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• • Abstract

Recent experimental studies indicate that presence of small amount of liquid droplets reduces
- o

the Overall Sound Pressure Level (OASPL) of a jet. Present study is aimed at numerically in-
vestigating the effect of liquid particles on the overall flow quantities of a heated, compressible

round jet. The jet is assumed perfectly expanded. A quasi-lD model was developed for this pur-

pose which uses area-averaged quantities that satisfy integral conservation equations. Special

attention is given to represent the early development region since it is acoustically important.
Approximate velocity and temperature profiles were assumed in tiffs region to evaluate entrain-

ment rate. Experimental correlations were used to obtain spreading rate of shear layer. The
base flow thus obtained is then laden with water droplets at the exit of the nozzle. Mass, mo-

mentum and energy coupling between the two phases is represented using empirical relations.

Droplet size and mass loading are varied to observe their effect on flow variables.

Nomenclature

pg: Bulk mean density of gas phase [kg/rn 3]

ug: Bulk mean velocity of gas phase [m/s]
rap: Mass of one particle [kg]

me: Entrained mass per unit length in streamwise direction [kg/m-s]

P: Pressure [Pa]
Tg: Bulk mean temperature of the gas phase [K]

Tp: Temperature of liquid particles [K]
D: Nozzle diameter [m]

u_: Particle velocity [m/s].
n: Particle flux through any cross section of the jet [s -1]

A: Effective area of the jet [m 2]

Cpg: Specific heat at constant pressure of the gaseous phase [J/kg-K]

L: Latent heat of vaporization of water [J/kg]

Cp: Specific heat of liquid water [J/kg-K]

1_ Gas constant per unit mass [J/kg-K]

h: Convective heat transfer coefficient [J/m2sK]

ho: Mass diffusivity [kg/m2s]

Din: Diffusion constant [m2/s]

Ca: Non-dimensional entrainment rate

CD: Drag coefficient
a: Entrainment coefficient



Me: Convective Mach number

a: Radius of droplet [m];
Speed of sound [m/s]

599: 99% velocity thickness [m]

51/2:1/2 velocity thickness [m]
_w: Vorticity thickness [m]

_vis: Visual thickness [m]

_,: Pitot tube thickness [In]

M: Momentum flux [kg - m/s 2]

m: Mass flux [kg/s]

r: Radial distance from jet centerline [m]

Re: Reynolds number
Pr: Prandtl number

Sc: Schmidt number

Bi: Blot number

Sh: Sherwood number

Nu: Nusselt number

Subscripts

g: Gaseous phase
p: Particle
e: Entrainment

w: Liquid water

v: Water vapor

a, air: Air
sat: Saturated

O: Jet exit
c: CenterUne

oo: Ambient

1 Introduction

Supersonic jet noise can be classified into three distinct components- shock associated noise,

screech tones, and turbulent mixing noise (KrothapaUi and Washington, 1998). The turbulent

mixing noise is the most dominant contributor to the OASPL. A novel approach to jet noise

reduction is to use water injection to minimize the turbulent mixing noise. The goal here is to

use minimal mass loading of the gas phase with water (less than 10%) to achieve substantial

reduction in OASPL. Higher mass loading is impractical as the aircraft has to carry the water
to be injected into the jet.

A 1-D model of the jet was developed. It uses continuity, momentum and energy equations to

march variables in the streamwise direction. Area-integrated form of the conservation equations

are used. Variables considered are area-averaged flow variables. The assumption that these

equations, re _resent the actual system to a fairly good accuracy can be justified by the following
analysis.



1.1 Integral form of RANS equations

Since algebra can grow quite tedious with cylindrical coordinates, we will consider a plane jet

for illustration purpose. Also, to simplify the analysis, we assume incompressible flow. First,
consider continuity equation for turbulent flow.

0-_ 0-_

o_+_ =0

Integrating over y,

but _IH "-" -m_ and
P

hence,

°(i )_ay +vl_ = o

0 H

_[o = 0 by symmetry.

Now consider the x-momentum equation in conservative form-

(1)

0-52 0-_ ._x (-_.) + 0 (u-7_vl) 10P f02_ 02_0-_ + W + 0y - , 0_ + _ + 0_ /

Integrating over area perpendicular to the x-axis,

d H H H

l0 +_.(_H +(u_7__.v,) 1 0P. 82 _dy)+uO-_

Last term on each side, and the second term on the LHS are zero, when evaluated at y=0,

H. Since mean pressure is assumed to be constant everywhere, 0-15/0x = O. Also, for a turbulent

jet, viscous stresses are unimportant. So, simplified form of the above equation becomes:

+ d ._0

We know that u _ is less than roughly 10% of _ in magnitude. Hence second term in the

bracket is even smaller than the first term. The above equation is then approximately equivalent
to

)-_ _2dy =0 (2)

This is the integral form of the momentum equation. Energy equation can also be treated

similarly. We will apply these equations to the present case of compressible jet using mean
variables. In order to completely specify the problem, one needs to specify the entrainment

mass rate distribution. To obtain this, experimental data about spreading rates of jet and its

shear layer are used. Such data is presented by Papamoschou and Murakami (2000), Lele and
Freund (2001) and Dimotakis et al (2000). Experiments related to prediction of entrainment rate

were done by Hill (1972), and Ricou and Spalding (1961). Relation between different measures

of spreading rates, namely, vorticity thichness, visual thickness and pitot tube thichness was

obtained f_om Papamoschou and Roshko (1988). Experimental and analytical study of jet

entrainment is also found due to Zaman (1998). Further, DNS study of particle-laden mixing

layer by Miller and Bellan (1999) was found to be a useful reference for phase coupling relations.
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2 Problem formulation and governing equations

A circular jet issuing into quiescent atmosphere is considered. The geometry and jet exit condi-

tions were those used in the experiments by Krothapalli and Washington (1998). Jet diameter
is 29 ram. The jet is assumed to be perfectly expanded i.e., pressure everywhere outside the

nozzle is equal to atmospheric pressure and the nozzle is operating under design conditions. The
jet Mach number is varied as a parameter. Mach number at the exit determines the exit and

stagnation conditions through the requirements of isentropy. Jet Mach number was kept 1.44

in this study. Stagnation temperature was set to 600 K. Liquid water was introduced in the

form of tiny spherical droplets at the jet exit at ambient temperature. Ambient temperature

was taken as 298 K. Initial velocity of the droplets at exit was 50 m/s. "n" number of water

droplets of instantaneous mass rnp cross any given cross section of the jet per unit time. We can

extend our analysis to accomodate different droplet sizes and corresponding number densities.

As discussed earlier, approximate integral equations will be used for marching. These 1-D

equations with the streamwise coordinate x as the independent variable are written in control

volume form. Entrainment rate is calculated simultaneously (discussed in detail later), and the

equations axe spatially marched. But before doing that, we define the equivalent plug profiles

for velocity, density and temperature and equivalent area of the jet in such a way that these
quantities confirm to the conservation equations and constitutive relation. These variables are

then used as dependent variables which are solved for. Definition of such variables is illustrated

in figure (1) below.
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Figure 1: Defining area averaged variables

Continuity equation:

nrn, l=+(pgAug)l=+me[=Ax = (pgAug)lz+A=+nmp[z+A x

d (p, Au,) + d (nmp) = me

Momentum balance:

(3)

Momentum in + Force in the +vex direction -- Momentum out



Netpressureforce is zero because pressure is constant everywhere (atmospheric) and the
control volume is closed. Above equation then becomes, in differential form,

d
d (pgAu2) + (nmpup) = 0

d-_ -_

Energy balance:

I " I(Thermal + KineticEnergy) = (Thermal + KineticEnergy)
in lout

(4)

(5)

In addition to these conservation equations, we also have relations describing the coupling
between the two phases corresponding to mass, momentum and heat transfer. Rate of mass

transfer between a water droplet and the surrounding gas is determined by the difference between

concentrations of water vapor at the surface and away from the surface. It is governed by the
relation:

d__ _ -(Area)hDln(1 + Bin)dt --

-- -4_a2hDln(1 + Bin)dx Up

-- --4_ra 2

d, ---_hDln(1 + Bin) (6)

where Bm -- xs_,l_x°_-x.,Xsat and Xv being mass fractions of vapor under saturated and actual

conditions respectively, hD is mass diffusivity of water vapor in air in kg/m2s.
Xsat and Xv are calculated as follows:

If my is the mass flux of water vapor through any cross section of the jet, then

mvAt my

p_ = AugA t Au a

Since water vapor is generated only due to evaporation of droplets,

Water vapor density under saturated conditions is

Psat

Psat "-- RvTg

with/L, being the gas constant for water vapor and Psat the saturation pressure given by
(Miller and Bellan, 1999)



HereTB is the boiling temperature of water at atmospheric pressure, L is the latent heat of

vaporization of water (assumed constant), and Tp is particle temperature. Now, patial pressure

of dry air under saturated condition is Pa,sat = Patm -- Psat. So, the density of dry air in
saturated air becomes

Pa_sat

Pa,sat : RairTg

Then, the total density of gaseous phase will be

Ptot,sat : Pa,sat _- Psat

The mass fractions now become

Xsat --

Mass diffusivity is given by

Psat and Xv- Pv
Ptot,sat Pgas

D_f_

hD = Sh pg (2a)

Where

Sh = Sherwood number

Dm=Diffusivity of water vapor in air = 2.93 x 10-5m2/s

2a=Length scale (droplet diameter)

Sherwood number is dependent on Reynolds number based on the empirical relation

Sh = 2 + 0.552ScU3Re W2 (8)

Here, Sc is Schmidt number and its value is 0.608 for water vapor in air. Reynolds number
is defined based on the particle diameter and slip velocity.

Re = pglug - upl(2a) (9)
Pg

Momentum coupling relation is based on experimentally measured values of drag coefficient,
Co, for a range of Reynolds number. Drag force is

1
FD = CDsPg(Ug -- up)2(Tra 2) (10)

But FD -- mpdup/_ -- mpupduv/dx. Hence,

dup 1 1
- mpupCD_Pg(Ua -- up)2(Tra2)sign(ug -- Up) ill)dx

Variation of CD with Re used here is shown below (Donley, 1991).

Heat transfer between the two phases is governed by the temperature difference between the
particle surface and the surrounding fluid through the relation

h(Tp- T,)4.a2 -- -_tP[L + Cv(Tevap- Tp)]- rnpCp _--_Ttp

Substituting At = Ax/up,

h(Tp - T ) 47ra2 - dmp[L + Cp(Tevap'- Tp)] - mpCp-_-_ (12)
ax
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Figure 2: Variation of drag coefficient with Reynolds number

Where L is the latent heat of vaporization of water. Its value is 2.5 x 106j/kg. Here it is

assumed that the temperature inside a droplet is approximately constant i.e. temperature gra-

dients inside a particle are small. This is justified when particle size is small and its conductivity

is high. A plot of particle Biot number evolution (Fig. (3)) for the particle size of 26 microns

shows that Bi -- hd/6kw < 0.1 and above assumption is valid.
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Figure 3: Evolution of Biot number

To compute convective heat transfer coefficient we use the following relation

Nu = 2 + 0.552Prl/3Re 1/2 (13)

Now, changes in thermodynamic properties of the gaseous mixture are functions of its com-

position i.e. f_action of water vapor present. Variations in these properties are governed by the

requirement that, in an adiabatic mixing process, total energy is conserved. We define the bulk

properties of the gas phase in such a way that these properties, when used to obtain energy,



givethesametotal energyasthesumof theenergiesof the individualgaseouscomponents,
assumingahypotheticaladiabaticmixingprocess.

Applyingtheabovestatementto thecontrolvolume,

• dmp _
dx(PgugACpg) = meCp,air + n---_--Cp,v

Same equation can also be obtained by mass-averaging the component Cp values.

It should be noted that partial pressures of gases add to produce total pressure.

(14)

P=Pa+Pv

P = (paR. + pvl_)Tg (15)

Also, densities add.

Pg = P. + Pv (16)

Thus, we have a set of the above equations and the following unknowns: ug, pg, Tg, Cp_, Up, mp, Tp, A.

3 Solution procedure

Solution was marched streamwi§e using Euler explicit method. This required derivatives of some of the

dependent variables at every step. It was observed that this produces an ill-conditioned system of equations

that tends to diverge. As a remedy, this system was diagonalized by defining two more variables related to

the gaseous phase, namely, mass flow rate and enthalpy of the gas.

mg = pgugA

h9 = GgTg

Henceforth, we adopt a notation in which a dot (.) above a variable indicates derivative with respect to
x. Variables pertaining to particles, up, Tp, mp can be easily decoupled using the coupling relations in the
following way:

Equation (6),(11) ,(12)respectively give:

mp -- -_hDln(1 + Bin)

__ 1 1

Up -- _pu_ CD_Pg(Ug -- up)27ra2sign(ug -- Up)

Tp = m--_ { h(Tp - Tg ) 4"a2 - mP[L -I-Cp(TevaP - TP)] },up

Variables corresponding to the gas phase are then decoupled as follows:

Equation (3) gives:

trig = me -- nmp

(17)

(18)

(19)

(20)



Equation(4)is:

Usingeq.(20),weget

d_(m_ug) + _(nmpup) = o

mgZig -t- UgI?_g -3I- T_(mpup -_- zipmp) : 0

mg_ig : -Ugrftg - rt(rhpUp A- _ipmp )

mg_g = -ugme + nugn_p - nrdpup - ndpmp

mggg = --Ugme + n(Ug - up)nip - ndpmp

Ug A- n(ug up)_:tp nzipmp]= _[-u_ - -

Energy balance equation was:

d 1 2 .d u 2

Where he - Cp, airTamb
Rearranging,

m_ 1 . 2 1 2llg = {roche - rhghg - -_mgug - mgua_ig - n[rhp(CpTp + -_up) + mpCpTp + mpupdv]}

Equation (14) was:

This gives:

drop
-_(paugACpa) = meCp,air + n--_-x Cp,v

(21)

(22)

mgCp,g = m_Cp,._,. + nnipCp,,, - maCp,a (23)

Equations (17) to (23) form a diagonal system of linear algebraic equations in up, Tp, mp, Ug, ms, hg, Cpg.

After advancing every time step, all other variables are updated as:

(24)

_- and Pv --Where Pa = Au ° Aug

i

Yrgair : mg,o -4- f: medx

mvopor= _(mpo- rap) (25)

This system ofequations can be regarded as an implicitsystem in area A. We firstlinearlyextrapolate

the area to the next node, evaluate allother variables,and then correctthe area using the followingset of

equations:



Pg -" Pa -t- Pw

A =-P-L
pgug

In this way, we can iterate to get the converged value of the area. Here it was observed from the following

plot of order of magnitude of relative arror in area as a function of number of iterations (Fig.(4)) that only

two iterations suffice to achieve desired accuracy. Using any further iterations would be an improper use of
corn _utational resources.
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Figure 4: Variation of relative error in area with number of sub-iterations

4 Calculation of entrainment rate

In the above solution procedure it was assumed that the entrainment rate was supplied at each marching
step. This section focuses on obtaining the rate Of mass entrainment. Developing region and self-similar

region are considered separately.

4.1 Fully developed region

Consider incompressible flow. In the self-similar region, the jet spreading rate in terms of the half-velocity

thickness is given by the expression (Lele and Freund)

51/2 x
D "_ 0.095_ (26)

The self-similar velocity profile is

2-U7=
where _?= r/Ssc and 5so is the scaling thickness equal to 0.388451/2 (White). Momemtum flux is

(27)

I0



Hence,

M 2 2 oo u a

= pU_ _8c fo 27rr] 1 + &7

= pu  L(4.1888)

(28)

Ue = 6__e_ M (29)4.1888p

An entrainment hypothesis was made which states that the turbulent fluctuating velocity that causes
entrainment is proportional to the jet centerline velocity.

me = v_Ucps27r58c (30)

where P8 is the ambient density and a is the entrainment constant to be determined using the experimental
data related to the jet spreading rate. This gives,

d._._m= o_Ucp27r 6sc
dr.

M

But 58c = 0.3884_1p. - 0.0369x. This gives,

= 0.0738

We now define the non-dimensional entrainment rate as C2 by

o
C2 -- pUc_D2 me (31)

mo is the mass flow rate at nozzle exit and po is fluid density at nozzle exit. Here, Po = Ps -- P since we
have assumed incompressible flow.

PUcTrD2/4D (p__8) 1/2 IMC2 = 21ra 4.1888p

lr/-)2 ^r r2
But M = __ _,_. The above expression then becomes

p (32)

C2 = 0.256

()'"62 = D P-e. 2raDUc _.......a_
pU¢TrD2/4 p6 4 4.1888p

T¢
= 4c_4._8 8

(33)
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RicouandSpalding(1961)statethat(72rangesfrom0.248to0.456.ExperimentalstudyduetoHill (1972)
suggeststhevalue0.32for C2. Zaman (1998) predicts a similar value, 0.316. Since C2 varies considerably

in different studies, we adopt a representative value of 0.32.

4.2 Early development region - Compressibility effects

The developing region requires special attention as it is important from acoustics point of view. Compress-
ibility effects in this region may be significant. They are incorporated into the present analysis. As the

jet issues out of the nozzle, velocity profile is a plug profile. As the vortex sheet at the edge of the profile

diffuses, the annular shear layer spreads. Spreading rate depends on the convective Mach number defined as

vc
Mc -- (34)

ae 4- aamb

Where Uc - Jet exit velocity

ae - Speed of sound inside the jet at exit

aamb ---- Speed of sound in atmosphere

Papamoschou and Murakami (2000) give an expression for spreading rate of pitot tube thickness:

5_t = 0.14(1 4- v_)[0.23 4- 0.77exp(-3.5M2)]

where s = PamblPexit

In the early region, sinnsoidal velocity profiles were assumed in the shear layer. These profiles are:

(35)

u(r) = 1-sin r - yc - _ Yc < r < yc 4-

=Uc for r < yc

=0 for r > yc4-_ (36)

This profile gives,

Temperature profile was calculated using Crocco-Busemann relation as follows. Crocco-Busemann rela-

tion states that temperature can be expressed as a function of velocity when ideal gas law is valid and Pr is
nearly unity. The functional dependence can be written as

U 2

CpT = --_ 4- Au 4- B (37)

Applying the boundary conditions:

At r = 0, u = Uc, T = Tc
At r = 5, u = 0, T = Tc

we get

A = IVY/2 + Cp,o,r(T_ - T_)]lVc

B = Cp,airT_

(38)

(39)
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Usingtheseproflesandthespreadingrate data, momentum conservation can be applied to obtain thick-

ness of the potential core. This completely describes velocity and temperature profiles. This information

can then be used to compute entrainment rate using mass conservation. If M is the momentum flux at the

exit of the jet then at every cross section along the jet, momentum flux remains M. This gives

._oy_ /y,:+6
pu227rrdr + pu227rrdr = M (40)

,I Yc

6 7¢
Denoting (r - Yc - _)_ by f_ and using the ideal gas law, we obtain:

_ =

Here we have used the fact that

D 2

M = 7r--pcU 2
4

(41)

This is a quadratic in yc(x) and can be solved. Integrals appearing above are evaluated numerically and

5_t(x) is supplied. 5 is computed from the pitot tube thickness by using the equations (Papamoschou and

Roshko, 1988):

5,_8 _ _ (42)

5_ _ 0.55_s (43)

Having obtained velocity and temperature profiles completely, continuity equation can be used to compute
entrainment rate. We have,

dm d /yo+,5= -- pu2_rrdr
me dx dx ao

Using Leibnitz rule,

lyc-I-_i

Last two terms on the RHS are zero.

/_c+6 i) (pu27rr)lrd_ dr

Second integral on the RHS is zero because both density and velocity are constant inside the potential
core.

Changing variable of integration to ;3,

Now,

13



But p -- _ giving us:

Also, T = [--y + Au + B]/Cp. Hence,

d_

= pdu _ d_p_ dT du
df_ -_- u dT _ d'-_

dp P

dT RT 2

(44)

Where

also_

d.._T = (A - u)/cp
du

[p+u - j

]d"-_= d--_ (1 - sin/_) = --_cosn
g

= - " ' (46)

Where dash denotes differentiation with respect to x. Now, me can be evaluated by numerically corn-

puting the integral in equation (43). As the shear layer grows further, it starts "feeling" the effect of its

circular shape and the growth rate no longer remains constant. In the present study, the above analysis was

applied upto a distance of twice the jet diameter. Beyond 13D, the constant value of C2 corresponding to the

fully developed flow is used. The middle region is interpolated using a cubic spline in the non-dimensional
coordinates C2 and x/D. Resultant variation of C2 is plotted in figure (5).

5 Results and discussion

To generate data and highlight the effect of liquid droplets on the jet flow, we keep the geometry and exit

condition of the jet fixed. Jet diameter is 29ram, jet exit Mach number is set to 1.44, stagnation temperature
is 600 K. This gives jet exit velocity of 594.44 m/s and temperature at the jet exit is 424.1 K.

First we shall demonstrate certain general trends using the particle size of 26.7 microns. Figure (6) shows

that the momentum coupling between the two phases causes the particle velocity to tend to follow the gas
velocity. Heat coupling has a similar effect on the droplet temperature.

We set the total mass flow rate of water droplets at 10% of the jet exit mass flow rate. We then vary
the droplet size to observe the droplet behaviour. From figure (7) we see that smaller particles affect the

velocity history more than the larger particles do.

Some other important observations are:

14
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Figure 6: (a) Velocity and (b) Temperature response of a particle

• Computations were performed to evaluate the importance of surface energy change during

atomization. It was found that, if every particle breaks into two, then the increase in

surface energy is six orders of magnitude less than the kinetic energy of the gaseous phase.

This suggests that, the mechanism of conversion of turbulent energy into surface energy
is unimportant here.

• A simple modification of the formulation was done in order to accomodate different par-
ticles sizes with the corresponding number densities.

• Efficacy of Crocco-Busemann relation in conserving total energy was tested. Assuming

velocity profiles and temperature profiles are same, the relative error in total energy was

found to be 3% or less. After using Crocco-Busemann relation to find temperature profiles,

this upper bound on the relative error in energy was reduced to 0.5%.

• Dimensional analysis suggested that the non-dimensional parameter deciding the impor-
tance of particles in mass and momentum variation was nothing but the ratio of the total

mass flow of liquid droplets to the mass flow rate of gaseous phase. Also, since temperature

15



Figure 7: Effect of droplet size on main flow

variations for both the phases are approximately of the same order, the same parameter

also governs energy variation. When this parameter is small, presence of the droplets may
be neglected completely.
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