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Towards Resolving the Crab a-Problem: A Linear Accelerator?

Ioannis Contopoulos 1 and Demosthenes Kazanas 2

ABSTRACT

Using the exact solution of the axisymmetric pulsar magnetosphere derived

in a previous publication and the conservation laws of the associated MHD flow,

we show that the Lorentz factor of the outflowing plasma increases linearly with

distance from the light cylinder. Therefore, the ratio of the Poynting to particle

energy flux, generically referred to as a, decreases inversely proportional to

distance, from a large value (typically >104) near the light cylinder to a -_ 1

at a transistion distance Rtrans. Beyond this distance the inertial effects of the

outflowing plasma become important and the magnetic field geometry must

deviate from the almost monopolar form it attains between Rio and Rtrans. We

anticipate that this is achieved by collimation of the poloidal field lines toward

the rotation axis, ensuring that the magnetic field pressure in the equatorial

region will fall-off faster than 1/R 2 (R being the cylindrical radius). This

leads both to a value a = a_ << 1 at the nebular reverse shock at distance Rs

(Rs _ Rtrans) and to a component of the flow perpendicular to the equatorial

component, as required by observation. The presence of the strong shock at

R = R_ allows for the efficient conversion of kinetic energy into radiation. We

speculate that the Crab pulsar is unique in requiring a_ -_ 3 x 10 -3 because of

its small translational velocity, which allowed for the shock distance R_ to grow

to values >> Rtrans.

Subject headings." magnetic fields -- MHD -- pulsars: general

1. Introduction

The Crab nebula is certainly the best studied and possibly the most interesting of the

supernova remnants. This is due to the fact that it has been detected at an extremely broad

range of energies, from the radio to the TeV regime. What is of additional interest is that
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its expansion is powered by the energy input from the rapidly rotating pulsar PSR 0531+21

located at its center. As such it has been a laboratory for testing our models of pulsars,

MHD winds, supernova remnants and radiation emission processes. The Crab is not unique

in containing a pulsar at the center of a supernova remnant. However, it is unique in the

efficiency of converting the power output associated with the pulsar spin-down to radiation,

which reaches 20%, and to kinetic energy of the entire remnant which absorbs the remaining

80%.

Crucial in this efficient conversion of the pulsar power into radiation is thought to be

the presence of a (reverse) strong shock at an angular distance of 10/' (corresponding to a

distance -_ 3 × 10 iv cm) from the location of the pulsar. This shock randomises the highly

relativistic upstream MHD wind which is produced by the pulsar, thereby causing the wind

to radiate away a major fraction of its available energy. The presence of this strong shock

is predicated on the dominance of the relativistic MHD wind emanating from the pulsar by

particles rather than magnetic field, i.e. that the magnetization parameter (defined below)

at the shock distance has a value a_ << 1.

The value of or8 has been estimated in a variety of ways. Kennel & Coroniti (1984)

(hereafter KC) have computed the detailed structure of the MHD flow downstream from

the shock and concluded that matching the nebular expansion velocity at the nebular

edge, using the low a_ expansion of their solution, requires that or8 __ 3 x 10 -3. De

Jager & Harding (1992) estimated the value of a_ by fitting the spectrum and surface

brightness of the nebula, under the assumption that the emission above 10 GeV is due to

inverse Compton scattering of lower frequency photons, which presumably represent the

synchrotron emission from the same electron distribution. Their estimate of (r_ and the

radial distribution of the magnetic field are consistent with those proposed by KC.

However, as shown in Rees & Gunn (1974; eq. 1), matching the expansion velocity

Vex of the nebula at its edge at R = RN is just a statement of conservation of the

momentum flux injected by the pulsar wind through an MHD shock at R -- R_, leading to

R_/RN ,'-, (Vex�C) _/2, independent of the value of o8 . KC showed that, if in addition a_ << 1,

one obtains Vex/C _" ors; however, the latter is not a condition necessary for matching the

nebular expansion velocity to that of the MHD wind at Rs.

One is therefore led to the conclusion that the small value of cr_ associated with

the Crab remnant is not a generic property of all remnants of similar morphology but

specific to the Crab. Indeed, the Vela pulsar, located near the center of the Vela supernova

remnant, has properties not too different from those of the Crab pulsar (other than its

age), however, its non-thermal nebular emission is a much smaller fraction of the pulsar

spin-down luminosity than it is in the Crab. The corresponding estimate for a_ in the case
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of Vela is a8 -_ 1, suggesting that prominent (as a fraction of the pulsar spin-down) nebular

emission is generally associated with small values of as which allow for the possibility of a

strong MHD shock in the pulsar wind.

The values of a8 inferred for the Vela and (even more for) the Crab pulsar MHD

winds raise the following problem for these winds: the value of this parameter near the

pulsar light cylinder is estimated to be quite high cr _ t04-_ (Coroniti 1990 and references

therein). Given that in a MHD wind Be c< 1/R it is thought that both the magnetic and

ram pressures should decrease like 1/R 2, with their ratio thus remaining roughly constant

at the value it attains near the light cylinder. Therefore, values as "-_ 1 (let alone a_ _ 10 -a)

are hard to understand and yet overwhelmingly favored by observation.

A possible way out of this conundrum is to assume that the inertial component of

the MHD wind is due to ions rather than leptons (electrons - positrons), leading to much

smaller values of cr even near the light cylinder (Ruderman 1981; Arons 1983). However,

one would then have to find a way of converting _ 20% of the relativistic proton energy

into relativistic electrons at the MHD shock.

This problem led to the suggestion that annihilation of magnetic field energy and

conversion of the resulting energy into that of the outflowing particles could indeed provide

for the required reduction in a_ with distance (Coroniti 1990; Michel 1994). Such a solution

is in principle possible (see though Lyubarskii & Kirk 2001), however, this process would

work only on the magnetic dipole field component perpendicular to the direction of the

pulsar angular velocity _2. The component of the magnetic dipole field which is parallel to _2

is simply advected away with no possibility of such an annihilation. Since the observations

(Aschenbach & Brinkmann 1975) seem to suggest that, at least for the Crab, the magnetic

dipole is closely aligned with the pulsar rotation axis, it appears unlikely that a large

fraction of the available magnetic energy could in fact annhilate.

However, in MHD flows, issues such as the asymptotic (or more generally the position

dependent) value of a are coupled to the global geometry of the flow. As shown by

Heyvaerts & Norman (1989) for the non-relativistic case and by Chieueh , Li & Begelman

(1991; hereafter CLB91)(see also Eichler 1993) for the relativistic one, these flows tend to

asymptotically collimate; the associated divergence of lines from conical geometry could

then also affect the corresponding value of a through the "magnetic nozzling" which would

convert magnetic energy to directed motion. It has been argued in the above references

though, that because these flows collimate logarithmically in R such a "nozzling" is not

observationally relevant for any plausible astrophysical situation. We also argue below, that

the global geometry of the flow is indeed of consequence for the asymptotic value of a ,

however our conclusions differ from those presently in the literature.
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More recently, Chieueh, Li & Begelman (1998; hereafter CLB98) by an asymptotic

analysis of the conservation and the perpendicular force balance (Grad-Safranov) equations,

have argued for the implausibility of the transition of flows from high a to low a under

axisymmetric, steady state conditions. To this end they considered a variety of plausible

field geometries and argued for each of them that divergence of the magnetic field lines

necessary to achieve a transition from o- >> 1 to a << 1 was incompatible with the balance of

the corresponding pressures. While we believe their arguments to be sound we also think,

as we argue later, that can also be circumvented.

Motivated by our recent exact solution of the axisymmetric pulsar magnetosphere

(Contopoulos, Kazanas _: Fendt 1999; hereafter CKF), we have decided to take a closer

look at the problem of the entire MHD wind and its impact on the nebular morphology and

dynamics. The solution of CKF provides the complete, global, magnetic field and associated

electric current structure for an aligned rotator (Goldreich _ Julian 1969) in the force free

(i.e. with negligible inertia) MHD approximation, including their distribution across the

crucial light cylinder surface. The main results of that paper are summarized below:

I. The magnetosphere consists of a region of closed field lines (dipole-like) extending up

to the light cylinder, and a region of open field lines which cross the light cylinder and

asymptote to a monopo!e-like geometry.

. The magnetic field structure is continuous and smooth through the light cylinder, and

thus, one cannot anymore invoque 'dissipation zones' at, or around, the light cylinder.

In other words, one has to look elsewhere for the conversion of magnetic to particle

energy and by consequence to the observed high energy radiation in pulsars.

. A large scale electric current flows through the magnetosphere. The current

distribution is uniquely determined by (a) the boundary condition at the origin (in

our case a magnetic dipole), and (b) the requirement of no singularities at the light

cylinder. The large scale electric circuit closes in an equatorial current sheet which

connects to the edge of the polar cap 3.

4. Outside tile light cylinder, the solution with a dipole at the origin does not differ

much from the well known monopole solution of Michel (1991).

3Note that this implies a discontinuity of the toroidal magnetic field component across the current, sheet,

which further leads to a discontinuity of the poloidal field component at the boundary of the closed field line

region ('dead zone'). This latter discontinuity might lead to magnetic field structure readjustments (as in

the magnetar models of Duncan & Thompson 1992).
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5. Finally, when we numerically checked whether the magnetic field structure obtained

is capable to accelerate the flow of electrons and positrons from the polar cap,

we obtained no significant acceleration. This last point merits special attention

and will be revised, since, as we said, the observations suggest the presence of a

hyper-relativistic wind of electrons and positrons at large distances.

In § 2 we outline in detail the so-called (7 -problem using dimensional analysis of

the corresponding MHD flow and indicate the arguments which could lead to its possible

resolution. In § 3, using the MHD integrals of motion for the B-field geometry associated

with the axisymmtric pulsar magnetosphere, we indicate the evolution of a with radius and

the eventual values it attains, providing an explicit resolution to the issue of its magnitude.

Finally, in § 4 we consider other pulsar nebulae for which the value of as has been estimated

and our conclusions are drawn.

2. The a problem

Since the Crab pulsar is believed to be an almost aligned rotator (Aschenbach

& Brinkmann 1974), we will adopt the approximation of axisymmetry in our present

discussion. Below, we provide a summary of our knowledge of axisymmetric pulsar

magnetospheres based on CKF, using the Crab pulsar values as fiducial figures.

The field lines that cross the light cylinder emanate from a region near the pole, the

polar cap, and are necessarily open. We calculate the polar cap radius 4 to be equal to

( r, )1/2 ( p  -1/2: vff- r, ----0.9 \ km

Here, r, = 10 km is the canonical radius of a neutron star, and

Rio-- _--1576 3--3ms km

is the light cylinder radius (P the period of the neutron star rotation) _. Obviously,

Rpc << r. << Rtc. At the footpoints of the magnetic field lines on the polar cap, the

(1)

(2)

4As is obtained in CKF, qJopen= 1.36qJpc, where _/open and qJpc are defined as the amount of magnetic
flux crossing the distance to the light cylinder in the relativistic and nonrelativistic (i.e. undistorted) dipole

solution respectively.

5Henceforth, we will denote cylindrical radii with capital R, and spherical radii with small r.
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magnitude of the magnetic field B. is of the order of 1012 G, the number density n. of

electrons/positrons in the outlfowing wind is equal to

- )1n. = _nczj -- _c = 2 x i-0-'f 1 33--_ss cm-3 ' (3)

The open field lines contain an amount of magnetic flux

/ P \

kX/open wE 7TS2pcS, : 2.7x 1012_33-_ns)

and an electron/positron wind with mass loss rate

(S)M = _R_cn.me = 7.8 x 10-al_ ms

-1 (101-_*G) G km2 (4)

-2 B,
(10 -]-5 G) M® yr -_

from each polar cap (me is the electron rest mass). We have assumed here an almost

uniform 'loading' of the polar cap field lines with matter. The wind carries a kinetic energy

flux

WKineti c ---- 3`J_IC 3 ---- 7 X 10-5N 2--0-6 _ 1012 G

and the magnetic field carries a Poynting flnx

Wpoynting -- 2--_c _°P'" I(_)d_ = 2_-_cfIl'_open

104,(_,) p-4 B, _2: (3--_-'sms)(1012 G.] LQ

from each polar cap (Okamoto 1974). Here,

_'_lI/open 1
I. -- _ -- -_ . enagc. 7rR_e

and I are the total amount of electric current flowing through the polar cap and the

magnetosphere respectively. As we will see, contrary to M and _ope,, I cannot be a

conserved quantity along the wind. f is a factor of order unity which flepends oll the

(7)

(8)

(5)

and their Lorentz factor 3'. is of the order of 200 (see below). Here, e is the electron

charge. The multiplicity coefficient _ expresses how many times the wind density surpasses

the so called Goldreich-Julian density naj at the base of the wind. The physics that

determine _; and 3'. lie outside the context of ideal magnetohydrodynamics (CKF). In

what follows, values of _ _ 103.4 and % -._ 200 are adopted from the cascade models of

Daugherty & Harding (1982) who followed in detail cascades of high energy electrons in

pulsar magnetospheres.
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distribution of the electric current I(ffJ) across open field lines (f = 0.67 for the exact

monopole solution of Michel (1991), and the numerical solution of CKF). The energy

reservoir is obviously the neutron star spindown energy loss rate

Wspindown ---- WKinetic* -I- Wpoynting, ---- WKinetic -t- Wpoynting (9)

at all distances. The magnetization parameter a is thus defined as

WPoynting IX/open/ (Z) (_)WKinetic -- Pc_ : _ o-,.
(10)

Here,

Wpoynting*__ efI, 1.6xl0Sf( p )-2
(7, _- WKinetic* _;')',me C3 -- g 3-_ms

is the value of the magnetization parameter near the surface of the neutron star.

(11)

As we discussed in the introduction, at a distance

r_109Rtc, (12)

the pulsar wind slows down in a (reverse) shock, and approximately 20°-/0 of the neutron

star spin-down luminosity is converted into optical to 7-ray radiation. The infered value of

the magnetization parameter is

a_ _ 3 x 10 .3 . (13)

Using eq. (9) divided through with WKinetic*

or, + 1 = ")'(a + 1), (14)
%

And making use of eq. (10), it is straightforward to see that the dramatic decrease in G

observed in the Crab could reasonably take place (based on whether the associated current

is conserved or not) in two distinct regimes:

1. G decreases from G. _ 104 to Gtrans ---- 1. In that regime, the magnetospheric electric

current is almost conserved, i.e.
/trans 1

-- (15)
L 2'

whereas the wind Lorentz factor increases by a factor

'Ttrans 0".
-- , i.e. "Ttrans ---- 3 x 10 6 . (16)

7, 2
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2. a decreases from O-trans : 1 to a8 --- 3 × 10 -3. In that regime, the magnetospheric

electric current decreases by a factor

/_ 2
-- , (17)

/trams O',

whereas the wind Lorentz factor remains almost constant, i.e.

")/8

, i.e.%=6× 106. (18)2
'_trans

In fact, detailcd modclling of the nebula's spectrum yields a shock upstream wind Lorentz

factor % ,,- 3 × 106, in agreement with the above (De Jager & Harding 1992).

Unfortunately, our theoretical understanding is not up to date with the above

observational facts. The problem is that there is no indication for growth in the Lorentz

factor in the inner magnetosphere, and the electric current is a conserved quantity in a

force-free magnetosphere. Acceleration models invoquing dissipation zones near the light

cylinder are not convincing anymore after CKF (e.g. Beskin, Curevich & Istomin 1993),

and models showing MHD acceleration at large scales define a-priori the field geometry

(e.g. Takahashi & Shibata 1998). There exist also MHD models showing no acceleration

at large scales, but this might have to do with their numerical extrapolation from small to

large scales (e.g. Bogovalov & Tsinganos 1999, Bogovalov 2001). Our undcrstanding is that

current MHD acceleration models are incomplete.

Is it possible to account for the large scale acceleration of the pulsar wind in the context

of ideal axisymmetric special-relativistic steady-state magnetohydrodynamics? We believe

that the answer is yes, so let us now study the basic equations of the problem, focusing our

analysis on the energy flux conservation equation along open field lines. As we will see,

in order to reveal the flow acceleration, one has to be particularly careful when one takes

limits of that equation at large distances.

3. The linear accelerator

Energy flux conservation implies that

R

V (1- Rtc_ ) :V, (19)

along any open field line (e.g. Okamoto 1978, Mestel & Shibata 1994, Contopoulos 1995),

with % the initial value of the electron Lorentz factor (7. "_ 200 as discussed above). This
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is just the differential form of the energy flux conservation equation (9). The induction

equation further gives that
vp B¢R +---- (20)

c Rzc c By

In order to simplify the notation, we will concentrate our discussion on the last open field

line along the equator.

As we argued above, in order to determine the evolution of the flow Lorentz factor 7

with distance, it is reasonable to consider the two different distance regimes in the large

scale pulsar magnetosphere we determined above (force-free, non force-free), and make

different approximations in each of them. Let us first consider distances much larger than

the light cylinder, where a>l (and most likely a >> 1). We show in the Appendix that,

under force-free conditions (i.e. negligible inertia),

R

B,= n, Bp (21)

when R >> Rz_ (e.g. Okamoto 1997). This is identically valid in the analytical monopole

solution (Michel 1991). It is also identically valid in the asymptotic monopole-like part of

the more realistic solution with a dipole at the origin (CKF). Eqs. (19) and (20) then yield

,[1 =,.
which further yields

for R >> Rl_. This is a very important result. In addition to providing for the radial

dependence of the wind's Lorentz factor, it also makes clear why CKF came (erroneously)

to the conclusion that there is no acceleration across the light cylinder: as long as

R/Rl_ < 3', = 200 (the value used by CKF based on the results of pair cascades in pulsars),

the associated growth in 3' is imperceptible (they would have found the increase had they

chosen say 3'. _ 1). The new result here is the linear growth of the Lorentz factor 3"

with distance R, for R/R_ >> %. The reader can check that the pure monopole solution

(Michel 1991) also shows this effect! This dependence indicates that the conversion of

the flow energy from magnetic to kinetic is gradual. In fact, the conversion almost to

equipartition takes place while the flow is essentially force-free and therefore our solution

can be trusted. The main difference of our analysis with that of CLB98 is that upstream

of their transition region the flow is essentially non-relativistic while ours has already a

Lorentz factor 3'>105. This constitutes the pivotal point in circuvmenting the analysis of
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CLB98, who argued against a transition from magnetic to inertial dominance of the flow at

large distances.

The linear growth, however, cannot continue beyond a distance

_,a, Rlc= 2Rtrans _-- 3 x 106Rtc << rs , (23)

at which the Lorentz factor reaches the asymptotic value implied by mass conservation and

the observed spin-down luminosity. The problem we are presented with has arisen from

our neglect of matter in our assumption of negligible inertia (i.e. force-free) conditions.

Note that eq. (21) is not valid at the distance where inertial and magnetic forces become

comparable% We must therefore proceed with caution through the energy conservation

equation written as eq. (14). In the case of the Crab pulsar, we obtain

_Ts L _trans 1 /_ 1 (RB,)I_
= o's = -- -- = 3 x 10 -a (24)

O'trans Itrans % 2 Itrans 2 (I{B0)ltrans

(see also Okamoto 1997 and references therein). The reader can check that the same result

can also be obtained through the differential form of the Bernoulli equation [eq. 19]).

What does eq. (24) imply for the wind morphology at those distances? It is shown in

the Appendix that, when er << 1, Be --+ -(R/R_c)Bp, and thus

(R2Bp)I 
(R2Bp)ltra 6 x 10-3 . (25)

In other words, beyond Rtrans _ 5 × l0 s Rlc, BpR 2 does not remain constant but decreases

with distance, and consequently, field/flowlines should diverge away from monopolar

geometry towards the axis of symmetry. R in eq.(25) is the cylindrical radius, so assuming

that Bp evolves roughly as 1/r 2, this implies that, along a field/flowline,

(R/r)], _ 10%. (_t_/r)Itrans , (26)

or equivalently, a collimation by a factor of 10 in the cylindrical radius (the cylindrical

radius at the shock spherical radius r, will be about 10 times smaller than what it would

be if the field/flow lines continued in the radial spherical direction from the transition

distance).

6As we will see, eq. (21) becomes again asymptotically valid at the distances where inertial effects

dominate. It is important to emphasize here that if we use eq. (21) in conjunction with eq. (19) in that

latter regime, we will lose the effect of inertia, and will thus be led to the erroneous conclusion of unlimited

linear growth in 7-
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The precise field geometry can only be determined through a full solution of the

Grad-Shafranov equation, whose solution we defer to a future publication. The degree

of collimation implied by eq. (25) is not unreasonable, if one considers the Hubble

Space Telescope (HST) observations of the Crab nebula in the optical, and the Chandra

observations in X-rays. One can clearly see there the presence of a collimated polar

flow, within a distance from the axis of symmetry of the order of ten times smaller than

the overall size of the Crab nebula. Finally, for a much more detailed matching of the

theoretical results to observation one should also consider the effects of the remnant into

which the MHD wind is plowing. It is not obvious to the authors that every detail can be

accounted for in terms of MHD winds and their self-collimation while ignoring the effects of

the outlying medium.

Let us summarize our results for the Crab pulsar wind. The wind Lorentz factor grows

linearly with distance up to a distance of the order of 106 • Rio where a _ 1. The wind/field

geometry remains almost monopolar up to that distance. Beyond that, the wind collimates

drastically towards the direction of the axis of symmetry. Its Lorentz factor remains close

to its asymptotic value, and a reaches its inferred value of 3 x 10 -a at the shock distance

109Rtc. Our present conclusion, namely the inevitable convergence of field/flowlines towards

the axis of symmetry in order for the flow to accelerate to cr << 1, is not original (see

Okamoto 1997 and references therein). Nevertheless, we are now in a position to make

definite predictions about the degree of field/flow collimation, without solving the full

non-force-free problem.

4. Conclusions, Discussion

We have presented above the spatial evolution of the kinetic energy associated with

the wind from an axisymmetric pulsar magnetosphere. By solving the energy equation

in the regions in which our exact solution of the MHD equations (CKF), based on the

force-free assumption, is valid we indicated how the gradual acceleration of the expanding

wind can lead to an equipartition between the magnetic and particle fluxes thus effecting

the efficient conversion of magnetic to particle energy. This provides a first (to our

knowledge) concrete example which exhibits such a conversion from Poynting to particle

energy flux. We further indicated that at distances larger than that at which equipatition

is established, the inertial effects should become important leading to a collimation of the

wind and a further decrease in the ratio of magnetic to particle fluxes in agreement with

HST/Chandra/CGRO observations of the Crab pulsar/nebula. Our work thus provides a

straightforward resolution of the long standing a-problem namely that of the particle over
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the magnetic flux dominance of this object.

As discussed by Mestel (1999), the issue of the precise magnetospheric geometry and

the associated evolution of the electron Lorentz factor is a coupled problem; he then raises

the question of whether there may indeed be solutions in which the wind achieves its

asymptotic value close to the light cylinder with the entire solution collimating at that

distance but at the cost of requiring a domain in which dissipation enforces a local departure

from the perfect conductivity condition. The work of CKF and our present argumentation

indicates that this is not necessary and it is, in addition, compatible with the observations

which require very little emission at radii smaller than rs.

While the entire magnetosperic solution (including the inertial and external medium

effects) is desirable in order to assess their mutual interactions and their effects on the
< 4precise geometry and flow dynamics, we believe that near (i.e. at R~10 Rio) the pulsar

the flow geometry is so strongly dominated by its presence and the magnetic field, that

the solution of CKF is essentially correct. As we argued earlier, we believe that important

as the analysis of CLB98 is, its arguments could be circumvented simply because at the

transition region the flow is almost in equipartition rather than magnetically dominated,

as it is usually considered when analysing this situation (prior to our work the genenal

assumption was that for a conical flow PT, B_ oc R 2, B_ >> PT; efficient acceleration then

required a very tightly wound-up B_ which would convert to kinetic density in a short

distance; this is not any more necessary).

The results presented above are fairly general and could be applied to the case of

other less well studied pulsar magnetospheres. Important parameters of our problem which

are expected vary from pulsar to pulsar are the period P, the multiplicity coefficient ,_,

the initial flow Lorentz factor 7.- Knowing P, ,_, 7., one can estimate a., and from it the

characteristic distance

Rtrans _ 7.a.R/c oc Rlc/g (27)

of the problem. Fortunately, not all these parameters are indepedent. The Lorentz factor

of the pair resulting from the magnetospheric cascade 7. as well as the multiplicity

depend on the magnetic field B and the pulsar period P (Zhang & Harding 2000), with

the multiplicity generally decreasing with decreasing B and increasing P, implying that

there is in reality much less freedom in the problem. It would be of interest to compare

the expected values of Rtrans with the distance to the synchrotron nebula reverse shock R8

obtained from observations in other such nebulae. If Rtrans is found to be << R_, then our

previous analysis applies, the flow should, like in the Crab, collimate towards the axis of

symmetry, and at the same time a should decrease to values << 1.

However, the Crab remnant seems to be a singular example, in that the neutron
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star has remained very close to the center of the associated supernova remnant, and the

synchrotron nebula has had enough time to grow to substantial distances. Furthermore, the

entire nebula is powered exclusively by the pulsar, a fact not necessarily true with other

remnants. The rather large peculiar velocities of these pulsars lead to geometries which

are significantly affected by the pulsar motion and make similar comparisons difficult. The

closest other remnant is that associated with the Vela pulsar for which the value of the

magnetization parameter cr was estimated from detailed spectral fitting to be a _ 1 (de

Jager et al. 1996). Similar conclusion was reached by Helfand et al. (2001) who analyzed

the spatially resolved Chandra images of this source. It may therefore be that the low value

of a associated with the Crab nebula is specific to the conditions prevailing in this remnant.

The specific radial dependence of the pulsar wind's Lorentz factor is expected to have

additional observational consequences concerning the emission of high energy radiation in

systems containing pulsar winds. For example, Bogovalov & Aharonian (2000) computed

the upComptonization of soft photons to TeV energies in the Crab through their interaction

with the expanding MHD wind while Tavani & Arons (1997) and Ball & Kirk (2000)

computed the corresponding radiation expected by the radio-pulsar Be star binary system

PSR B1259-63 through the interaction of the relativistic wind with the photon field of the

companion. We expect these predictions to be modified considerably in view of our present

results. For example the above works assume that the wind achieves its asymptotic Lorentz

factor shortly beyond the light cylinder, with the IC luminosity given by L_c _ T(7)L,

where L8 is the soft photon luminosity and r(7) is the optical depth for scattering by

electrons of Lorentz factor 7. Clearly, our proposed linear evolution of the wind Lorentz

factor 7 would lead to a very different dependence for the optical depth of electrons with

a given Lorentz factor in the expanding wind. This in turn should lead to a high energy

gamma ray spectrum of very different form than that obtained under the assumption

of constant electron Lorentz factor used in the aforementioned works. We expect that

careful modeling of the resulting spectra and comparison to (future) high energy 7-ray

observations will allow to confirm or disprove the proposed linear with r evolution of the

wind Lorentz factor.

We would like to acknowledge useful discussions with Alice Harding and Okkie de

Jager.
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Appendix

We derive here simple relations between the toroidal and poloidal magnetic field

components at large distances from the light cylinder.

We will first consider the regime where force-free conditions are valid (a _> 1), and

according to CKF, the field has attained a monopolar distribution; where all physical

quantities become functions of the spherical angle 0. In that regime, the pulsar equation

takes the simple form (eq. 15 in CKF)

4_)2 r dId2q2 d_ 1 + 2t 2 _tc_-_
+ (28)

dt 2 dt t(1 + t 2) c2t2(1 + t _) '

where, t -- tan0, with boundary conditions k_(t = 0) = 0, and _(t = cx_) = _open- Bearing

in mind that I(_ = 0) = 0 (i.e. no singular current along the axis of symmetry), eq. (28)

can be integrated to yield
c d_

I=-2R, c dO sinO (29)

(the reader can check that I and Bp point in opposite directions, thus the minus sign). It is

now straightforward to see that

Be _ s_L R2R

-- 1 d_ Rl cBp r--_sin 0 dO
(30)

This is a very general result, which does not depend on whether we have a dipole or a

(split) monopole at the center (the reader can check that eq. (30) is directly satisfied for the

Michel 1991 split monopole solution).

We will next consider the symptotic regime where force-free conditions are not valid
2 2

anymore (a << 1, or 47rfr,/vp/Bp >> 1, where p is the matter density in the observer's

fixed frame). In that regime, we need to keep all the terms in the expression for B 0 (e.g.

Contopoulos 1994)

cI aTrp_vaR _ cI 4_2.KK Rf _

J_o : 2R Bp 2R Bp R
4_rp_v 2 --_ _ --+ _Bp . (31)

I _ B_

The reader should keep in mind that, in order to obtain eq. (31), we have taken a limit,

which is not the case for eq. (30).


