2

Therefore, the effective bending rigidity is directly proportional to the inversion force constant

and the inverse square of the interatomic spacing of graphite.

The equivalent bending rigidity for the equivalent-continuum plate is calculated using equation

(32) and the average value of the force constant K _°, given in Table 2, and with o_= 0.140 nm

[2] to give D = 1.22 eV. This value is 44% higher than that used by Yakobson et al. [18] and

Robertson et al. [43] (D = 0.85 eV).

The strain energy of a graphene sheet is presented in Figure 10 for different nanotube radii for all

of the computational chemistry data and the equivalent continuum plate model. It is assumed

that the graphene sheet behaves elastically in bending for all nanotube radii. Clearly, the trends

of the computational chemistry data and the equivalent-continuum model are in agreement.

6. Summary

A method has been presented for modeling structure-property relationships of nano-structured

materials. This method serves to link computational chemistry, which is used to predict

molecular properties, and solid mechanics, which describes macroscopic mechanical behavior

based on bulk material properties. This link is established by replacing discrete molecular

structures with equivalent-continuum models. It has been shown that this replacement may be

accomplished by equating the molecular potential energy of nano-structured materials with the

mechanical strain energy of a representative continuum model. The development of an

equivalent-truss model may be used as an intermediate step in establishing the equivalent-
continuum model.

The proposed modeling method has been applied to determine the effective geometry and

effective bending rigidity of a graphene sheet. A representative volume element (RVE) of the

chemical structure of a graphene sheet has been substituted with RVEs of equivalent-truss and

equivalent-continuum models. As a result, an effective thickness of the continuum model has

been determined. This effective thickness has been shown to be significantly larger than the

inter-planar spacing of graphite. The effective bending rigidity of an equivalent-continuum plate

15



model of a graphenesheetwas also determinedusing the proposedmethod. The molecular
potentialenergyof themolecularmodelof a graphenesheetsubjectedto cylindricalbending(to
form ananotube)wasequatedwith the strainenergyof anequivalent-continuumplatesubjected
to cylindricalbending.
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Table 1 - Ratio of calculated Young's modulus for different wall thicknesses with respect
to the Young's modulus calculated with the inter-planar spacing

Load cases I and II

Load case III

Average of I, II, and III

Yakobson et al. 1996

Inter-planar spacing

Continuum Continuum Ratio of Young's
wall thickness cross-sectional area moduli

[nm] [nm2] [%]

0.69 4.34r c 0.49

0.57 3.58r c 0.60

0.65 4.08r c 0.52

0.07 0.44r c 4.86

0.34 2.14r c 1.00

Table 2 - Values of the force constant associated with bond inversion of a graphene sheet

Study

Bakowies and Thiel [36]
Robertson et al. - EP1 [43]
Robertson et al. - EP2 [43]
Robertson et aL - LDF [43]
Sawada and Hamada [44]
Miyamoto et aL [45]
Hernandez et al. (n,n) [46]
Hernandez et aL (n,0) [46]

Average

K '_ [eVxnm_/atom]

0.016
0.016
0.011
0.021
0.017
0.020
0.021
0.022

0.018
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Figure 1 - End section of a single-walled carbon nanotube.

Figure 2 - Representative volume element of a graphene sheet.
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Figure 10 - Strain energy of a graphene sheet subjected to cylindrical bending.
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