

Time-Dependent Simulations of Turbopump Flows

Cetin Kiris Dochan Kwak William Chan NASA Ames Research Center

Robert Williams Marshall Space Flight Center

Thermal and Fluids Analysis Workshop September 10-14, Hunstville AL

Outline

line

- INTRODUCTION
 - Major Drivers of the Current Work
 - Objective
- SOLUTION METHODS
 - Summary of Solver Development
 - Formulation / Approach
 - Parallel Implementation
- **•UNSTEADY TURBOPUMP FLOW**
 - Scripting Capability
 - Fluid /Structure Coupling
 - Data Compression
- SUMMARY

2

Major Drivers of Current Work

NASA

 To provide computational tools as an economical option for developing future space transportation systems (i.e. RLV subsystems development)

Impact on component design
Increase durability/safety

→ Rapid turn-around of high-fidelity analysis

→ Accurate quantification of flow

(i.e. prediction of flow-induced vibration)

Impact on system performance -> More complete systems analysis using high-fidelity tools

● Target
Turbo-pump component analysis → Entire sub-systems simulation

Computing requirement is large:

→The goal is to achieve 1000 times speed up over what was possible in 1992

3

Objectives

NASA

• To enhance incompressible flow simulation capability for developing aerospace vehicle components, especially, unsteady flow phenomena associated with high speed turbo pump.

INS3D - Incompressible N-5 Solver

NASA

- ** Parallel version : Based on INS30-UP
- •MPI and MLP parallel versions
- Structured, overset grid orientation
- Moving grid capability
- · Based on method of artificial compressibility
- Both steady-state and time-accurate formulations
- 3rd and 5th-order flux difference splitting for convective terms
- Central differencing for viscous terms
- · One- and two-equations turbulence models
- Several linear solvers : GMRES, GS line-reloxation, LU-SGS, GS point relaxation, ILU(0)...,...
- ·HISTORY
 - ** 1982-1987 Original version of INS3D Kwak, Chang
 - ** 1988-1999 Three different versions were devoped:

INS3D-UP / Rogers, Kiris, Kwak

INS3D-LU / Youn, Kwak

INS3D-F5 / Rosenfeld, Kiris, Kwak

5

Time Accurate Formulation

NASA

- Time-integration scheme
 - Artificial Compressibility Formulation
 - · Introduce a pseudo-time level and artificial compressibility
 - · Iterate the equations in pseudo-time for each time step until incompressibility condition is satisfied.

Pressure Projection Method

 Solve auxiliary velocity field first, then enforce incompressibility condition by solving a Poisson equation for pressure.

6

Artificial Compressibility Method

Time-Accurate Formulation

 Discretize the time term in momentum equations using second-order three-point backward-difference formula

$$\left[\frac{\partial U}{\partial \xi} + \frac{\partial V}{\partial \eta} + \frac{\partial W}{\partial \zeta}\right]^{r_1} = 0 \; ; \quad \frac{3q^{n+1} - 4q^n + q^{n-1}}{2\Delta t} = -r^{n+1}$$

- · Introduce a pseudo-time level and artificial compressibility,
- Iterate the equations in pseudo-time for each time step until incompressibility condition is satisfied.

$$\frac{1}{\Delta \tau} (p^{n+1,m+1} - p^{n+1,m}) = -\beta \nabla q^{n+1,m+1}$$

$$\frac{1.5}{\Delta t} (q^{n+1,m+1} - q^{n+1,m}) = -r^{n+1,m+1} - \frac{3q^{n+1,m} - 4q^n + q^{n-1}}{2\Delta t}$$

Time History of Stagnation Point

BY (Daseds, 1971)

BISDUP

MISSUP

Page 4

Current Challenges

NASA

- Challenges where improvements are needed
 - Time-integration scheme, convergence
 - Moving grid system, zonal connectivity
 - Parallel coding and scalability
- As the computing resources changed to parallel and distributed platforms, computer science aspects become important.
 - Scalability (algorithmic & implementation)
 - Portability, transparent coding, etc.
- Computing resources
 - "Grid" computing will provide new computing resources for problem solving environment
 - High-fidelity flow analysis is likely to be performed using "super node" which is largely based on parallel architecture

10

