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ABSTRACT

Using our previous experience with the Mars Environmental Compatibility Assessment (MECA)

electrometer, we have designed a new type of aerodynamic electrometer. The goal of the

research was to measure the buildup of electrostatic surface charge on a stationary cylindrical

insulator after windborne granular particles have collided with the insulator surface in a

simulated dust storm. The experiments are performed inside a vacuum chamber. This allows the

atmospheric composition and pressure to be controlled in order to simulate the atmospheric

conditions near the equator on the Martian surface. An impeller fan was used to propel the dust

particles at a cylindrically shaped insulator under low vacuum conditions. We tested the new

electrometer in a 10 mbar CO2 atmosphere by exposing two types of cylindrical insulators,

Teflon (1.9 cm diameter) and Fiberglass (2.5 cm diameter), to a variety of windborne granular

particulate materials. The granular materials tested were JSC Mars-1 simulant, which is a

mixture of coarse and fine (<5gm diameter) particle sizes, and some of the major mineral

constituents of the Martian soil. The minerals included Ottawa sand (SiO2), iron oxide (Fe203),

aluminum oxide (A1203) and magnesium oxide (MgO). We also constructed a MECA-like

electrometer that contained an insulator capped planar electrode for measuring the amount of

electrostatic charge produced by rubbing an insulator surface over Martian and lunar soil

simulants. The results of this study indicate that it is possible to detect triboelectric charging of

insulator surfaces by windborne Martian soil simulant, and by individual mineral constituents of

the soil simulant. We have also found that Teflon and Fiberglass insulator surfaces respond in

different ways by developing opposite polarity surface charge, which decays at different rates

after the particle impacts cease.
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1. INTRODUCTION

When spacecraft, landers, and the spacesuits of future astronauts come into contact with either

the lunar or Martian soil, it is believed that triboelectric charge generation on their man-made

material surfaces may result in potentially disastrous situations. The absolute lack of humidity on

the lunar surface, and the extremely arid conditions on the Martian surface have raised concerns

that electrostatic charge buildup will not be dissipated easily. If triboelectrically generated charge

cannot be dissipated or avoided, then dust will accumulate on charged surfaces and electrostatic

discharge may destroy electronic components. Solar panels and thermal radiators that accumulate

dust over time will have decreasing efficiency. Moving parts, such as joints in spacesuits, will

also be affected as soil accumulation inhibits their motion.

There are two mechanisms by which a surface can become triboelectrically charged. The first

method is through frictional contact by rubbing the surface over the soil. The second is through
collisions between windborne dust particles and a surface. Although the second method of

charge generation is not possible on the moon, dust storms occur on a frequent basis on Mars.

Major Martian dust storms ate easily visible from Earth, and satellites orbiting Mars have also

observed the occurrence of so-called dust devils that can drive soil high into the atmosphere.

The Mars Environmental Compatibility Assessment (MECA) electrometer was designed jointly

by the Jet Propulsion Laboratory and Kennedy Space Center to be a flight instrument on a 2001
unmanned Mars lander mission [1, 2], which was later cancelled. The MECA electrometer was

designed primarily to characterize the electrostatic interaction between insulating materials and

the Martian soil by rubbing the insulators simultaneously over the soil. The five insulators
chosen for the MECA Electrometer were Fiberglass/Epoxy (G10), a Polycarbonate (LexanVM),

Polytetraflouroethylene (Teflon_), Rulon J_, and Polymethylmethacrylate (Lucite TM, also

called PMMA). The MECA electrometer also contained an ion gauge for detecting charged

particles in the Martian atmosphere, and an electric field sensor for detecting the local electric

field on an object's surface.

Our research goal last year [3] involved testing and evaluating the MECA electrometer and its

four types of onboard measurement sensors: (1) a triboelectric sensor array, (2) an ion gauge

(charged particle sensor), and (3) a local electric field sensor. These goals were accomplished by

(1) bringing the MECA electrometer into physical contact with Martian and lunar soil simulants

[4, 5], (2) using a weak alpha particle source to create atmospheric ions under low vacuum

conditions, and (3) applying a known voltage to a metal plate above the electric field sensor.

In 2001, our summer research evolved into measuring the effect of windborne dust particles on

insulator surfaces. Martian dust storms were simulated in a vacuum chamber using an impeller
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fan to propel dust particles at an insulator-capped electrometer. The electrometer sensor was

embedded below the surface of a cylindrically shaped insulator. The insulator target had a

cylindrical shape for aerodynamic reasons. Less turbulence would be created as wind encounters

a cylinder. Hence, windborne dust particles would more likely impact the windward side of the

cylinder in head-on collisions at higher speeds than they would under more turbulent conditions,

thus maximizing the triboelectric charge they can produce.

The experiments and data taken using our new electrometer are described and presented in the

following sections. We conclude with a discussion of the results of the experiments, and present
conclusions about the new electrometer.

2. EXPERIMENTAL

In this section, we describe the design and development of the new aerodynamic electrometer.

We also present data taken with the electrometer under conditions that attempt to simulate a
Martian dust storm.

2.1 Design of the Aerodynamic Electrometer

The purpose of this research was to measure the amount of electric charge that is generated

triboelectrically when windborne dust particles strike an insulator surface. A cylindrical

geometry was chosen for the design of the electrometer based on its aerodynamic shape. When

wind encounters a cylinder under non-turbulent conditions, the atmospheric molecules in the

wind will follow streamlines around the cylinder. Any turbulence that might occur would be

found on the side opposite the windward face of the cylinder. By contrast, a planar surface that is

perpendicular to the wind will create turbulence everywhere over the surface. Any turbulence at

the surface is likely to diminish the effect of an impact between a windborne dust particle and the

surface. For these reasons, a cylindrical shape was chosen for the electrometer in order to

maximize the chances for a windborne dust particle to make an impact with the electrometer. In

addition, it was expected that an aerodynamic design would more likely produce consistent and

reproducible results.

Dust particles that are carried by the wind will also tend to follow the streamlines unless the

streamlines begin bending too sharply around an obstacle such as a cylinder. Since the dust

particles are much more massive than the atmospheric molecules, there is high probability that

they will cross streamlines due to their momentum and strike the cylinder's surface. This is

especially true for particles that are on a head-on collision with the cylinder.

When a dust particle makes contact with the cylindrical insulator's surface, electric charge can be

transferred between the two materials even if both are originally neutral. The physical reason for

this is well known from solid state physics. Charge transfer is necessary in order for the two

dissimilar materials to reach equilibrium. If the two materials that are brought into contact have

different Fermi energies, then electrons will try to move from the material with the higher Fermi

energy to the other material in order to equalize their Fermi energies.
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2.2 Experimental Procedure

Figure 1showstheaerodynamiccylindricalelectrometersystemthatwasconstructedto perform
theexperiments.A dc powersupply (not shown)is normallyattachedbelow the electrometer's
electronicshousing.

__'-'7 -- __

Figure 1. Lucite and Teflon cylinders are shown on the right. An electric field sensor probe is embedded in

the Lucite cylinder to within 0.1 inches of the surface. A planar Teflon-capped electrode is mounted on the

top of the electronics housing shown on the left. The BNC connectors attached to the respective outputs of the

cylindrical and planar electrometers are shown together on the housing, An external dc power supply (+/-5V

and +12V) is contained in a separate housing, but is not shown.

Figure 2 shows the cylindrical electrometer

placed in the vacuum chamber along with

the dust impeller fan that was used to propel

dust particles towards the cylinder. A fixed

volume of granular material is placed on the

aluminum foil that covers an audio speaker.

The speaker is used to force the dust to
move in a vertical direction above the foil so

that the wind that is generated by the

impeller fan can carry the particles to the

cylinder. The atmosphere within the
chamber consists of carbon dioxide at a

pressure of 10 mbar. Before an experiment

is performed, the chamber is first evacuated
to <5 mbar and then backfilled with carbon

dioxide to over 133 mbar. The chamber is

pumped down again and backfilled with

CO2 once more before being pumped down

to a final pressure of 10 mbar CO2.

Figure 2. The cylindrical electrometer and dust

impeller apparatus shown in the small vacuum

chamber where experiments were performed.
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When the impeller fan is turned on and the

Martian soil simulant is propelled towards a

Teflon cylinder, the dust coverage on the
windward face of the Teflon surface is

shown as in Figure 3. The electrometer

probe is able to measure the residual charge

at a location near the middle of the cylinder
and below the dust-covered side of the

Teflon cylinder.

The cylindrical insulator is removed from

the electrometer probe for cleaning. Dust

from a previous experiment is partially

removed from the insulator surface using

compressed air, followed by rinsing the

insulator with alcohol and using compressed

air to dry the surface.

Figure 3. Windward side of a Teflon cylinder that

was partially coated with Martian soil simulant.

The soil was blown at the cylinder in a vacuum

chamber by an impeller at 10 mbar CO2 pressure.

A dry-vac is used to vacuum up any loose dust that is present on objects located in the vacuum

chamber and on the chamber walls prior to conducting an experiment.

2.3 Data

A Lecroy Waverunner Digital Storage Oscilloscope (DSO) model LT364L (500MHz, 1GS/sec, 4

channels) was used to collect the data. A DSO probe type PP006 (10 MW, 12 pF, 500 MHz,

10:1) was used to pick up the output voltage coming from the cylindrical electrometer located in

the vacuum chamber. The DSO was configured using Channel 1 to monitor the electrometer

output signal, and with Channel A providing a filtered view of Channel 1 using the DSO's

"Enhanced Resolution Filtering" mode.

Data was stored on a removable hard drive on the DSO after each experiment that could be later

downloaded to a networked PC. Data was saved in ASCII format, which allowed the data to be

easily imported into Microsoft Excel. The data shown in Figure 4 was generated in this manner.

Figure 4 shows data that was taken by the aerodynamic electrometer in the vacuum chamber at

10 mbar CO2 pressure using the impeller fan to propel granular materials at Teflon and

Fiberglass cylinders in separate experiments. The experiments were performed using Martian

soil simulant (<5gm diameter particles), and three of the mineral constituents of the Martian soil:

Fe203, SiO2, and MgO. It should be noted that only the change in voltage is important over the

course of a particular experiment. The zero voltage level is arbitrary for that reason, and the

Teflon/Fiberglass data could be shifted in each graph so that the data for the two materials could

be overlaid. However, the voltage offset for the electrometer circuit was approximately 20 mV.

The electrometer circuit gain is based on resistor components, and was set at 0.25 pC/mV.
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Figure 4. Electrometer output voltage response versus time for Teflon and Fiberglass being struck by

windborne granular materials. The materials used were (a) fine (<5 _tm) Martian soil simulant, (b) Fe203 (17

_m), (c) coarse SiOz. The response of Fiberglass to MgO is shown in (d). The electrometer output voltage is

related to the amount of surface charge according to the conversion factor 0.25 pC/mY.

3 DISCUSSION

The data presented in Figures 4 (a), (b), and (c) clearly show that a Teflon cylinder will respond

in a different manner to a given type of windborne _anular material than does a Fiberglass

cylinder. This observation has favorable implications for the possibility of modifying our design

by combining individual cylindrical electrometers into a single multisensor electrometer that can

be used to identify the mineral composition of windborne dust particles. The amount and polarity

of surface charge produced on a cylindrical material's surface might generate a signature that is

characteristic of the interaction between the cylindrical material and the type of incident dust

particle. For example, Fiberglass charged to (-8mV)x(0.25pC/mV)=(-2pC) in response to the

windborne iron oxide (Fe203) before this charge began to decay through leakage across the
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surface, whereas the Teflon cylinder charged to (-62mV)x(0.25pC/mV)=(-15.5pC). Furthermore,

the charge decay rates for Fiberglass and Teflon are not the same. In contrast to iron oxide, some

materials, such as magnesium oxide (MgO), cause Fiberglass to charge positively. These

different responses provide encouragement that a multisensor approach to mineral determination

is possible. Additional experiments are clearly needed in which many more types of cylindrical

insulators are used in addition to Fiberglass and Teflon, and other mineral compositions are used.

The present electrometer is limited by having to perform separate experiments for different types

of cylinders. Ideally, an array of electrometer sensors that are attached to different types of

cylindrical materials would allow their simultaneous responses to the same windborne particles

to be studied. Thus, a follow-up to this research would be to construct a multisensor electrometer

based on the cylindrical geometry that was utilized here.

One of the complicating factors associated with the method of charge measurement used here is

that the windward side of the cylindrical insulator may accumulate a layer of granular materials

on it (see Figure 3). The apparent reason for this is that the presence of a charged surface can

allow an incident particle to be attracted to the surface, and to adhere to the surface. Further

investigations are needed to understand the effect of the presence of a dust layer on the insulator

surface on the measurement of charge by the electrometer sensor.

4 CONCLUSIONS

This research has demonstrated that a cylindrically shaped electrometer can be developed to

measure the amount of electrostatic charge produced when windborne dust particles collide with

the surface of an insulator. We were able to conduct experiments under controlled atmospheric

conditions in a small vacuum chamber using a high-speed impeller fan to produce the windbome

dust particles.

The cylindrical electrometer and its associated circuitry were constructed at NASA KSC during

the summer 2001 research, and initial data was taken. The sensitivity of the electrometer is 0.25

pC/mV, but the sensitivity can be adjusted by changing resistors in the circuit that we built. The
cylindrical electrometer was tested using Teflon and Fiberglass cylinders. The dust particle

composition consisted of JSC Mars-1 simulant, which is a mixture of coarse and fine (<5gin

diameter) particle sizes, as well as some of the major mineral constituents of the Martian soil.

These other materials included Ottawa sand (SiO2), iron oxide (Fe203), aluminum oxide (A1203)

and magnesium oxide (MgO). An atmosphere consisting of carbon dioxide at 10 mbar was used

in the vacuum chamber to simulate the Martian atmosphere. The atmospheric temperature was

not controlled, and remained at ambient room temperature.

The data taken by the cylindrical electrometer shows that Teflon and Fiberglass cylinders charge

differently when exposed to the same type of windborne granular material under similar pressure

conditions and atmospheric composition. With further testing of the instrumentation using other

types of cylinder materials, it is believed that a cylindrical multisensor can be constructed that

will provide simultaneous measurements of charge by the different sensors. This approach may
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make it possible for a multisensor electrometer to identify the mineral composition of the

windborne granular particles by a unique electrostatic charging signature that multisensor output

produces in response to the dust particles that collide with it. The next step that we intend to

pursue in this research is to construct a prototype multisensor cylindrical electrometer.
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