
NAS Applications and Advanced Architectures

David H. Bailey, Rupak Biswas and Rob Van Der Wijngaart

NAS Technical Report NAS-97-031

1997-11-21

Abstract

This paper examines ",he applications most commonly run on the supercomputers at

the Numerical Aerospace Simulation (NAS) facility. It analyzes the extent to which such

applications are fundamentally oriented to vector computers, and whether or not they can

be efficiently implemented on hierarchical memory machines, such as systems with cache

memories and highly parallel, distributed memory systems.

Bailey: NASA Ames Research Center, Mail Stop T27A-1, Moffett Field, CA 94035-1000;

dbailey_nas .nasa.gov. Bailey is an employee of NASA.

Biswas: NASA Ames Res_arch Center, Mail Stop T27A-1, Moffett Field, CA 94035-1000;

biswas©nas.nasa.gov. Eiswas is an employee of MRJ Technology Solutions. This work

was performed under contract NAS2-14303.

Van Der Wijngaart: NAS_ Ames Research Center: Mail Stop T27A-1, Moffett Fie]d, CA

94035-1000; wijngaar©nas.nasa.gov. Van Der Wijnga_rt is an emp]oyee of MRJ. This

work was performed under" contract NAS2-14303.



1. Introduction
The usefulnessof traditional vectorcomputersfor the solutionof the discretizedequa-

tions governingviscous,compressible(and incompressible)fluid flow has beendemon-
stratedratherconvincinglyby the successof codeslike OVERFLOW andINS3Donvector
supercomputers,suchasthe Cray C90and T90. Theseprogramscombinethe numerical
efficiencyof implicit solutionalgorithms(whichpermit largetime steps)with the compu-
tational efficiencyof regular grids and easily exploited vector parallelism. But should they

always be run on vector machines? Are there some inherent features of these applications

that make them poorly suited for other architectures, notably hierarchical or non-uniform

memory access (NUMA) systems? In the following, we will consider distributed memory

parallel systems as another form of NUMA system.

Before examining this question, it is good to keep in mind that there are a number of

distinct, numerically efficient algorithms available for the solution of equations of interest

to NASA and the community it serves. Not all of them are implicit schemes. Explicit

schemes, which are usually quite well suited for NUMA systems, may be acceptable for

some applications. Other types of algorithms, such as multigrid, may be used as well. Thus

the question at hand is whether or not, for certain important classes of applications, all

known numerically efficient algorithms have a strong preference for one type of architecture
or another.

Some important factors governing the efficiency of a particular scientific application on

a particular system include

• Spatial locality, such as the presence of nonunit strides.

• Temporal locality, such as the number of operations performed per memory access.

• Regularity of memory accesses, such as whether or not strides are constant.

• Data dependencies, such as recurrences.

• Loop vector lengths.

• Complexity of inner loops.

• Operation mix ratios.

These factors are related to certain characteristics typical of many modern computer ar-

chitectures. These characteristics in turn stem from a fundamental challenge in all modern

computer architectures: dealing with the latency between processors and main memory.

Vector processors attempt to ameliorate this latency by working with long streams of

regularly spaced data. In this way, after the penalty of latency is paid for the first element,

the remaining data elements can be loaded, and possibly processed and stored as well, at a

rate of up to one per clock period. Vector systems typically have difficulties with data that

is spaced with power-of-two strides (since such strides result in repeated accesses of the



samememorybanks), highly memoryintensiveapplications(sincein suchcasesmemory
bank collisionswith other processorsare frequent), as well as with shorter loops and,of
course,loopswith recursionsor other featuresthat inhibit vectorprocessing.

Computerswith hierarchicalmemorysystemsattempt to dealwith latencyby employ-
ing a hierarchyof storagesystems(with main memoryasoneof the higher levels)which
attempts to exploit data locality in thecomputationby keepingfrequentlyuseddata close
to the processor.Hierarchicaland NUMA systemshavedifficulties with non-unit stride
data (sinceonly oneor a fewelementsareusedfrom eachblockof main memory fetched
to cache). Thesedifficullies are amplifiedif stridesarecertain particular values,usually
powersof two (sincethesemayresult in repeatedaccessof the samecachelines, aswell
asproblemsin the translation look-aside(TLB) buffer). Evenwith loopsfeaturing stride
one data access,perform;raceon a cache-basedmay be sub-optimalif eachdata element
fetchedfrom main memoryis usedonly once.

The questionis this: ,to thesearchitecturaldifferencesalso distinguishfundamentally
algorithms that can be implementedefficientlyon thesesystems? Are somealgorithms
fundamentallybetter suitedfor one type of architecturethan another? Herewe will in-
vestigatetheseissuesfor tile kind of problemsthat NASA facesin large-scale3D CFD
simulations.

2. Alternating Direction Implicit (ADI) Schemes
Let usfirst examinethe Alternating-DirectionImplicit (ADI) techniqueusedin OVER-

FLOW. It comesin twoflavors,namelyablocktridiagonal (BT) andascalarpentadiagona]
(SP) form (moreabout tt,is distinction later). For both SP and BT there are three inde-
pendentfamiliesof equationsto be solved,eachcorrespondingto a particular coordinate
direction. Thesefamiliesarecalledfactors.Eachfactor requiresthe solutionof a largeset
of (againindependent)lin,_.arequations,onefor eachgrid line. Within a grid line a certain
data dependenceis incurred. If wesolvein the y-direction with j as a running index, we

have to solve for point j-1 before point j can be visited. This seems to be a problem; it

is natural to view each grid line as an independent task that needs to be finished before

moving on to the next line.

But if arrays are stored as u (±, j ,k), for example, than for tile solves in the y-direction

the second index will char, ge fastest, resulting in a memory stride the size of the first (x)

grid dimension. This will be unfavorable for a cache-based system, since it is likely that

only one data element pei cache line is used. However, this is an artifact of the seeming

indivisibility of the line solves. Since all y-line equation systems are independent, we can

solve for all the first points (j=k=l, with i as a running index) of each y-line before moving

to the next point. In other words, we can always code a loop that implements an ADI-

like data dependence in a cache-favorable way, with i as the inner loop index (provided

multi-dimensional arrays are stored in column major order, as in Fortran).

Here is a simple but ill'lstrative example. Assume that the line solve in lhe y-direction

consists of adding each previous value at point j -1 to that of point j, in other wordsu(± ,j ,k)

= u(±,j ,k) + u(i,j-l,k). The "natural" code for this operation is something like



do k = I, kmax

do i = I, imax

do j = 2, jmax ! the line solve starts here

u(i,j,k) = u(i,j,k) + u(i,j-l,k)

enddo ! the line solve ends here

enddo

enddo

A cache-friendly version of this code is

do k = I, kmax

do j = 2, jmax ! the line solves in the i,j-plane start here

do i = I, imax

u(i,j,k) = u(i,j,k) + u(i,j-l,k)

enddo

enddo ! the line solves in the i,j-plane end here

enddo

Evidently, the recurrence imposed by the ADI scheme along grid lines did not lead

to an unfavorable data access pattern, because there was enough parallelism in the other

coordinate directions. Notice that the second code fragment also vectorizes well, since all

inner iterations are independent. Ironically, on a vector machine the canonical implemen-

tation of the x-factor does not perform well, because it exhibits a recurrence in the inner

loop:

do k = I, kmax

do j = I, jmax

do i = 2, imax ! the line solve starts here

u(i,j,k) = u(i,j,k) + u(i-l,j,k)

enddo ! the line solve ends here

enddo

enddo

Again, there is no inherent problem. Advanced vector compilers can easily recognize

that a simple loop index interchange (±<->j) will make the inner loop vectorizable again.

This has been observed in the SP benchmark from the new NAS Parallel Benchmarks suite

(NPB-2), which implements the essentials of the diagonalized Beam-Warming version of

OVERFLOW. When compiled on the NASA Ames Cray C90 using the currently available

Cray Fortran-90 compiler, this code vectorizes completely, despite the presence of these

inner loop recurrences. Of course, if a compiler does not automatically recognize the

opportunity for loop interchange, such a change can easily be done by hand or by using a

preprocessor tool.

Thus we conclude that on single-processor systems there is no natural preference of the

ADI algorithm for vector over cache-based systems. Further, there are now parallel ADI



algorithmsof sufficientsophisticationto limit the data transferbetweenprocessorsto an
acceptableminimum (e.g. the multi-partition method [5, 6]) on most scalablemachines.
The major part of the pe:-formancedegradationof the NPB2 SPcodeon systemslike the
CRAY T3D or IBM SP2,asthe numberof processorsgrows,is attributable to the degra-
dation of performanceor individual nodes,not to the communicationoverhead,except
whenthe numberof nodesis very largecomparedto the grid size.

Most NUMA machino.sexhibit better performanceon the BT benchmark from the
NPB-2 than they do on the SPbenchmark.This is becausethe BT benchmark(and most
BT-derivedapplicationcodes)solvesfor eachgrid point a5x 5densesystemof equationsas
part of the overallblock-trJdiagona]line solve.Densematrix computationshaveexcellent
data reuse,meaningnot only that all dataelementsin eachcacheline areused(this has
to do with a good data accesspattern), but alsothat severalcomputationsper element
areperformedon a datum onceit is placedin a CPU register. This is much lessthe case
in SP,whichdoesnot solvedensesystems.The situation is reversedfor vectormachines:
hereSP doesbest(440M:]op/s ononeprocessorof a CrayC90), becauseit vectorizeswell
and the line solveloopsaJefairly "thin" (not too many instructions,constantsand arrays
in the loops,sothat there;arealwaysenoughvector registers).BT, by contrast, achieves
"only" 260Mflop/s on a C90processor.The codestill vectorizeswell, but sincethe inner
5 × 5 loops are unrolled ()_artly to pre-empt the possible vectorization of these very short

loops, and partly to remove inner loop recurrences), the loops are very "fat", resulting in

register allocation probleras.

In summary, there do not appear to be any compelling preferences for either vector or

NUMA computers when implementing ADI-type algorithms.

3. Gauss-Seidel Schemes

Another important CFD production code at NASA Ames is INS3D. It can be run

with several different kernel solution algorithms. There are two that employ approxi-

mate factorizations based on a spectral decomposition of the flux Jacobians. resulting in

three-factor lower-diagonaT-upper schemes, which are applied in a symmetric double-sweep

fashion (LU-SGS). The resulting data dependencies are equivalent to point- and line-Gauss-

Seidel, respectively; in the forward sweep, no point (i,j ,k) may be updated before all

points with smaller or equal indices have been updated. Interestingly, even though in the

point-relaxation mode the updates take place on a point-by-point basis, the data depen-

dency makes vectorization hard. There is no way that a triple "Cartesian" loop (loop

bounds independent of other loop indices) can be written that does not have a recursion

in the inner loop. This gave rise to the skewed-hyperplane approach, in which points are

updated simultaneously and independently on planes of constant i+j÷k. Notice that in-

tersections of such skewe(_ planes with a grid are not of constant size, and hence vector

lengths vary widely.

By contrast, a cache-l:ased implementation, for which recursions are acceptable, can

be coded in a completely straightforward fashion, using simple Cartesian loops. Again,

the loop nests can be arranged in a way that preserves data locality. This can even



be accomplishedto a reasonabledegreeon a distributed memorymachine,through the
use of a generalized two-dimensional pipeline, as is evidenced by the NPB-2 LU code.

Not surprisingly, this code does not fare well on vector machines. And a vector-based

code does not perform well on a cache-based machine, because the strides along skewed

hyperplanes axe too large. So even though the INS3D scheme in the relaxation mode is

not fundamentally unsuited for either vector or NUMA computer, it does seem not easy

to write a single code that does well on both types of architectures.

4. Krylov Schemes

A relatively new feature of INS3D is the implementation of a Krylov subspace method

(GMRES, in this case) for the solution of the linear systems. This solver can be im-

plemented efficiently on both vector and NUMA computers, since it does not feature the

complicated recurrences of the relaxation mode solvers. The most important operations are

the formation of regular, ultra-sparse matrix-vector products (to compute residuals) and

of dot products. On distributed memory systems, this requires mostly neaxest-neighbor

communications, as opposed to, for example, the conjugate gradient problem in the NPB-2

suite, which features general, randomly 13lied sparse matrices.

5. Unstructured Grid Methods

Unstructured-grid flow solvers are usually one of two types: cell-center schemes and

cell-vertex schemes. In both two and three dimensions, the major computational effort is

associated with the calculation of the numerical fluxes. In two dimensions, both schemes

require nearly equal computational effort. Time evolution of explicit methods is performed
on a control volume basis. The finite elements are the control volumes for the cell-center

schemes. For the cell-vertex schemes, the control volumes are non-overlaping polyhedral

regions (in three dimensions) surrounding the vertices of the mesh and can be obtained

from the dual of the computational mesh.

Since the number of triangles is approximately twice the number of vertices, cell-center

schemes require slightly more computation. In three dimensions, the number of flux calcu-

lations is proportional to the number of faces in the mesh for the cell-center schemes and

to the number of edges for the cell-vertex scheme. Since the number of faces is usually

about twice the number of edges, the flux computation is significantly more expensive for

cell-center schemes. The computational effort associated with explicit time stepping also

favors cell-vertex schemes since the number of tetrahedral elements is typically about five

times the number of vertices.

Both cell-center and cell-vertex schemes run into similar problems when implemented

on vector and NUMA computers. For example, for cell-vertex schemes, the computation of

the fluxes across the faces of the control volumes is carried out by summing the contribution

from each edge in the mesh. For vectorization, the edges need to be properly "colored"

so that the inner do loop ranges over edges of the same "color" (in order to avoid race

conditions with array data). However, for each edge, its two end-points need to be accessed.

This requires indirect addressing. Similar problems are encountered :for cell-center schemes.



The abovediscussionasscmesanexplicit method;implicit methodsfor theseproblemsare
still in anearly stageof development,andwill not be discussedhere.

Asa resultof therequirementfor indirect addressing,stenciloperationscannotbedone
with fixed (or evenpredictable)stride, and memoryaccessis rather erratic and usually
not very favorable for cache-basedsystems. On the other hand, becausemost of the
addressingof grid elementstakesplacethrough indirect referencing(arraysof indices), it
is difficult on vectormachinesto assemblevectorsefficiently.Sohereit appearsthat. the
implementationson vectcr and NUMA computersare relatively inefficienton both types
of systems.In short, there is againnocompellingargument that this type of algorithm
fundamentallyprefersonearchitectureoverthe other.

5. Fast Fourier Transfi)rms
FastFouriertransforrrs (FFTs) areutilized by severaltypesof computations,notably

largeeddysimulationsand direct simulationsof turbulence.FFTs arealsoinvolvedin the
FT benchmarkof the NPB (and NPB-2)suite, whereina large3-D FFT is used to solve
a PoissonPDE problem.

It is well knownthat _:-DFFTs canbe implementedeasilyon a vectorsystem,simply
by performingvectorsof 1-DFFTs in thefirst dimension,followedby vectorsof 1-D FFTs
in the seconddimension,and then the third dimension. For power-of-twoFFTs (by far
the most commonlyutilized size),a naiveimplementationwill result in severelyreduced
performancedue to power-of-twomemorystrides (due to bank conflicts). However,such
difficultiesare relativelyeasilyamelioratedby simply paddingthe dimensionsof the 3-D
arraysto be, say,one lar_er than a powerof two. In this way,vector fetchesin all three
dimensionswill bewith favorablestrides.

On a cache-basedor NUMA system,the largestridesinvolvedin the secondand third
dimensiondata accesseswill sharply reduceperformance. Power-of-twoFFTs are even
moretroublesome,dueto cacheline andTLB conflicts,whicharethe cachesystemequiv-
alent of vectorbank conflicts. However,thesepower-of-twodifficultiescanbe avoidedby
paddingthe 3-D arraysasabove,althoughthe sizeof the optimal pad is typically differ-
ent on cachesystemsthan for vectorsystems(a goodcodingpracticeis to usea settable
parameterfor this purpose).Nonetheless,the largestridesremaina problem.

The typical solution of the large strides in 3-D FFTs is to employ at least one ar-

ray transposition. In the case of a distributed memory system, substantial interprocessor

bandwidth is required for this operation, but existing commerical highly parallel systems

appear to feature sufficient bandwidth to permit such transpositions ("complete exchange"

operations) to be performed without dominating the total computational cost. With array

transposition, all of the actual computational steps involve only memory resident (usually

cache-resident) data. One can usually employ highly optimized vendor-supplied library

routines to perform the resulting 1-D FFTs. The library routine for the IBM 590 worksta-

tion, for example, runs at approximately 220 Mflop/s, which is 80% of the theoretical peak.

Some RISC vendors support efficient 2-D and 3-D FFT library routines as well, although

FFT support among distributed memory vendors is still weak due to the lack of standards.



The caseof large 1-D FFTs is interestingin this regard,eventhough suchFFTs are
generallynot usedin CFD calculations(they arehowevera staple of the digital signal
processingworld). Again, efficient schemesfor large 1-D FFTs on vector systemshave
beenknownfor sometime [2],but theseusuallyinvolvedlargestridesand disparatearray
accesses,which arenot favorableon cache-basedand distributed memorysystems.A few
yearsago,researchersfound a schemeto perform large1-D FFTs that in effect converts
the problemto a 2-D FFT, which can then be solvedas describedabove(usuallywith
array transpositions)[2]. In fact, it waslater realizedthat this schemehad actually been
presentedin oneof the earliestFFT papers[4]. Thus this schemeis not "new" -- it has
beenin the literature longerthan efficientFFT schemesfor vectorsystems.

In summary,FFT codeswritten for vectorsystemsin mostcasescannotbesuperficially
convertedto efficientcache-basedor NUMA FFT codes.However,efficientFFT schemes
areknownfor theseother architectures,andit is possibleto constructFFT-basedcodes
that runefficientlyonawidevarietyof architectures,requiringcustomtuning onlyfor array
transpositionoperations.But thereappearsto beno fundamentalarchitecturalpreference
one way or the other for performing large l-D, 2-D or 3-D FFTs.

6. Array Transpositions

As mentioned in the previous sections, array transpositions are used in FFT applica-

tions, particularly on cache-based and distributed memory systems. Along this line, it is

worthwhile to mention a straightforward scheme for array transpositions that appears to

be relatively efficient on a wide variety of systems. We will describe it here for the case of

a 2-D matrix:

Consider first the case where nl = n2, so that the matrix is square. In that case a

block interchange technique can be used to transpose the array in a single pass, in place.

This can be done by simply considering the external nl × n2 matrix to be decomposed

into square blocks of size b on a side, where b is the block size of an efficieni read/write

memory operation. The square blocks down the diagonal can be transposed simply by

fetching the blocks one at a time into main memory, transposing them using any efficient

main memory scheme, and storing the resulting matrices back in the same locations. The

off-diagonal square blocks can be fetched in opposing pairs, transposed in main memory,

and then stored back in opposite locations. One difficulty in applying this scheme is when

the main memory block size b is a power of two (which it almost always is). Transposing

matrices whose dimensions are powers of two in main memory, using the straightforward

scheme, results in memory bank conflicts on vector computers and cache line conflicts on

cache-based systems. But such conflicts can be avoided by padding the first dimension of

the scratch array as mentioned above.

For the common case of power-of-two FFTs, it can be assumed that either nl = n2 or

else nl = 2n2. In the second case, it does not appear possible to transpose the array in one

pass, in place, using only full block I/O transfers. However, such arrays can be transposed

in just two passes, in place, using only full block transfers, as follows. First, consider the

nl x n2 external array as two blocks of size n2 x n2, and transpose each of these two square

8



blocksin place,asdescrikedin the previousparagraph.This completesthe first pass.Now
considerthe resulting da,a array in externalmemory to be a n2 × nl matrix. Inspection

of an example shows that the columns of the resulting array need to be de-interleaved:

column 2j, 0 _< j < n2 needs to be moved to column j, and column 2j + 1 needs to be

moved to column j + n2 (here the columns are numbered beginning with zero). When this

de-interleaving is perforn-ed, the transposition is complete.

It should be emphasizo.d that array transpositions are in fact a potentially very powerful

tool for large 2-D and 3-D computations from a variety of disciplines. This is because array

transpositions, in effect, .:onvert multi-dimensional array accesses, which are fatal to the

performance of many cache-based and distributed memory architectures, into contiguous

data accesses, which are ideal for vector, cache-based and distributed memory systems. In

other words, a typical 3-[) application whose implementation for a vector system involves

array accesses in all three dimensions may be performed in six steps, as follows:

1. Perform computatir,ns in the first (contiguous) dimension.

2. Transpose the array so that the second dimension is now the contiguous dimension.

3. Perform computations in the second (now contiguous) dimension.

4. Transpose the array so that the third dimension is now the contiguous dimension.

5. Perform computaticns in the third (now contiguous) dimension.

6. Transpose the array back to the original dimension ordering.

In many or even most cases, other schemes may be preferable for a particular appli-

cation. But the point heie is that this transposition scheme is generally applicable -- it

is an "existence proof" of sorts that multi-dimensional array calculations can always be

localized. Further, array :,ranspositions are "latency tolerant". This feature may be very

important on future very highly distributed systems, such as the petaflops systems now on

the drawing boards. Closer to the present, such schemes may enable certain large 3-D phys-

ical simulations to be performed with reasonable efficiency on networks of workstations,

where latency is often unavoidably large.

It is also worth nothing that while efficient transpositions require fairly high data com-

munications bandwidth, e_pecially on distributed memory systems, this is something that

can in principle be provido.d in a good design. By contrast, providing low latency appears

to be increasingly difficult, since semiconductor memory devices are not improving greatly

in operation speed, while processors continue to advance fairly aggressively in performance.

Thus the disparity in performance between processors and memory is destined to grow even

more acute in the future. Indeed, the challenge of managing latency is likely to dominate

future design, both in har, tware and software [3].

7. Conclusions



In this paper,wehavereviewedonly a fewapplications,namelythoseof most interest

to scientists using the Numerical Aerospace Simulation (NAS) supercomputers. These ap-

plications include the key CFD solution schemes (mostly implicit), as well as some other

methods widely used in _ronautical computation. It appears from our experience, includ-

ing the experience of implementing the NAS Parallel Benchmarks on various architectures,

that these computations can be efficiently implemented on both vector and cache-based

or NUMA systems (including distributed memory, highly parallel systems). We see no

fundamentaJ architectural preference one way or the other.

10



References

[1]

[2]

[3]

[4]

[5]

[6]

David H. Bailey, "FFTs in External or Hierarchical Memory", Journal of Supercom-

puting, vol. 4 (1990), p. 23-35.

David H. Bailey, "A High-Performance FFT Algorithm for Vector Supercomputers',

International Journal of Supercompzlter Applications vol. 2 (1988), p. 82-87.

David H. Bailey, "Onward to Petaflops Computing", Communications of the ACM,

to appear, 1997.

W. Morven Gentleman and George Sande, "Fast Fourier Transforms -- For Fun and

Profit", AFIPS Proceedings, vol. 29 (1966), p. 563-578.

Rob F. Van der Wijngaart, "Efficient Implementation of a 3-Dimensional ADI method

on the iPSC/860", Proceedings of Supercomputing '93, IEEE, 1993, p. 102-111.

Rob F. Van der Wijngaart, Maurice Yarrow and Merritt H. Smith, "An Architecture-

Independent Parallel Implicit Flow Solver with Efficient I/O', Proceedings of the

Eighth SlAM Conference on Paralld Processing for Scientific Computing, to appear,
1997.

11




