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ABSTRACT

Instruments for the monitoring of hazardous gases in and near the space shuttle collect sample gas

at pressures on the order of one atmosphere and analyze their properties in an ultra-high vacuum

by means of a quadrupole-mass-spectrometer partial pressure tranducer. Sampling systems for
such devices normally produce the required pressure reduction through combinations of vacuum

pumps, fluid Tees and flow restrictors (e.g. orifices, sintered metal frits or capillaries). The present

work presents an analytical model of the fluid dynamics of such a pressure reduction system which

enables the calculation of the pressure in the receiver vessal in terms of system parameters known

from the specifications for a given system (e.g. rated pumping speeds of the pumping hardware and

the diameters of two orifices situated in two branches of a fluid Tee). The resulting formulas will

expedite the fine tuning of instruments now under development and the design of later generations
of such devices.
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FLUID DYNAMICS OF A PRESSURE REDUCING INLET

JOHN M. RUSSELL

1. FLOW GEOMETRY; OBJECTIVE

Figure 1.1 is a schematic diagram of a fluid Tee.
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Fig. 1.1

The top left branch of the Tee discharges into an

ultra high vacuum envelope containing a partial

pressure transducer (e.g. a Quadrupole Mass Spec-

trometer gas analyzer). The volumetric throughput

through the partial pressure transducer is presumed

to be given by the rated pumping speed, SL2, of a

high-vacuum pump of turbomolecular type. The

bottom branch of the Tee discharges into a low-

vacuum foreline pump (e.g. of scroller type). The

top left and top right branches of the Tee each con-

tain an orifice of prescribed diameter.

As the arrows indicate, the Tee has one inlet

and two outlets. In keeping with the notation con-

ventions in vacuum literature, I have denoted volu-

metric rate of transport of gas across a cross section

by the symbol S. The symbol p denotes local gas

pressure and the symbol Q := pS denotes the pres-

sure volume throughput of gas at a given cross sec-

tion. The nmnerical subscripts 1 and 2 denote con-

ditions on the upstream and the downstream sides

of an orifice, respectively. The letter subscripts S,

L and R denote supply, leak, and roughing (pump)

respectively.

The objective of the present discussion will be

to show how one may calculate the two outlet pres-

sures, namely PR and PL2 from various constants of

the system. The be specific, the constants of the

system consist of the members of the following list:

SL2 , SR, Ts, Ts , ds, dL ,, k, m, 7, P_

(1.1)

in which (for example):

SL2=pumping speed at the inlet to a high-vacuum

turbopump (Alcatel model ATH30+):

20 L/s for He,30 L/s for ?72,

SR=pumping speed at the inlet of a Dry Scroll type

roughing pump (Varian model TriScroll 300):

8.8 ft3/min (or 4.15314 L/s),

Ts=temperature of the supply gas upstream of the

top right orifice in Fig. 1.1:

295.15 oK (22 oc),
Tz=temperature of the gas in the Tee between the

two orifices in Fig. 1.1:

295.15°K (22 oc),
ds=diamet.er of the top right orifice in Fig. 1.1:

0.009 in,

dL=diameter of the top left orifice in Fig. 1.1:

0.002 in,

/g_BOLTZMANN constant:

1.38066 x 10 -23 J/°K,

re=mass of an individual gas particle:

4.0026 amu for He,28.0134 ainu for N2,

in which the notation 'amu' stands for atomic

mass unit (1 amu=l.66054 × 10 -27 kg),

7=ratio, cr,/c_, of specific-heat-at-constant-pressure

to specific-heat-at-constant-volume of the gas:

1.667 for He,1.4 for N2,

p_ =pressure of the supply line (upstream of the top

right orifice in Fig. 1.1):

400 Torr.

2. APPLICATIONS OF THE LAW OF CONSER-

VATION OF MASS

In order make the following analytical solution self

contained [ will preface it with a discussion of the

consequences of the law of conservation of mass and

the equation of state of an ideal gas as they apply

to the present problem. Recall, first, that one may

write the equation of state of an ideal gas in the

form (cf. CHAPMAN AND COWLING, 1970, p38)[1]

p=nkT , (2.1)

in which n is the number density of particles, k (as

stated above) is the BOLTZMANN constant and T is

the absolute temperature. Let V denote the volume

of a given sample of gas. If one multiplies both sides
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Applications of the law of conservation of mass

of (2.1) by V and writes nV := N for the number

of particles in the sample, one gets

pV = NkT. (2.2)

If (as above) rn is the mass of a single particle in

the sample then Nm := M is the total mass of the

gas in the sample. If one writes N = M/rn in (2.2)

one gets

pV = MkT. (2.3)
m

Consider a steady-state process. Then a special case

of (2.3) is

pAV=AMkT, (2.4)
m

in which AV and AM are the values of of volume

and mass of a small sample of gas transported across

a fixed cross section during the time interval At. If

one divides (2.4) by At one gets

AV AM k
- --T. (2.5)P At At m

If one passes to the limit At --+ 0 one may write, in
turn

lim (A___)At--+0 ,:-" S ,

in which S, as above, is the volumetric throughput

across the generic cross section and

lim (A--_-) :=/1}/,At--+O

in which lt;I is the corresponding mass throughput

across the same cross section. Equation (2.5) thus

becomes, in the limit At --4 0,

pS : IVI k----T, (2.6)
TD,

Let the subscripts ( )1 and ( )2 refer to any
two distinct cross sections of conduit between which

there are no brances (or leaks). I have already in-

troduced the assumption that the flow is steady in

time. Then the law of conservation of mass requires
that

M1 =/1,;/2. (2.7)

If one eliminates/_/from the left and right members

by means of (2.6) one gets

pS
(2.8)

In many vacuum applications, the changes in abso-

lute temperature, T, along the conduit between two

cross sections is small compared to, say, the average

value over that interval. In that case, one may take

T1 _ T2 (2.9)

in (2.8). In the mean time, the factor k is a univer-

sal physical constant and rn is constant for a given
gas mixture. One may thus simplify (2.8) by can-

celling the common factor (k/rn)T in the right and
left members to obtain

(pS)l = (ps)2 := Q. (2.10)

The symbol Q thus denotes a parameter that is

constant between any two distinct cross sections of

conduit-provided there are no branches or leaks in

between. This model (which is subject to the uni-

form temperature assumption) may be quite accu-
rate even though the individual factors, p and S,

contributing to the product Q = pS undergo large

changes (e.g. p may decrease by a factor 10 .3 while

S increases by the factor 103).

Now suppose that there is a branch in a con-

duit. Then in steady flow the law of conservation

of mass requires that the net flow of mass into the

branch be balanced by the net outflow from it, i.e.

E ]_fin -- E _/out •

One may, as before, eliminate M by means of (2.6)

to get

pS
in (k/m)T) o.t (2.11)

The uniform temperature assumption, (2.9), enables

one to cancel T from the left and right members and

k/rn cancels for the same reasons as before. Thus,

E (PS)in =- E (PS)out " (2.12)

In the particular example of the flow in the fluid Tee

shown in Fig. 1.1 equation (2.12) implies that

pRSs2 = pRSR + pRSL1 •

If one cancels the common factor PR one gets

Ss2 = SR + SL1 . (2.13)
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Algebraic solution for the outlet pressures

3. ON THE FLOW THROUGH THE ORIFICES

I will restrict attention in the present problem to the

case in which the pressure, RR, is less than half of the

pressure on the upstream side of the supply orifice.
In the case when the flow" through the supply orifice

in the regime of continuum gas flow the conditions

are such that the gas speed at the throat of the

orifice just attains the speed of sound. According

the equations of Gasdynamics (cf. LIEPMANN _:

ROSHKO, 1957, §§2.10 and 5.3)[2] one may derive

the following equation for Qs

Qs --psTcdg_4 _ (_@1)1/2 (_) 1/(_/-1)

(3.1)
Here, d_ is the diameter of the supply orifice, _, is

the ratio of specific heats cp/cv of the gas (namely

1.6667 for a monotomic gas or 1.4 for a diatomic

one). Equation (3.1) is compatible with the equa-

tions in LIEPMANN &z ROSHKO[2] (though none of
the equations they write is equivalent to an explicit

solution for Q). One may find equation (3.1) as

written above in O'HANLON, 1989, p2913].
I will further restrict attention to the case when

flow through the left orifice in Fig. 1.1 is in the

regime of free molecule flow (as opposed to con-

tiuum flow). One may then relate the pressure-

volume throughput, Qc, though that orifice to the

difference between the pressures on the two sides

and to the conductivity, CL defined by

4. ALGEBRAIC SOLUTION FOR THE OUTLET

PRESSURES

As stated in §1 above suppose that the parameters

listed in (1.1) are given and that the two pressures
PR and PLZ are sought. One begins by noting that

all of the terms in the right member of equation (3.3)

are in the list (1.1) of given data. Thus, the conduc-

tivity, CL, of the orifice in the top left of Fig. I. 1 is
_nown.

Note "Chat the reciprocal of (3.2) is

1 PR -- PL2 PR PL2
C-T = QL = Q---[- -QL (4.1)

But the general identity Q := pS implies that

p = Q/S. In particular, pn = (_)L/SL1 and PL2 =

QL/SL2. The outermost equality in (4.1) thus be-
comes

1 QL 1 (_L 1

CL SL1 QL SL2 QL

or

1 1 1
-- = (4.2)
CL SL1 SL2

after simplification. One may arrange this result in

the equivalent form

1 1 1
- -I

SL 1 CL SL 2

The reciprocal of this equation is

QL

C L ----- (3.2) SL1 -_-

pR - PL2

The kinetic theory of gases (cf. JEANS, 1940,

pp 58-60)[4] furnishes an estimate of the rate of ef-
fusion of a gas through a circular hole in a plate

subject to the assumptions that the fluid is in the

regime of free-molecular flow and the remote pres-

sure in the receiver vessal is a perfect vacuum. If

one adjusts this formula to allow for nonzero (but

unequal) pressures on the two sides of the hole one

can arrange the result into a formula having the

structure of (3.2) with the conductivity, CL, given

by

d-_ iTrkTL (3.3)CL -- 2m '

(see also O'HANLON, 1989, equations 2.2 and 3.19)

[3].

1 1

CL SL2

If one multiplies the right member by 1 = CL/C L

one gets
CL

SL1 -_ CL (4.3)
1+ --

SL2

Now (2.13) asserts that Ss2 = SR + SL1. One con-

cludes from (4.3) that

CL

S_2 = Sn + C---------T
1+---

SL2

- SR 1 + S-----8----R
-- CL

1+ c2
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Numerical example

or

CL CL ]

1 + _L2 + S----R (4.4)
Ss2 = S R CL •

1 + SL---_

Recall that the general identity Q :: pS implies

that p = Q/S. In particular, pR = Qs/Ss2. If one
eliminates Ss2 from the identity PR = Q_/Sn by

means of (4.4) one gets

QS

P R = -_R

1 + SL---_

CL CL
(4.5)

To calculate the pressure, PL2, downstream of

the top left orifice in Fig. 1.1 one applies equation

(2.10) at two stations of the top left branch of the

Tee, namely stations upstream and downstream of

the top left orifice. The result is

PL2SL2 : QL = pRSL1 • (4.6)

If one divides through by SL2 the outermost equality
becomes

SL1

PL2 -- -_L2PR •

If one eliminates SL1 from this identity by means of

(4.3) one gets

1

PL2 : _L2 CL
1+ _--/_L2

PR

or

PL2 : SL2
eL PR •

If one eliminates PR by means of (4.5) one gets

PL2 =
SL2 Q,

eL

CL
1+_

SL2

CL CL

1+ _L2 + _R

or

CL Q_ 1

Pc2 -SL2 SR 1 + _L2 + -_R

(4.7)

In summary, equations (4.5) and (4.7) [with Qs

and CL determined by (3.1) and (3.3), respectively]
fulfill the stated purpose of finding the two outlet

pressures in terms of the given data listed in (1.1)
above.

Having taken the trouble to calculate PR, one

may as well write down the corresponding formula
for the leak rate into the analyzer cell, namely the

pressure-volume throughput, Qc, though the top

left orifice in Fig. 1.1. Thus, from (4.6), we have

QL = PL2SL2 SO (4.7) implies that

CL Qs

( CL CL)' (4.8)QL:SR

5. NUMERICAL EXAMPLE

If one carries out an appropriate set of unit conver-

sions, then equation (3.1) yields, under the foregoing

assumptions, the following values for the pressure-
volume throughput, Q_, into the Tee from the sup-

ply line:

Qs = { 12.2744 atm(cm)3/s for He, (5.1)4.37454 atm(cm)3/s for N2.

Similarly, equation (3.3) yields, under the fore-
going assumptions, the following values for the con-

ductivity Cc, of the top left orifice in Fig 1:

CL : { 0.633135 (cm)3/s for He, (5.2)• 0.239323 (cm)3/s for N2.

Continuing in the same vein equation (4.7)

yields, under the foregoing assumptions, the follow-

ing values for the pressure, PL2, downstream of the

top left orifice in Fig. 1.1 (i.e. into the analyzer

cell):

7.11469 x 10 -5 Torr for He, (5.3)PL2 = 6.39054 x 10 -6 Torr for N2.

Likewise equation (4.5) yields, under the fore-

going assumptions, the following values for the pres-

sure, PR, in the interior of the Tee in Fig. 1.1 (i.e.

into the input port of the roughing pump):

2.24752 Torr for He, (5.4)PR = 0.801084 Torr . for N2.

Finally, equation (4.8) yields, under the fore-

going assumptions, the following values for the
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pressure-volume throughput, QL, through the top

left orifice of the Tee in Fig. 1.1 (this quantity rep-

resents the leak rate into the analyzer cell) :

1.87085 × 10 -3 atm(cm)a/s for He,QL = 2.52064 × 10 -4 atm(cm)3/s for N2.

(5.5)

6. DESIGN CHARTS

I have presented several of the more useful results

in §4 so as to isolate, wherever possible, expressions
such as

CL
1 +- (6.1)

SL2

or

eL
1 +- (6.2)

SR

Note from the numerical examples of §5 that CL is

typically of the order of one (cm)3/sec or smaller

while SL_ is of the order of tens of L/s. Thus,

CL/SL2 is typically of the order of 10 -4 and thus
small compared to one in the present examples. Fur-

thermore, SR is on the order of a few L/s, so CL/SR

is again small compared to one in the present exam-

ples. To an engineering approximation one may thus
approximate expressions such as (6.1) and (6.2) by

one.

When one makes an approximation of the sort

described in the last paragraph, one finds that the

pressure PR in the intermediate space between the

two orifices in Fig. 1.1 is effectively independent of

the diameter df_ of the orifice in the to left branch of

the Tee and of the pumping speed SL2 of the pump
downstream of it. In other words, to an engineering

approzimation (with an error on the order of one

tenth of one percent) the pressure PR depends upon

only the pumping speed SR of the foreline pump and
the diameter ds of the supply orifice.

I have applied the algorithm described in the

last section to a set of input parameters significantly

larger than the one summarized in §1 above. Ex-

pecting that the results for PR to be effectively inde-

pendent of dL2 and SL2 I arbitrarily took the values

of those parameters to be their nominal ones for

the present version of the HGS2000 system (cf. §1

above) while retaining the accurate versions of the

equations of §4 (i.e. not approximating expressions

such as (6.1) and (6.2) by one). The result of such
a set of calculations is shown in Fig. 6.1 nearby.

In order not to limit the results needlessly, I

carried out a calculation of the ratio PL2/PR as a

function of the parameters SL2 and dL. Figures 6.1

and 6.2 thus enable one to estimate the value of,

say, PL2 aS a function of the four variables

SR , ds , SL 2 , dL

in terms of data presented in just two sets of log-log

plots.

7. RECOMMENDATIONS

It may happen that a mass-spectrometer gas ana-

lyzer that features a two-orifice pressure-reduction

inlet may perform well for a given set of orifice diam-

eter when Nitrogen is the background gas but less

well when Helium is in the background. Adjustment
of the orifice sizes may" improve the performance of

the system when Helium is the background gas but
have the unintended consequence of degrading the

performance when Nitrogen is again in the back-
ground.

One engineering approach that may enable one

to get the best of both worlds is to incorporate two

distinct pairs of orifices of which only one is active

for a given background gas (the inactive pair being

isolated by electronically controlled valves). I would
thus recommend the consideration of such an option

should it happen that there is no combination of

orifice sizes that leads to satisfactory performance

of the HGS2000 system for both a Nitrogen and a

Helium background.

I have not discussed the application of the de-

sign charts 6.1 and 6.2 to the estimation of the par-

tial pressures of trace gases in a background. I will

simply assert that the charts in Fig. 6.2 were con-

structed under the assumption that the flow through

the second orifice (in the top left branch of Fig. 1.1)
is in the free-molecule flow regime. They should

thus apply with equal validity when PR represents

the partial pressure of a tracer gas. The present

model of the flow through first, orifice, by contrast,

presumes that the flow there is in the continuum

flow regime. The value of the effective molecular

weight (and the ratio "y, of specific heats) of fluid

through it must, therefore be that of the background

gas.
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Design Charts
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