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We present numerical results of the diffusion cpefficients (DCs) in the coupled diffusion model
derived in the preceding paper [J. Li and C. Z. Ning, Phys. Rev. A 651 for a semiconductor quantum
well. These include self and mutual DCs in the general two-component case, as well as density- and
temperature-related DCs under the single-component approximation. The results are analyzed from
the viewpoint of free Fermi gas theory with many-body effects incorporated. We discuss in detail
the dependence of these DCs on densities and temperatures in order to identify different roles played
by the free carrier contributions including carrier statistics and carrier-L0 phonon scattering, and
many-body corrections including bandgap renormalization and electron-hole (e-h) scattering. In the
general two-component case, it is found that the self- and mutual-diffusion coefficients are determined
mainly by the free carrier contributions, but with significant many-body corrections near the critical
density. Carrier-LO phonon scattering is dominant at low density, but e-h scattering becomes
important in determining their density dependence above the critical electron density. In the single-
component case, it is found that many-body effects suppress the density coefficients but enhance
the temperature coefficients. The modification is of the order of 10% and reaches a maximum
of over 20% [C. Z. Ning and J. Li, Phys. Roy. B: Rapid Communications, submitted (2002)] for
the density coefficients. Overall, temperature elevation enhances the diffusive capability or DCs
of carriers linearly, and such an enhancement grows with density. Finally, the complete dataset of
various DCs as functions of carrier densities and temperatures provides necessary ingredients for
future applications of the model to various spatially inhomogeneous optoelectronic devices.

PACS numbers: PACS Numbers: 42.55.Px, 42.65.Sf, 78.20,Bh

I. INTRODUCTION

In the preceding theoretical paper [1], we have derived
a set of coupled diffusion equations for the densities and
temperatures of eIectrons and holes in a spatially in-

homogeneous semiconductor quantum well (QW). Our
derivation is based on a microscopic kinetic theory for the

electron-hole plasma (EHP) model. Such a first-principle
approach allows us to derive explicit expressions for all

momentum and energy (and thus temperature) relax-
ation rates and for various diffusion coefficients (DCs),
including the general two-component (TC) case and the

single-component (SC) case under the ambipolar diffu-
sion approximation (ADA) or in the strong electron-hole

(e-h) scattering limit. The diffusion coefficients are given
in terms of momentum relaxation rates, many-body cor-

rections, and derivatives of carrier thermal energies [1].
Ultimately, the coefficients become functions of the ther-

modynamic variables of the EHP through these quanti-
ties. The application of the model is not restricted to las-
ing devices. Rather, it can be easily adapted to describe

EHPs in other types of devices, such as photodetectors

and photoconducting devices. Obviously, any application
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of our model rely upon the knowledge of the diffusion co-
efficients.

The purpose of the present paper is two fold: First,
we want to analyze in detail the behaviors of these DCs

and understand them in terms of underlying physics pro-
cesses. As we will show, all features of the DCs can be

explained in terms of Fermi gas theory with the proper
inclusion of many-body effects [2]. Second, we want to

present a complete dataset for these DCs as functions
of densities and temperatures to provide guidance for
any future applications of this modeI to various optoelec-

tronic devices. Since most of such applications ultimately
will involve extensive simulation of the partial differential

equations, it is essential to have those DCs tabulated and
eventually fitted as analytical functions of densities and

temperatures beforehand so that time-consuming micro-
scopic calculations can be avoided.

For the numerical results, we choose an 8 nm

A10.3Gao._As/GaAs quantum well structure as the model

material system. Relevant material parameters are well-
documented in the literature, and thus will not be

listed here. For this structure, typical plasma density is
1012 cm -2 for room temperature lasing operation. Thus

the ranges for the thermodynamic variables are chosen for
densities from 101° to 1013 cm -2 and for temperatures

from 200 to 400 K. To manage the already very lengthy
analysis, we shall not further differentiate temperatures

between electrons and holes and use the term plasma
temperature to denote the common temperature. As



shownin thenumericalresults,temperatureplaysavery
predictablerole.Additionally,werestrictourpresenta-
tion anddiscussionsto density-relatedresultsat 300K
onlyforthegeneral two-component case and discuss the
temperature-related coefficients only for the SC case.

To help the discussions in the two-component case, we
distinguish carrier types (electrons and holes) and their
associated variables between primary and secondary ones

when we present a diffusion coefficient. Such an assign-
ment stems from the fact that the coefficient relates the

gradient of the primary variable to the current of the sec-

ondary variable. For example, when the diffusion coeffi-
cient DN_N_ is discussed, where a, fl E {e, h}, we refer
to ]V fl as the primary carrier density, or simply primary

density, and the fl-carriers as primary carriers. Accord-

ingly, N _ is referred to as the secondary carrier density,
or simply secondary density, and the a-carriers as sec-

ondary carriers. As an extension to this convention, the
primary type is itself for quantities with only one carrier
type in the index, but they may depend on variables of

the other type implicitly. The coefficient DN_N- and fac-
tor #a are such instances, which are functions of not only

the primary density N a and temperature T _, but also the
secondary density N _ and temperature T _. Finally, in

order to be consistent with this convention, for all other
quantities or terms denoted by both carrier types, their

primary type follows their associated DCs. For instance,

for the term H_h which appears in Eq. (6), its primary
carrier type is the holes ....

The paper is organized as follows. In Section II, we
summarize those key results in 2D Fermi gas theory
which are critical in understanding the diffusion coeffi-

cients. Then, we present and discuss the carrier mo-
mentum and temperature relaxation rates due to carrier-

LO (longitudinal optical) phonon scattering and electron-
hole (e-h) scattering in Section IH. Density diffusion co-

efficients in the general two-component case are presented
and analyzed in Section IV, followed by all the DCs for
the two-component case in Section V. A summary is

given in Section VI for the numerical results, together
with concluding remarks regarding the scope and valid-
ity of the model, many-body effects, and a comparison

with 3D results in the literature. Finally, we make an

acknowledgment.

II. KEY RESULTS OF 2D FERMI GAS THEORY

Since properties of the ideal Fermi gas will be impor-
tant in understanding the behavior of the momentum
relation rates and all the DCs, we summarize certain key

results of 2D Fermi gas theory. These results are obtained

by applying the independent electron approximation [3].
Furthermore, some terms frequently referred to in the
rest of the paper shall be introduced in this section.

First of all, the carrier thermal energies W_'s of the
2D EHP [cf. Eq. iD8) in Ref. !] can be approximated at
low and high density limits as follows:

N%BT a , Maxwell dist.IZ¢'_ = w_' (N _) + w_' (Na)T a2 , Fermi-Dirac" dist.

0)
where we have indicated the statistics applicable in each

case. Within the limited temperature range between
200 K and 400 K interested in this paper, the statistical

property or the degeneracy is determined by the density

alone. While the first line of Eq. (1) is the familiar clas-
sical result of the Boltzmann statistics, the second line is

obtained for the degenerate limit using the Sommerfeld

expansion. The first term w_(N c') has a quadratic den-
sity dependence, but no temperature dependence. The

remaining term contributes to all the temperature depen-
dence despite its weak dependence on density. Therefore,

the free carrier thermal energy has a bilinear combina-
tion of density and temperature in the classical regime,
while it is an addition of two quadratic terms of temper-

ature and density, respectively. Thus it follows naturally
that density (temperature) derivative is independent of

density (temperature), while linearly dependent on tem-
perature (density) in the classical regime. This is ex-

actly the opposite in the quantum or degenerate regime

where density (temperature) derivative depends linearly
on density (temperature), while showing no dependence
on temperature (density). Obviously, the energy deriva-

tives (or specific heats) in the two regimes exhibit differ-
ent behaviors. Since the DCs are closely related to such
derivatives, we expect different behaviors of DCs in two

regimes. The physical origin of the difference is the sta-
tistical degeneracy or Pauli's principle in the quantum

regime.

Next, we will illustrate how the transition from the
classical regime to the quantum regime can be quantita-
tively characterized, and the role played by the different

masses of electrons and holes. It can be shown [see Eq.

(DIO) in Ref. 1] that the density derivative of the thermal
energy of a-carriers is given by

ON.W c'- 7rli2Nc' l+exp(-- ) , (2)
me

where p_ is the chemical potential of a-carriers. The
chemical potential for fermionic particles increases mono-

tonically with their density owing to Pauli's principle. To
be exact, the chemical potential depends linearly on the

density in the quantum regime. In the classical regime,
however, ON_W _ = kBT _ because the exponential term

becomes important as the chemical potential gets nega-
tively large. Therefore, it is clearly shown from the above

equation that the carrier density corresponding to zero
chemical potential is an excellent quantitative indicator

for the transition from the classical regime to the quan-
tum regime. Such a density is called "the critical den-

sity" [4] in literature, despite the non-critical nature of
the transition. The 2D critical density is given by



2D__ m_kBT In 2 (3)
ncr ...,r ,_ 2 ,

which is about 5x10 n cm -2 for electrons and

3x1012 cm -2 for holes at room temperature. As de-

fined, the critical density provides a quantitative measure
above which statistical degeneracy for fermionic particles

becomes important. As a consequence of statistical de-
generacy, the phase space-filling effects greatly influence

the physical properties of the Fermi gas in the quantum

regime. In the quantum regime, energy for the 2D Fermi
gas is in the order of chemical potential, instead of the
thermal energy kBT in the classical regime. The con-

stant density of states (DOS) in 2D leads to the line'at
relationship between chemical potential and density, as

mentioned earlier. Therefore, the change in the energy
scale, thus its characteristics, as a manifestation of the

phase space-filling effects, results in corresponding behav-
ioral transitions in the physical properties of the Fermi

gas. Such transitions are ushered in at the critical den-
sity.

Now let us discuss the case of an EHP. The total ther-

mal energy of the plasma is the sum of that of electrons

and holes. As revealed by Eq. (3), because of their differ-
ent masses, the lighter electrons step into the quantum
regime before the holes, as we increase densities. Af-
ter the transition for electrons, their contribution to the

total theYm_al energy becomes larger than holes; asaTe:

sult of the stronger density dependence. Therefore, the
critical electron density masks the critical hole density,

as far as density derivatives of the thermal energies are
concerned. However, the story is not complete without

considering temperature derivatives of the thermal ener-
gies. It is interesting to show [see equations (D.10) and

(D.11) in Ref. 1] that the following relationship holds for
any density and temperature:

N_C_N _ W _ + T_OT . W _ = 2W _ . (4)

This is in fact Euler's theorem for homogeneous functions
of degree 2, which states that the thermal energy is a lin-

ear superposition of quadratic polynomials in density and
temperature. This equation dictates a quadratic density

dependence for the term w_ (N _) and no dependence for
w_(N _) in the quantum regime. Note that these results
are consistent with the results presented earlier. How-

ever, the first term dominates over the second term quan-
titatively, which is what the above equation fails to re-

veal and why electronic specific heat is much smaller in
a normal metal than in an ideal gas. As such, we see im-

mediately that the critical hole density masks the critical

electron density for temperature derivatives. Neverthe-
less, it is important to point out that around the criti-

cal density smooth transitional behaviors are anticipated.
Furthermore, as the upper density bound in the range of

interest is marginally higher than the hole critical density,
we expect certain degree of modification to the limiting

cases we have presented here. One of them is the den-

sity dependence of the temperature derivatives that do

show density dependence above the critical density, but
the dependence slowly decreases with density. Finally,

it is also true that for quite a many physical quantities
of the EHP, netiher the critical electron density nor the

critical hole density is the proper density that character-
izes the statistic transition because the EHP is a mixture

of electrons and holes after all. Instead, the transparency

density of the EHP, given by p_ + #,_ = 0 and denoted
2D is a better representative of the transition, espe-by ntr ,

cially for neutral plasmas. The density has a magnitude

between the critical electron density and the critical hole

density, as easily seen from its definition, since the chem-
ical potential is a monotonous function of density. In

general, it is appropriate to use the critical density of
the predominant carrier type for characterization of the

statistic transition; otherwise, the transparency density
is a better choice.

To close this section, we emphasize that the criti-

cal densities introduced here are useful for general un-
derstanding of the numerical results presented in the

present article, as their existence is a mere exposure of
the fermionic nature of the EHP. They will be extensively

referred to later as we discuss the underlying physics of
the results.

III. MOMENTUM AND TEMPERATURE --
RELAXATION RATES

Momentum relaxation is the underlying physics pro-
cess for carrier diffusion and the various relaxation rates

appear naturally in the expression of DCs as we will see

in the next section . To prepare ourselves for the ex-
planation of the diffusion coefficients, we present in this
section the relaxation rates obtained microscopically in

Ref. [1]. In short, the rates are treated within the sec-

ond Born approximation [5]. Screening of the Coulomb
interaction is described under the single plasmon pole ap-
proximation [6, 7]. Numerical integration for the rates is
implemented with forty-point Ganssian quadratures after

necessary simplifications. Both momentum and temper-
ature relaxation rates are shown, even though the tem-

perature relaxation (or the Newton's cooling) rates do
not affect the DCs. The temperature relaxation rates

are used in the temperature equation(s) in the coupled
diffusion model. Two major scattering mechanisms are

considered in our model: e-h and carrier-LO phonon (c-
LO) scatterings.

Results for momentum relaxation rates due to e-h and

c-LO phonon scattering are presented in Fig. 1. For the

e-h scattering rates shown, electron and hole density are
equal. At low density, the e-h scattering rate shows a lin-

ear density dependence, while the c-LO scattering rates
are density independence. All the rates decrease above

certain transition density which increases with tempera-
ture and is higher for holes. For the e-h scattering rate,
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FIG. I: Carrier momentum relaxation rates as a function of
density and temperature. All the results shown in this article
are for an 8 nm Alo.3Gao.TAs/CaAs quantum well. The inset
shows the #_ factor given by Eq. (31) in Ref. [1]. The electron
density and hole density are identical for the electron-hole
scattering and the #_ factor here. Note that this #, factor
is different from the one used under the single-component
approximation [cf. Eq. (13)] and is not carrier mobility either.

the decrease starts along with the e-LO scattering rates.
Overall, temperature dependence is relatively weak for

all the rates. Specifically, rise in temperature reduces all
the rates at low density, hut the dependenc-e is -r_v-eYsed

above the transition density. The characteristic change
for the rates across the transition density is associated

with statistical leap from classical to quantum regime by
the fermionic particles of the EHP. Consistently, quan-
titative comparison allows us to identify the density as

2D defined earlier. FUrthermore, itsthe critical density n_
temperature and carrier type dependence agree well with

those of the critical density.

Next, we explain the overall density-dependence be-
haviors of the rates in light of quantum degeneracy. At
low density, particles follow Maxwell distribution and

behave independently. Thus the c-LO phonon scatter-

ing rates are density-independent. The e-h scattering
rate, because of its binary nature, is directly propor-
tional to the secondary density (type fl), and indepen-

dent of the primary density (type e). As the two densi-
ties are the same in the figure, we see the linear density

dependence. In contrast, in the quantum regime, ow-
ing to Pauli's principle, phase space-filling effects start

to appear. Limitation in the available phase space for
out-scattered fermionic particles causes reduction in the

scattering rates, and thus relaxation rates. Both car-
rier types are subject to the phase space-filling effects,
despite starting at different critical densities. Now we

examine the role of the plasma temperature. In the clas-

sical regime, increase in temperature leads to population
shift to high energy or momentum states, but low mo-

mentum states are favored for relaxation processes be-
cause they transfer momentum more effectively to the

1013
rffl

° 10 _2
>,

10"

101°

O_

E 10_

10 s

. @ : ..... '

.,,.'/" 300 K i
J

109 101° 1011 1012 1013

carrier density (crn -2)

FIG. 2: Comparison of carrier temperature relaxation rates
as a function of density and temperature. The results shown
are obtained microscopically following Appendix A and B in
Ref. [1].

phonons. Thus the rates drop. As for e-h scattering,
the same argument applies, but since both carrier types
are affected by the temperature change, we see an en-

hancement in its temperature dependence in Fig. 1. As
carriers move into the quantum regime, Pauli's principle

plays a predominant role in limiting momentum relax-
ation. Nonetheless, rise in temperature reduces the de-

gree of statistical degeneracy, hence enhances relaxation - -
processes, as demonstrated by the high density results

in the figure. At the same time, the temperature change
also shift_ the critical density to higher value. Finally, the
difference in the electron and hole masses gives the higher

critical density for the latter, as clearly shown in the c-
LO phonon relaxation rates. The higher hole-LO phonon

rates are another manifestation of the larger mass of the
holes since it means more effective momentum transfer or

relaxation as more low momentum states are populated
by holes.

It is also interesting to note the quantitative differ-
ence between the momentum relaxation rate due to c-LO

phonon scattering and the rate due to e-h scattering. Ac-

cording to our arguments for the limiting case of strong
e-h scattering in Ref. [1], the single-component approx-
imation for such a case is marginally justified, as the

momentum relaxation rate due to e-h scattering (shown
in Fig. I) is only a few times larger than the one due to
c-LO phonon scattering around the transparency density.

The Newton type of cooling due to energy exchange be-
tween electrons and holes is a pure many-body phenom-
ena. As far as we know this rate has not been calculated

microscopically in the literature. We thus present in the

remaining of this section the temperature decay rates due
to e-h scattering and due to c-LO scatterings in Fig. 2
in close resemblance to the momentum relaxation data.

Qualitatively each decay rate follows similar behavior to

its counterpart in Fig. 1, therefore, only decay rates at
300 K are shown. In addition, the same understanding



for momentumrelaxationprocessesis applicablehere.
Nevertheless,wenotethatthecoolingratesforelectrons
andholesdueto e-hscatteringaredifferentasa result
of their differentmasses,asalsoexplainedin Ref.[1].
Thisis differentfromthesituationofmomentumrelax-
ationwherethereis nosucha difference.Thereasonis
that thetotalmomentaoftheEHPareconserved Ml the
time so that the momentum relaxation rates have to be

the same. However, for temperature cooling it is the to-

tal energy that is conserved. Energy conservation only
demands that the same amount of energy be exchanged
between electrons and holes, but their decay rates also

depend on their specific heats. The difference in their
specific heats of electrons and holes, owing to their dif-

ferent masses, explains why the cooling rates have to be

different for electrons and holes. In the quantum regime,
this rate difference is enlarged by the phase space-filling
effects, as is seen in the high density regime of Fig. 2. As

a result, the holes are much more difficult to cool down
than the electrons. Regarding the c-LO cooling rates,

we see that holes have a larger rate than electrons as a

result of larger population (product of distribution func-
tion and the density of states) in the low energy states.
Such lower energy states are favored for very effective en-

ergy transfer to phonons via the scattering, as compared
to the lighter electrons. Also, the heavier holes have a

higher critical density. Therefore, not only the holes have
a larger cop ling rate than the electrons, but also a weaker

density dependence at the same time .................
As we close this section and move on to the presenta-

tion of diffusion coefficients, we note that only momen-
tum relaxation rates are involved. So, all relaxation rates
are meant,:_for momentum relaxation later unless indi-

cated oth_wise.

IV. DIFFUSION COEFFICIENTS FOR A
TWO-COMPONENT PLASMA

In this section we present results for the density-related
diffusion coefficients in the general two-component case
as a function of electron and hole densities. For con-

venience, the formulation for the coefficients is collected

below [1]:

D .N. = [(1+ + . (s)

= [(1+ + . (6)
= [(1+ + . (z)

= [(1+ + . (s)

where S_ = OswWC'+ Na_N<,Sc a and H_ =
N_CqN, Se _ , (a, t3 E {e, h} [ a _ _). Here W a is the

thermal energy of c_-carriers and 5E a is the many-body

correction to the carrier self energy of type a. We refer

to S_, and H_,_ as self-terms and mutual-terms, respec-
tively.

A. A Few Important Functions of Density and
Temperature

We note that DCs in Eqs. (5-8) are given in terms of

three groups of factors: #_,'s, r/_'s, and {S_-= ,H_ }. It
helps tremendously in the interpretation of the results
for the coefficients to first analyze these quantities as

functions of carrier densities and plasma temperatures.
Within the EHP model, all the physical effects can be

grouped into free carrier and many-body contributions.
The former includes carrier statistics and c-LO phonon

scattering, while the latter includes many-body correc-

tions to the carrier self energy and the e-h scattering. The
many-body corrections appear in the form of bandgap

renormalization (BGR) in the high density case. Note

that statistical degeneracy is a kind of carrier correla-
tion and is regarded as free carrier contribution, since its

origin is of statistical nature, rather than the Coulomb-
mediated carrier-carrier interaction.

We first examine factor p_, as defined by Eq. (31) in
Ref. []]: Results for the case of equal electron and hole

density are shown as an inset in Fig. 1. The main feature
of the curves are the linear density dependence at low

density, and a generally weak dependence otherwise. It
decreases with temperature at low density, but increases
at high density. Apparently, its linear density depen-

dence originates from the secondary density dependence
of the e-h scattering rate. As will be explained later, this

linear density dependence results in a similar secondary
density dependence at low density for mutual-diffusion
coefficients.

Next, we take a close look at factor _ which is given

by n7Lo(m_ + mh)/')'_hm_,. Thus it is essentially the ratio

of the c-LO phonon scattering rate to that of e-h scatter-
ing. This factor, as can be inferred from Fig. 1, has an

inverse linear relationship with the primary density N _,
but is independent of the secondary density N _ at low

density. The relationship is weaker than, but close to, lin-

ear on both densities at high density. In particular, it has
a V-shaped minimum near the critical primary density.
The consequent effects on the self-diffusion coefficients

will be identified in more detail in the next subsection,

but an a qualitative examination of Eqs. (5) and (8) al-
lows us to anticipatethe main feature. Furthermore, the
magnitude of r]_ is in the hundreds at low density and in

the order of one near the critical density. So it acts as a
magnification factor for the originally weak many-body

corrections, which is also obvious by inspecting Eqs. (6)
and (7). In addition, 77¢is order of magnitude larger than

r?h because of both the lighter mass of the electrons and
larger h-LO phonon scattering rate. Both factors #_ and

T)_ produce most of the density dependence for all the
coefficients at low density, and further lead to superlin-

ear behavior of the coefficients at high density by adding
to the linear density dependence due to the free carrier

contributions. However, the product of these two factor

yields no density dependence at low density. Incidently,
this product is related to the carrier mobilities.



ThelastgroupoffunctionsareS_= and H_o. S_w'S

are normally orders of magnitude greater than H_-_'s,

but this margin can be greatly reduced near the criti-
cal density. In the extreme case, the margin is merely
50 percent at the critical hole density when the electron

density is high enough. The self-terms contain a dom-

inant free carrier part (alwW _) and a negative BGR

part (Na0N=6ea), while the mutual-terms consist only
of a BGR part (N%gN_bEa). As the free carrier part
has been fully accounted for in Section II, we focus upon

the BGR parts here. I_ue to the attractive nature of
the Coulomb interaction between electrons and holes,

the BGR self-energy itself is negative. Both the screen-
ing effect and the BGR parts deminish at low density,
while the former increases with both densities in the den-

sity range shown. Furthermore, despite the absence of

the so-called Coulomb hole (CH) correlation in the elec-
tron self-energy, electrons' BCR part in the self-terms

behaves similarly to their hole counterpart. Specifically,
the part is negative and increses with the primary density
but decreases with the secondary density in the density

range shown. In stark contrast, the situation is differ-
ent for the mutual-terms, which only exist thanks to the

screening effect by the secondary carriers. It turns out
that the presence of the large CH self-energy dictates

that, below the critical hole density, the hole mutual-
term H A. -- NhaN, be h be negative, and the electron

mutual-term H_vh be positive. The grave consequence of
this difference is, as witl be shown in the following sub-

sections, that H_h has an appreciable impact on the hole
density coefficients DN,Nh and DN_Nh,:as compared to
the negligible role played by H_ on the electron density

coefficients DN,lv- and DNhN,. The physical reasons
are several fold: first and foremost, the free carrier part

CgN_W _ plays a dominant role at lower density for elec-
trons owing to their lower critical density than for holes.
Second, the BGR contributions to the electron density

coefficients are either smaller than their counterparts to
the hole density coefficients or overwhelmed by the free

carrier part because of the first reason. Last but not the
least, the order of magnitude larger magnification factor

_ takes effect.

Concerning the density and temperature dependence
of the self- and mutual-terms, we consider independently

the free carrier part and the BGR part. The free car-
rier part relies only on the primary density and tempera-

ture. It is density independent and linearly proportional
to the temperature in the classical regime. Furthermore,

it is linearly dependent on the density and temperature
in the quantum regime. The BGR part partially cancels
the free carrier part near the critical density in the self-

terms. However, the mutual-terms add to the self-terms.
Because of large CH contribution, the hole-related BGR

part in the self-terms has a much larger impact than the

electron-related part. Thus many-body corrections in-
fluence the hole density coefficients much more than the
electron density coefficients.

In connection with the detailed anaIysis of the above
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FIG. 3: General two-component eleCtron-hole plasma case:
self-diffusion electron density coefficient DN*N_ versus elec-
tron density (Panel a) and hole density (Panel b). All data
shown in Figs. 3 and 4 are at 300 K including many-body
corrections.

6

B. Self-Diffusion Coefficients" DjwN_ and DNhNh

Now we are ready for the presentation of the diffusion
coefficients in the general two-component case. We show

results for plasma temperature of 300 K only. In general,
increase in plasma temperature leads to enhancement of

diffusive capability of carriers, as will be seen in Section V
for the results in the single-component case.

Depicted in Figs. 3 and 4 are the numerical results
for the self-diffusion coefficients DNoNo with a = e, h,

respectively, where Panel (a) and (b) show the depen-

dence of the coefficients on electron and hole densities,
respectively. At low density, the coefficients decrease sub-

linearly with the primary density [Figs. 3(a) and 4(b)],
but grow very slowly with the secondary density [Figs.

important factors, we conclude this subsection with a
summary of their impact on the diffusion coefficients in

the general two-component case as follows: The sell- and
mutual-diffusion coefficients are determined mainly by

the flee carrier contributions, but with appreciable many-
body corrections near the critical density for the hole den-

sity coefficients. Carrier-LO phonon scatterin 9 is domi-
nant at lowMensity, but electron-hole_ sc_a_t_ter_in&beepm.__

important in determinin 9 their density dependence above
the critical electron density. As a result, the self-diffusion

coefficients are density-independent at low density, and
become superlinearly dependent on the primary densityl

The mutual-diffusion coefficients depend linearly on the

secondary density at low density. They become strongly
dependent on the electron density, but weaker on the hole

density than on the electron density above the critical
electron density. All the coefficients depend weakly on

the secondary density except DN.N h . Besides, hole den-
sity coefficients are greatly modified around the critical
hole density by many-body corrections.
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3(b) and 4(a)]. The dependence on the primary density,
however, becomes positive and superlinear at high den-
sity. Though the dependence on the secondary density

increases, but it is weaker than the primary density de-
pendence above the critical primary density. Near the

critical density, the coefficients decrease by as much as
50%, thUs"forming the valley structures in Figs. 3(a) and

4(b). The" Overall behavior is comprehensible by recall-
..... __-g_5ur di_c_/ssid/is-of t_he irnpb_-/th_ functiogg-in-_he la_rt-

subsection. Density independence in the classical regime

is expected because the free carrier part is dominant and

indepen'de_nt of density. In addition, factor 77_ is in the
hundreds=knd its density dependence cancels that of #_
when thdrtwo are multiplied. Carrier diffusibn in this

regime is ;_ldminated by the c-LO phonon scattering pro-
cess, no dependence on either carrier density should be

expected as a result. This picture is, however, true only
at very low density and could not explain the valley struc-

ture shown in Figs. 3 and 4.

The valley stucture shown in these figures is an indi-
cation that the simple Fermi gas picture either in the

classical or quantum limit is not enough to explain the
behaviors of the diffusion coefficients. There are two rea-

sons: First, a large portion of density range around the

critical density in these figures falls in the intermediate

regime between the two extreme limits. Second, many-
body effects become important in this regime. As seen
in the inset of Fig. 1, factor #_ starts to deviate from

the familiar linear density dependence of the ideal gas
theory at density of about 5 x 10 l° and the dependence

become much weaker thereafter. At the same time, other
factors also start to show deviation from their classical

limits. For instance, the e-h scattering rate at 300 K is
34% lower than its expected value from a linear depen-

dence at the density of 10 n cm -2, as shown in Fig. 1.
Therefore, the phase space-filling effects becomes appre-

ciable before the critical density is reached. Owing to
the smaller mass of electrons, such deviations appear at

lower density for them than for holes, and in larger mag-
nitude as well. In addition, many-body effects also affect

the behaviors of the coefficients, especially around the

critical density. In fact, not only the BGR terms become
important as carrier density increases, but also e-h scat-

tering introduces density dependence through factors p_
and r?_. As discussed above, the negative BGR part in

the self-terms, i.e., H_o, partially cancels the free car-
rier part, and thus suppress diffusive processes. As we

said earlier, many-body effects in this paper contain two
parts: the BGR part and the e-h scattering part. It is

interesting to see how each part plays different roles in

forming the valley structure in the two self-diffusion coef-
ficients. A direct comparison of the coefficients with and
without the BGR contributions reveals that the minimal

structure for DyhNh is mainly due to the BGR contri-

bution in the corresponding self-term, while it is the e-
h scattering that yields the similar structure in DN,N,.

This means that the suppression of carrier diffusion can
be due to either the attractive Coulomb interaction so

that carriers tend to cluster rather than disperse apart, or
increase in the e-h scattering rate so that carriers spend

more time bouncing around internally rather than wan-
dering away. The more frequent collisions for holes with
LO phonons at low density mean less diffusive capability

or a smaller DC for them. Consequently, e-h scatter-
ing influences the diffusive capability of electrons more

than that of holes. Therefore, the reduction in the diffu-

sive capability of electrons is mainly due to enhancement
of e-h scattering as carrier density increases, and BGR
contribution is responsible for such suppression in the

diffusivity of holes.

It is relatively straightforward to understand the re-

sults at high density. Free carrier contributions to the
self-terms have a linear primary density dependence and
no dependence on the secondary density. Additionally,

they are predominant'over the BGR parts. As a result of
the combined effects of factors #_, _, and the self-terms,

the coefficients increase superlinearly with the primary
carrier density Icf. Figs. 3(a) and 4(b)], but more weakly

on the secondary carrier density [cf. Figs. 3(b) and 4(a)].

C. Mutual-Diffusion Coefficients: DN=Nh and
nNa N_

The mutual-diffusion coefficients DNolvo with e,fl E

{e, h} ] _ 7_/3 are shown in Figs. 5 and 6, respectively.
Panels (a) and (b) depict the dependence of the coeffi-
cients on electron and hole densities, respectively. Ac-

cording to Figs. 5(a) and 6(b), these coefficients decrease
and go to zero as the secondary density decreases to zero.

They are independent of the primary density at low den-

sity [Figs. 5(b) and 6(a)]. At high density, they feature a
superlinear growth with the electron density, but a much

weaker one with the hole density. For Dx,_rh, similar
valley structure appears for high electron densities [Fig.

5(b)], but the bottom of the valley appears at a higher



3O

_- 2O
"7

fD

_E

=z 10
mlE

El

-- 101°

__ 1011
- 1012 ;

--- 12_J s
/
:a)

Ne

\

2x101_k,

' !l
• \.j s1^11 , , ,, ]

01o"1011 1012 1013 101° 1011 1012 1013

N e (cm -2) N h (cm -2)

FIG. 5: General two-component electron-hole plasma case:
mutual-diffusion hole density coefficient DN_Nh versus elec-
tron density (Panel a) and hole density (Panel b).

150 ...........

i h Ne
N

__ 10_o 50 __ 101o '
11 11

loo i-1% ,, -]% /
-° ,---,o - ,ot-- 2xlo !I' -- 2xlo,.
_E

o I _ 25r /" ,'
50 _ ; ,, ..."

-':_ (a) . j . (b) L/_,_._.-:____

° /'/ I

°o'°io" lO °o'°lo1'lo lO,3
N" (cm -2) N" (cm -2)

FIG. 6: General two-component electron-hole plasma case:
mutuM-diffusion electron density coefficient DghN_ versus

electron density (Panel a) and hole density (Panel b).

density than for DN_,N h [Fig. 4(b)] around the critical

hole density. For DNhN, , by contrast, no appreciable fea-
ture shows up around the critical electron density [Fig.

6(a)], as compared to DN*N, [Fig. 3(a)]. Finally, on
secondary density dependence, a more pronounced slow-
down of the transitional growth in the coefficients is ob-

served for DNhN_ near the critical hole density in Fig.

6(b) than for DN_N h near the critical electron density in
Fig. 5(a).

These behaviors can be understood similarly as for the
self-diffusion efficients in terms of the several factors dis-

cussed in Subsection IVA, as plainly indicated by Eqs.

(5-8). We start with low density results. In this regime,
the free carrier contributions have no density dependence
and the BGR terms diminish such that the coefficients

are well described by DN=Na "_ pc, S,_Na. As such, the co-
efficients inherit the secondary density dependence of fac-

tor #_, or a linear dependence (Fig. 1 inset). At the same

time, the coefficients have no dependence on the primary

density. Nevertheless, deviations exist due to the same
reasons as discussed in the preceding subsection. After

comparing with results without BGR contributions, it
is found that the mutual-term H_vh approx_imately dou-
bles D/WNh when the electron density is above its critical

value [Fig. 5(b)]. The enhancement is attributed to fac-
tor _e whose value is about 400 at 101° cm-2--that is

why we call it a magnification factor. Physically, it is

easy to understand these behaviors of the coefficients.
Mutual diffusion process is a consequence of interactions

between different types of carriers. The interactions re-
sult in both many-body corrections to the self-energy of

the involving carriers and incoherent scattering events
between them. It is trivially expected that the effects of
the interactions on carriers of the secondary type _nish if

secondary density becomes too small in the electron-hole

plasma model [8]. This induced diffusive process is ele-
vated as secondary density increases, though increase in

primary density impedes such an enhancement by intro-

ducing stronger scattering and more negative many-body
corrections. As carrier densities are around their critical

densities, quantitative differences in the factors discussed
in Subsection IVA between electrons and holes take ef-

fect. As a result, many-body corrections have a much
more noticeable impact on DN,Nh than on DNhN.. One

indication is in Fig. 5(b) where the hole density depen-
dence features a remarkable dip near the critical density

for DN, Nh. This behavior is because the positive BGR
contribution to the mutual-term doubles the coefficients

at low density through the magnification factor, in con-
junction with partial cancellation of the free carrier con-"

tribution by the negative BGR part in the self-term [cf.

Eq. (6)]. The cancellation is most pronounced near the
critical density. For DNhN,, the free electron contribu-
tion overwhelms the BGR term as the larger but negative
BGR contribution to the mutual-term is partially offset

by the order of magnitude smaller magnification factor

_h- As a matter of fact, factor _h takes a value of 1
as compared to a value of 10 for fl_ when both electron
and hole density are 10 _2 cm -2. As such, the many-body

corrections bring about the minimal structure in DlWN h .
However, many-body correction does cause a more dis-

tinguishable slowdown in its transition into the quantum
regime for D_,,]v, near the critical hole density, as shown

in Fig. 6(b). Finally, above the critical densities, free car-
rier contributions take over and superlinear growth takes
hold for the coefficients. However, in comparison with

the self-diffusion coefficients, the density dependence of
the mutual-diffusion coefficients is much weaker because

of displacement of the magnification factor q_ from the
self-terms to the mutual terms, as shown in Eqs. (5-8).

In summary, mutual-diffusion coefficients describe the

induced diffusive capability of the secondary carriers by

interacting with the primary carriers. As a result, the
coefficients go to zero with the secondary densities. In
addition, many-body corrections have more pronounced
effects in these coefficients, especially in D_v,Nh.



V. THE AMBIPOLAR DIFFUSION
COEFFICIENTS

In this section, we present numerical results for all four

ambipolar diffusion coefficients and analyze their depen-
dence on plasma density and temperature, as well as the

effects of the many-body corrections on them. For conve-
nience, we choose the word "ambipolar" to represent the

results for generic single-component cases in this article
without further implication. Under the single-component

approximation, the EHP is neutral and all thermody-
namic properties are characterized by the plasma density

and temperature. For easy reference and discussions, the
expressions for the coefficients are rewritten below:

DNN = It (aNW + NON(_gg) , (9)

DNT -= It (_TW + NOTgCg) , (10)

DTN = [2jw(W/N)--jN]DNN, (11)

DTT = [2jw(W/N) - jN] DNT , (12)

where W is the total thermal energy of the EHP and

&g _ &e + 5eh is the total BGR energy. Furthermore,
we have

Z :.

, = + , (13)

wher-e_j_:_ncl jg are transformati0n-Jacob_an-_an_l--_ven

in Ref..[1]. We point out that the e-h scattering rate
drops out in the present case. The absence of e-h scat-
tering it[the ambipolar mobility was noted in Ref- [9].

Consequ_iStly we see that all the ambipotar diffusion co-
efficients'gre independent of the scattering. As in the
general {v:%-component case, we start by analyzing the

contributing factors to the DCs in terms of their de-
pendence on the thermodynamic variables of the EHP,

followed by presentation of the results for the DCs them-
selves and the associated many-body effects.

A. Density and Temperature Dependence of the
Contributing Factors

As shown in Eqs. (9-12), there are four contributions

to the diffusion coefficients from: (1) incoherent scat-
tering in factor It, (2) free carrier part represented by

the derivatives of the total thermal energy W, (3) coher-
ent many-body part represented by the derivatives of the

BGR 5eg, and (4) the prefactor in the expressions of DTN
and DrT in Eqs. (11, 12). The first three contributions

have been elaborated somewhat in the two-component
case in Subsection IVA. In the following, we point out

their ramifications in the singe-component case and fo-
cus on the BGR contributions instead. A summary of

many-body effects is presented elsewhere [10].
To begin with, we note that factor p [cf. Eq. (13)] is

independent of plasma density in the classical regime,

and has a sublinear density dependence above the crit-

ical hole density o_ing to the dominance of the h-LO

phonon scattering rate. The factor increases weakly with
plasma temperature at low density, and becomes even

more insensitive to temperature at high density thanks
to the mixed contributions from the c-LO phonon scat-

tering rates. Second, the free carrier part, as in the
two-component case, dominates over the BG:R part. In

the classical regime, the free carrier contribution yields
no density and linear temperature dependence for den-

sity diffusion coefficients, and no temperature but lin-

ear density dependence for temperature diffusion coeffi-
cients. In the quantum regime, it gives rise to a linear

density and no temperature dependence for density diffu-
sion coefficients, and linear temperature but no density

dependence for temperature diffusion coefficients. F_r-

thermore, the density derivative of the thermal energy
0NW follows the critical density of the electrons, in con-
trast to the temperature derivative of the thermal en-

ergy OTW, which follows that of the heavier holes when
the EHP transits from the classical to quantum regime.

As explained in Subsection IV A, lighter electrons enter
the quantum regime at a smaller critical density than

holes. In the new regime, the contribution to the total
thermal energy from electrons is enhanced because the

electronic energy scale, which is now the chemical poten-
tial, increases with density. However, the enhanced con-

tribution, has a weaker temperature dependence. Con-
sequently, free carrier contributions show different criti-
cal densities in density and temperature diffusion coeffi-

cients. Third, we discuss the BGR parts in Eqs. (9-12).

In comparison with the general two-component case, the
e-h scattering rate and mutual-terms drop out. The BGR
parts in the self-terms are the only remaining many-body

contributions. Therefore, in general, many-body effects
have a less drastic impact in the present case because

of the missing contributions and the dominant free car-
rier contributions from the electrons in the EHP. Since

the value of the BGR is negative and increases with car-
rier density [11-13], its derivative with respect to density,

NONSeg as appeared in Eqs. (9, 11), is negative. The
magnitude of the term grows with density and saturates
at high density, but is insensitive to change in tempera-
ture, However, since increase in temperature reduces the

magnitude of the BGR [14], the temperature derivative

OrSeg is positive. The magnitude of the term increases
superlinearly with density at low density and tends to

saturate at high density. The term is insensitive to tem-
perature. Overall, the many-body effects are relatively
weakened by temperature since the free carrier contribu-

tions become more influential with an increase in temper-

ature.•Finally, the prefactor 2jw(W/N) - jN turns out
to follow approximately an inversely linear dependence

on the density and increase with plasma temperature in
the whole covered range, which can be easily verified by

recalling that the Jacobians are defined by jw = 1/OTW
and jN = ONW/OTW and using Eq. (1).
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B. Self-Diffusion Density Coefficient: D_ar

Figure 7 shows the self-diffusion coefficient DNN as
a function of plasma density (a) and temperature (b).

" -Solid-an-d dashed curves-{n the-figures represent results
with and without the BGR terms, respectively. The self-

diffusion density coefficient DNN displays a superlinear

density dependence at high density, and almost a con-
stant at low density, as shown in Fig. 7(a). The transition
in the density dependence occurs at the critical electron

density and shifts toward higher density with tempera-
ture. The temperature dependence is linear at low den-

sity, but somewhat nonlinear at high density as shown
in Fig. 7(b). These behaviors are mainly attributed to
the free carrier part 0NW in Eq. (9). As discussed ear-

lier, factor p is essentially density insensitive in the whole
covered range. The BGR term brings some correction to

the free carrier term, but does not change the basic be-
havior of the coefficient, which will be discussed next.

It is the free carrier part that is responsible for the ba-
sic behavior of the coefficient. In particular, the domi-
nant part increases from the classical value of 2kBT to a

value of the order of the chemical potential of electrons
as the EHP transits from the classical into the quantum

regime. Thus the coefficient DNN has no density depen-
dence and linear temperature dependence at low density.

In the intermediate density range, as the lighter electrons
lead holes in the transition, the transition density in Fig.

7(@ coincides with the critical electron density, and it

increases with temperature, as indicated in Eq. (3). In
the quantum regime, the chemical potential of electrons
is approximately given by zrh2N/m¢. Therefore, these

properties of the free carrier part, together with factor #,
produce the superlinear density dependence and nonlin-

ear temperature dependence of DN_, at high density. We
remark that the drastic increase in the coefficient near the

critical density is not due to the weakening in scattering.
As noted, factor # solely conveys the effects of scatter-

ing. It is clearly shown in Eq. (13) and Fig. 1 that the
h-LO phonon scattering plays a dominant role. Since the

scattering is basically density-independent in the covered

range, we conclude that scattering is not responsible for
the observed strong enhancement. Instead, the enhance-
ment comes directly from a density-dependent gain in en-

ergy as a result of the statisticM transition. As a matter
of fact, such a gain appears as a prefactor in Landsberg's

generalized Einstein relation [15]. Lastly, we mention
that in the classical regime, the Einstein relation is re-

covered as DNJv = 2kBTI2. However, in the quantum
regime the relation is modified not only by the phase

space-filling effects [15], as just mentioned, but also by
the many-body corrections.

Next, we discuss many-body effects on the coefficient

DNN. The effects stem from the BGR term Ncg_v&g in

Eq. (9). They result in the difference in Fig. 7 between
the solid curves which include the BGR term and the
dashed curves without the BGR term. As seen, the BGR

term increases in size with density at low density and
reaches maximum near the critical electron density. Then

it decreases at high density. Temperature has no appre-
ciable effect on the BGR contribution (difference between
solid and dashed curves) as best seen in Panel (b) which

is plotted in linear X-Y scale. The reduction in the coef-
ficient by many-body effects is expected because carriers

tend to congregate instead of diffuse due to the attrac-
tive nature of Coulomb interaction between electrons and
holes. Thus their diffusivity or diffusion coefficient is re-

duced as compared to the interaction-free case. Further
reduction results as interaction energy increases in mag-

nitude with density. On the contrary, increase in plasma
temperature enhances thermal motion of the EHP such

that the significance of the interaction for the plasma

is reduced. As a result, the effects are relatively weak-
ened. The difference introduced by many-body effects is
between 10_20%.

C. Mutual-Diffusion Temperature Coefficient: DNT

The results for the mutual-diffusion temperature coef-

ficient DNT are shown in Fig. 8 in linear X-Y scale in

the main Panels (a) for density dependence and (b) for
temperature dependence. Additionally, the 300 K data
with BGR contribution are plotted in log-log scale as

an inset for comparison. At low density, the coefficient

depends on the density linearly but not on the tempera-

ture. At high density, its density dependence is sublinear
[Fig. 8(a)], while the temperature dependence is linear

tFig. 8(b)]. It is noted from Panel (a) and the inset that
the statistical transition is characterized by the critical

hole density. In the classical regime, the linear density-
dependent and temperature-independent behavior is ex-
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pected because the dominating free carrier term demands
so, while factor p has only minor influence on the temper-

ature dependence. In the quantum regime, the dominat-
ing free car_ier part produces a linear temperature depen-
dence but'no density dependence. The sublinear density

depender[c_ comes from factor #, as discusse_]-ri Su-_ec-:
tion V A. !As we recall, both the free carrier part OTW

and factor:p follow the critical hole density as they en-

ter the quantum regime, which account for the observed
transitio n _ensity. The overall behavior of the coefficient

fits perfect!j_::to our general understanding of the physics
involved. Tirst of all, due to its induced nature, mu-
tual diffusion vanishes with the secondary variable. The

linear density dependence at low density manifests this
consistency. Second, as carriers become statistically de-

generate, the induced current is reduced as a result of the
limitation to available phase space. In the present case,

thermal excitation of carriers is restrictive compared to
classical case, which leads to smaller diffusivity. Then
temperature elevation tends to lift this restriction and

recover the classical result, thus we see an increase in the
coefficient (cf. Fig. 8). Therefore, the main features for

the coefficient DNT is readily comprehended.

The many-body effects on the coefficient are reflected
by the difference between the solid curves and the dashed

curves. As seen, the many-body effects increase the coef-
ficient and the amount grows with density in the density

range shown. The effects are independent of tempera-
ture. From the numerical point of view, the coefficient is

influenced by the BGR term NOTScg, which is positive
in the covered range, as explained in Subsection V A.

In addition, the BGR term increases superlinearly with

density and is weakly dependent on temperature. Thus
many-body effects on the coefficient behaves exactly as
expected. In comparison, the many-body effects on the

present coefficient are less than that on the self-diffusion
density coefficient. The effects are understood in the fol-

lowing way. Recall that the present coefficient represents
the induced contribution by temperature difference to the

density current. The diffusive current flows from high
temperature region to low temperature region. As._he

potential energy due to Coulomb interaction is lower in
the low temperature region, force is thus induced by the
temperature difference and this force helps current flow.

Therefore, many-body effects contribute positively to the

coefficient. The potential energy increases with density
in magnitude. The growth is superlinear at low density
and becomes slower at high density because phase space-

fiIIing effects take effect. Therefore, the enhancement
of the coefficient by many-body effects behaves the way

physics dictates. Finally, it is worth noting that, as indi-
cated by Eqs. (9-12), the two remaining DCs are affected
by many-body effects in the same rffanner as the two we

just showed, so the effects shall not 15e further discussed.
In summary, many-body effects reduce the density co-

efficients but enhance temperature coefficients. Plasma
temperature has negligible influence over the effects on
all the coefficients.

D. Mutual-Diffusion Density Coet_cient: DTN

In this subsection, we present the results for the

mutual-diffusion density coefficient DTN as shown in Fig-
ure 9. Density and temperature dependence of the coef-

ficient are plotted in Panel (a) and (b-d), respectively. In

the inset of Panel (a), the same data from the panel are
presented in linear X-Y scale for comparison.

The coefficient decreases linearly at low density and

increases sublinearly at high density. The transition oc-
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cursat ahigherconcentrationthanfor DUN and seem-

ingly follows the critical hole density. The temperature
dependence shows stronger than linear behavior. Un-

derstanding these results is straightforward by looking
at Eq. (11) and keeping in mind how the prefactor be-
haves as discussed in Subsection V A. The prefactor de-

pends inversely on density but linearly on temperature,
which translates into an inverse proportionality of the

coefficient to density at low density and sublinear depen-
dence at high density. The prefactor masks the critical

electron density by sh!ftJng the transition density to a
higher value than for DUN, and further transforms the

high density behavior of DTN from the superlinear de-
pendence of DNN to the present sublinear dependence as

exhibited in Fig. 9(a). On the other hand, the tempera-

ture dependence of DTN , as seen in Fig. 9(b-d), becomes
stronger than that of ])gY, as enhanced by the factor.
Now we examine the results from the physical perspec-

tive. The present coefficient measures the temperature
diffusivity induced by density difference. First, it van-
ishes with the secondary variable, i.e., plasma tempera-

ture, at low temperature, as expected and indicated in

Fig. 9(b-d). Second, at low density, thermal energy cur-
rent flows in proportion with density gradient as energy
scales linearly with density. However, temperature, as

an intensive quantity, does not scale with density. Thus
the induced temperature diffusivity scales inversely with

density. As phase space-filling effects set in as density
increases,-the diffusiv-ity is enhanced because increased

energy amount at the same temperature as compared to
the classical case, which is revealed in Panel (a). Then
temperature elevation hoists energy amount at any given

density, which improves the mutual diffusion in the whole
range shown.

E. Self-Diffusion Temperature Coefficient: DTT

W'e present the results for the self-diffusion tempera-
ture coefficient J_TT in this subsection in the same man-

ner used for DTN. As shown in Fig. 10, the coefficient
shows positive but quite weak dependence on density at
low density and sublinear decrease above the critical hole

density. A slightly superlinear temperature dependence
is shown by the coefficient. Similar to DTN , the be-

havior of the coefficient can be numerically understood
starting from the prefactor and DNT , as plainly told by

Eq. (12). Therefore, we shall omit discussions from the
numerical viewpoint, but to focus on the physical com-

prehension of the results. To start, we state that the
self diffusion of temperature is associated with the ther-

mal energy of the carriers. This is the fundamental rea-
son why the two self-diffusion coefficients DNN and DTT

share similar values in the classical regime, as shown in
Figs. 7 and 10. The thermal energy is linearly propor-

tional to density and temperature at low density, which

lead to the well known Wiedemann-Franz law [3]. Hence
the self temperature diffusion correlates with self density
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FIG. 10: The electron-hole plasma under single-component
approximation case: setf-dii_usion temperature coefficient
DTT versus plasma density (a) and temperature (b). The
inset shows the many-body corrections-included data in lin-
ear X-¥ scale for comparison.

diffusion, which results in quantitatively similar behav-

iors between the self-diffusion coefficients. However, in
the quantum regime, statistical degeneracy completely

breaks down the bilinear dependence of the energy on
density and temperature. The self-diffusion density coef-
ficient is drastically enhanced as a result of reduced scat-

tering rates because of the phase space-filling effects: But

reduction in scattering rates does not help self-diffusion
temperature coefficient. On the contrary, less scattering
means less thermal motion as if the temperature were

lower. Therefore, we see how physically the coefficient
decreases with density in the quantum regime. The ef-

fect of temperature elevation is comprehensible in similar
manner as to the other coefficients discussed earlier, and

thus ignored.

In summary, it has been shown for the diffusion coeffi-

cients in the singie-component approximation that many-
body effects suppress the density coefficients but enhance
the temperature coefficients. The modification is of the

order of 10% and reaches a maximum of over 20% I10]
for the density coefficients and keeps growing for the
temperature coefficients in the parameter range shown.

However, the many-body effects play a minor role in de-
termining the dependence of the coefficients on plasma

density and temperature. The free carrier contributions
are dominantly responsible for such dependence of the

coefficients. In the classical regime, the self-diffusion co-
efficients have no density dependence. However, the den-

sity coefficient is enhanced to a superlinear dependence,
while the temperature coefficient is reduced sublinearly,

as a result of statistic degeneracy in the quantum regime.
By contrast, the mutual-diffusion coefficients behave dis-
tinctly differently. The temperature coefficient vanishes

linearly with the density in the classical regime, but the

density coefficient scales inversely with density. Never-
theless, in the quantum regime, both of them scale sub-
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linearlywithdensity.Overall,temperatureelevationen-
hancesthediffusivecapabilityordiffusioncoefficientsof
carrierslinearly,andsuchanenhancementgrowswith
density.

VI. SUMMARYAND CONCLUDING
REMARKS

In thissection,wemakea fewgeneralcommentson
certainaspectsof our coupled diffusion model and the

numerical results presented in the preceding sections. By

doing so, we shall achieve a better physical understanding
of the present hydrodynamic description of transport of
the EHP in a quasi-two-dimensional QW structure.

First of all, it is realized that a general treatment of

carrier transport at low density on hydrodynamic level
is hindered by Coulomb interaction between electrons

and holes. Sophisticated theoretical work exists on such
exciton-plasma systems for moderately low density and

pure excitonic systems at lower density [16, 17], but state-
of-the-art laser models fail to include such complexity.

In this regard, our coupled diffusion model represents
an effort towards incorporating such physical complexity.

This is the premise upon which we justify our low den-
sity results, As such, we call the low density range below
the critical densities the classical regime. Furthermore,

the terminology implies a classical statistical treatment
ahd an extension of many-body theoret-ical resfilts which
includes the BGR contributions and scattering rates in

this range.
Next, we make some observations on the many-body

effects on the diffusion coefficients. As seen in Ref. [1], it

is clear that BGR contributions and e-h scattering plaY

drastically different roles in the general TC case than in
the SC case. Nevertheless, the results are self-consistent,

which is expected since the single-component case is just
a limiting case of the general two-component one. If the
electron-hole pair in the EHP is treated as a single entity,

as being done under the single-component approxima-
tion, the incoherent e-h scattering drops out and has no

influence on plasma transport. However, the BGR con-
tributions do have an effect on all the DCs, even though
the size of the effect varies from coefficient to coefficient.

Now we make a comparison between the self-diffusion

density coefficient D_rN in our quasi-2D case and its

counterpart in 3D case under the ADA approximation.
The coefficient for bulk GaAs was calculated and pre-

sented as Fig. 7 (solid ambipolar curve in the lower panel)

in Ref. [18] as a function of plasma density. The result
is compared to our quasi-2D results in Fig. 9(a). Simi-
lax transition of the density dependence from the classi-

cal to the quantum regime is observed in 3D case, and
our coefficient is marginally larger than the bulk value

in the density range shown. The transitional behavior in
our quasi-2D case is found to occur at a smaller density
than in 3D case after converting 2D density to 3D. To
understand this difference, we reiterate that the transi-

tion occurs because of statistical degeneracy in the quan-

tum regime. As carriers become degenerate, their energy
scale becomes the chemical potential instead of the ther-

mal energy scale kBT in the classical regime. Needless

to say, the classical energy scale is density-independent.
The chemical potential in the quantum regime is mainly
determined by density, but its value differs in different
dimensions because of different DOS. Therefore, phys-

ical quantities of an EHP in different dimensions have
different values, such as the transition density under dis-
cussion. To make a more specific comparison, we give

3D in 3D case below [4]:the critical densities nc_

ncr \ _ / x/__ del+exp(c)
(14)I

For electrons, it is about 10 is cm -3 and about 1019 cm -s

for holes at room temperature. Thus the difference in the
transition density is explained from a numerical point of

view. Next, the difference is scrutinized from the physi-
cal perspective. It is realized that reduced dimensionality
makes it easier for fermionic particles to feel the pres-

ence of each other as compared to higher dimensions at

the same temperature. The reason is simply that given
the same de Broglie wavelength from the thermal energy,

geometric restriction in lower dimension lead to higher
filling efficiency to fully cover tile volume or area. The

fermionic gas becomes statistically degenerate when car-
rier density--iS-tiig-h_nofi_h- -8_-_6_-eg-a_ow enoug_n
such that particles, which are characterized by the de

Broglie wavelength, overlap with each other. This means
that the critical density is smaller than its counterpart

in the bulk material and the lighter electrons has a lower
critical density than the holes. As such, we explain the
shift in the transition densities in 2D and 3D case. Other

than DNN, transitional behaviors in their density depen-
dence also occurs for the other DCs in our quasi-2D case.

It would be interesting to compare our quasi-2D results
to 3D ones for other diffusion coefficients.

Last but not the least, we comment on the applica-

tion aspect of the general two-component case where spa-
tial charge separation occurs. Such a case can be imple-
mented in type-II QW designs or by external modulation

of the quantum confinement potential. It is interesting
to note that even though screening effect is weakened in

such a case, higher mobility could still be achieved by
reduction in the e-h scattering. Furthermore, novel de-

vice designs could be conceptualized by the appearance of
negative mobility for the minority carriers under certain
conditions.

To conclude, we have presented the numerical results

for the density-related diffusion coefficients in the general
two-component case together with the results for all the
diffusion coefficients under the single-component approx-

imation for the coupled diffusion model which is devel-

oped for the hydrodynamic variables, i.e., carrier density
and temperature, of the electron-hole plasma within a
semiconductor quantum well laser device. Also presented
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are the carrier-LO phonon scattering and electron-hole
scattering rates which are computed microscopically and
used in the determination of the diffusion coefficients.

Moreover, the diffusion coefficients are analyzed in the

framework of free Fermi gas theory with the inclusion of
many-body effects. In the general two-component case,
it is found that the self- and mutual-diffusion coefficients

are determined mainly by the free carrier contributions,

but with appreciable many-body corrections near the
critical density for the hole density coefficients. Carrier-

LO phonon scattering is dominant at low density, but
electron-hole scattering becomes important in determin-

ing their density dependence above the critical electron

density. In the single-component case, it is found that
many-body effects suppress the density coefficients but
enhance the temperature coefficients. The modification
is of the order of 10% and reaches a maximum of over

20% [10] for the density coefficients and keeps growing

for the temperature coefficients in the parameter range

14

shown. However, the many-body effects play a minor
role in determining the dependence of the coefficients on

plasma density and temperature. The free carrier contri-
butions are dominantly responsible for such dependence

of the coefficients. Overall, temperature elevation en-
hances the diffusive capability or diffusion coefficients of

carriers linearly, and such an enhancement grows with
density. Simulation results based on the coupled diffu-

sion model will be presented in a future work. Finally, we
point out that the model in the general two-component

case can be utilized as a design vehicle for novel devices.
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