Neuroelectric Virtual Devices

Kevin Wheeler, Computational Sciences Division, NASA Ames Research Center Charles Jorgensen, Computational Sciences Division, NASA Ames Research Center

This paper presents recent results in neuroelectric pattern recognition of electromyographic (EMG) signals used to control virtual computer input devices. The devices are designed to substitute for the functions of both a traditional joystick and keyboard entry method. We demonstrate recognition accuracy through neuroelectric control of a 757 class simulation aircraft landing at San Francisco International Airport using a virtual joystick as shown in Figure 1. This is accomplished by a pilot closing his fist in empty air and performing control movements that are captured by a dry electrode array on the arm which are then analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. We then demonstrate finer grain motor pattern recognition through a virtual keyboard by having a typist tap his fingers on a typical desk in a touch typist position. The EMG signals are then translated to keyboard presses and displayed. The paper describes the bioelectric pattern recognition methodology common to both examples. Figure 2 depicts raw EMG data from typing the numeral ' 8 ' and the numeral ' 9 '. These two gestures are very close in appearance and statistical properties yet are distinguishable by our hidden Markov model algorithms. Extensions of this work to NASA missions and robotic control are considered.

Figure 1. Flying F15 active aircraft simulation with dry electrode EMG sleeve.

Figure 2. Raw EMG data for two different gestures, typing ' 8 ' and typing ' 9 '.

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$\mathscr{0}$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: 0; border-bottom: none !important; border-bottom: none !important; " rowspan="2"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| $\mathscr{0}$ |
| :--- |
| 0 |
| |</table-markdown></div>
 Neuro-electric Virtual

.
(9)
Extension of Human Senses
Trends in Personal Computing

Smaller, faster motherboards - wearable cases
Spoken command input - speech recognition works for common words but not good for programming and science tasks

$$
\begin{aligned}
& \text { Full size keyboards - Design has NOT evolved. The physical } \\
& \text { size of input keys limits the evolution } \\
& \text { of cell phones, laptops, command panels, } \\
& \text { aircraft instrumentation ... }
\end{aligned}
$$

Bioelectric Keyboard NASA Applications
Wearable Cockpit - virtual instrumentation, moves with pilot,
works for AUVs and manned missions.
Provides for faster and cheaper

reconfiguration, and safety monitoring of pilots. Spacesuit restricted typing - allows for typed data entry | while wearing spacesuit or within confined |
| :---: |
| environments. |

ctrode Types:

- Wet temporary - $\mathrm{Ag} / \mathrm{Ag} \mathrm{Cl}$ stick on temporary electrodes
- Wet gel/metal cups - attached with super glue
- Dry - metallic composition affixed by elastic
El

Initialization -
Features -
Training -
Recall -
Real-time Recall -
Uses multiple identical recognitions in a row.

Extension of Human Senses
HMM Initialization

Real World Problem Domain:

- Non-stationary time-series
- Non-Gaussian distributions of feature values
- Dependence between features and channels
Real World Problem Domain:
- Non-stationary time-series
- Non-Gaussian distributions of feature values
- Dependence between features and channels
- Real-time recall requirement
- On-line adaptation capability
- Multi-user context switching
- Simple voting schemes

Extension of Human Senses
Viterbi Recall

[^0]Extension of Human Senses
Visualization \& Understanding
Error Analysis

EHS -K. Wheeler

$$
\begin{gathered}
\text { Extension of Human Senses } \\
\text { Typing Demonstration }
\end{gathered}
$$

Extension of Human Senses
Typing Data

EHS -K. Wheeler
Extension of Human Senses
Typing Data

Extension of Human Senses
Mutual Information Analysis
Multi-Time Single Channel (MTSC) - one time-slice and one channel for
gesture X can be compared with all time slices and the same
channel for gesture Y .
Multi-Time Multi-Channel (MTMC) - one time-slice and one channel for
gesture X can be compared with all time slices and all channels
for gesture Y .

Extension of Human Senses
Mutual Information (STSC)
(100
gimbit

Comparing independence for

for each channel across time.
Note that different channels are important at different times for distinguishing
between key presses. For " 1 " vs. " 3 " channels 5 and 6 are important, for " 4 "
Vs. " 6 " channels 4 and 7 are significantly different.

[^0]: EHS -K. Wheeler

