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ABSTRACT

Mesh adaption is a powerful tool for efficient unstructured-grid computations but causes

load imbalance among processors on a parallel machine. We present a novel method ca.lled

PLUM to dynamically ba.lance the processor workloads with a. globa.1 view. This paper

presents the implementa.tion and integra.tion of all major components within our dynamic

load balancing strategy for adaptive grid calcula.tions. Mesh adaption, repartitioning, pro-

cessor assignment, and remapping are critical components of the framework that must be

accomplished rapidly and efficiently so as not to cause a. significant overhead to the numerical

simulation. A data redistribution model is also presented that predicts the remapping cost

on the SP2. This model is required to determine whether the ga:in from a bala.nced workload

distribution offsets the cost of data movement. Results presented in this paper demonstrate

that PLUM is an effective dynamic load balancing strategy which remains viable on a. la.rge

number of processors.

1. INTRODUCTION

Dynamic mesh adaption on unstructured grids is a powerful tool for computing unsteady

three-dimensional problems that require grid modifications to efficiently resolve solution fea-

tures. By locally refining and coarsening the mesh to capture flowfield phenomena, of interest,

such procedures make sta.ndard computational methods more cost effective. Highly refined

meshes are required to accurately capture shock waves, conta.ct discontinuities, vortices, and

1This work was supported by NASA under Contract Number NAS 2-96027 with the Universities Space
Research Association and under Contract Number NAS 2-14303 with MRJ Technology Solutions.
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shear layers. Local mesh adaption provides the opportunity to obtain solutions that are

comparable to those obtained on globally-refined grids but at a much lower cost.

Unfortunately, the adaptive solution of unsteady problems causes load imbalance among

processors on a parallel machine. This is because the computational intensity is both space

and time dependent. This requires significant communication at runtime leading to idle pro-

cessors and adversely affecting the total execution time. An efficient parallel implementation

of such methods is extremely difficult to achieve, primarily because of the dynamically-

changing nonuniform grid. Various methods on dynamic load balancing have been reported

to date [7,8,10-12,14-17,19,20,22,33-35]; however, most of them either lack a global view of

loads across processors or do not apply their techniques to realistic large-scale applications.
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Figure 1: Overview of PLUM, our framework for parallel adaptive flow computation.

Our goal is to build a portable system for efficiently performing adaptive large-scale flow

calculations in a parallel message-passing environment. Figure 1 depicts our framework,

called PLUM, for such an automatic system. It consists of a flow solver and a mesh adaptor,

with a partitioner and a remapper that load balances and redistributes the computational

mesh when necessary. The mesh is first partitioned and mapped among the available pro-

eessors. A flow solver then runs for several iterations, updating solution variables. Once

an acceptable solution is obtained, a mesh adaption procedure is invoked. It first targets

edges for coarsening and refinement based on an error indicator computed from the flow

solution. The old mesh is then coarsened, resulting in a smaller grid. Since edges have

already been marked for refinement, it is possible to exactly predict the new mesh before

actually performing the refinement step. Program control is thus passed to the load balancer

at this time. A quick evaluation step determines if the new mesh will be so unbalanced as

to warrant a repartitioning. If the current partitions will remain adequately load balanced,

control is passed back to the subdivision phase of the mesh adaptor. Otherwise, a repar-

titioning procedure is used to divide the new mesh into subgrids. The new partitions are

then reassigned to the processors in a way that minimizes the cost of data movement. If the
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remapping cost is less than the computational gain that would be achieved with balanced

partitions, all necessary data is appropriately redistributed. Otherwise, the new partitioning

is discarded. The computational mesh is then actually refined and the flow calculation is
restarted.

Notice from the framework in Fig. 1 that splitting the mesh refinement step into two

distinct phases of edge marking and mesh subdivision allows the subdivision phase to oper-

ate in a more load balanced fashion. In addition, since data remapping is performed before

the mesh grows in size due to refinement, a smaller volume of data is moved. This, in turn,

leads to significant savings in the redistribution cost. However, the primary task of the load

balancer is to balance the computational load for the flow solver while reducing the runtime

communication. This is important because flow solvers are usually several times more ex-

pensive than mesh adaptors. In any case, it is obvious that mesh adaption, repartitioning,

processor assignment, and remapping are critical components of the framework and must

be accomplished rapidly and efficiently so as not to cause a significant overhead to the flow

computation.
• ...-

2. EULER FLOW SOLVER

An important component of PLUM is a numerical solver. Since we are currently interested

in rotorcraft computational fluid dynamics (CFD) problems, we have chosen an unstructured-

grid Euler flow solver [30] for the numerical calculations in this paper. It is a finite-volume

upwind code that solves for the unknowns at the vertices of the mesh and satisfies the integral

conservation laws on nonoverlapping polyhedral control volumes surrounding these vertices.

Improved accuracy is achieved by using a piecewise linear reconstruction of the solution in

each control volume. For helicopter problems, the Euler equations are written in an inertial

reference frame so that the rotor blade and grid move through stationary air at the specified

rotational and translational speeds. Fluxes across each control volume are computed using

the relative velocities between the moving grid and the stationary far field. For a rotor in

hover, the grid encompasses an appropriate fraction of the rotor azimuth. Periodicity is

enforced by forming control volumes that include information from opposite sides of the grid

domain. The solution is advanced in time using conventional explicit procedures.

The code uses an edge-based data structure that makes it particularly compatible with

the mesh adaption procedure that we have incorporated within PLUM. Furthermore, since

the number of edges in a mesh is significantly smaller than the number of faces, cell-vertex

edge schemes are inherently more efficient than cell-centered element methods. Finally, an

edge-based data structure does not limit the user to a particular type of volume element.

Even though tetrahedral elements are used in this paper, any arbitrary combination of poly-

hedra can be used [6]. This is also true for our dynamic load balancing procedure.

3. PARALLEL MESH ADAPTION

A significant amount of research has been done to design sequential algorithms to ef-

fectively use unstructured meshes for the solution of fluid flow applications. Unfortunately,



manyof thesetechniquescannottakeadvantageof the powerof parallelcomputingdueto the
difficulties of porting thesecodesonto distributed-memory architectures. Recently,several
two-dimensionaladaptive methodshave beensuccessfullydevelopedin a.parallel environ-
ment, and someprogresshasbeenmadetowards three-dimensionaladaptive unstructured-
meshschemes[21,24,26,27].

Wehavechosenthe 3D_TAGschemeasthe three-dimensionalunstructuredmeshadaption
procedurewithin PLUM.The serialalgorithm is extensivelydescribedin [4,5]. The 5000-line
C code has its data structures basedon edgesof a tetrahedral mesh. This meansthat the
elementsaredefinedby their six edgesrather than by their four vertices.This featuremakes
the meshadaption procedurecapableof performing anisotropic refinementand coarsening
that results in a moreefficientdistribution of grid points.

At eachmeshadaptionstep,tetrahedralelementsare targetedfor coarsening,refinement,
or nochangeby computinga.nerror indicator for eachedge.Edgeswhoseerror valuesexceed
a.specifiedupper thresholdare targeted for subdivision. Similarly, edgeswhoseerror values
lie belowanother lower thresholdare targetedfor removal. Only three subdivisiontypes are
allowedfor eachelement. The 14o-8 isotropic subdivision is implementedby adding a.new
vertex at the mid-point of eachof the six edges.The 1-to-4 and 1-to-2 subdivisionsresult
either becausea tetrahedron is targeted anisotropicallyor becausethey are requiredto form
a.valid connectivity for the new mesh. When an edgeis bisected,the solution vector is
linearly interpolated a.tthe mid-point from the two points that constitute the original edge.

Pertinent information is maintainedfor the vertices,elements,edges,and externalbound-
ary facesof the mesh. In addition, eachvertex hasa list of all the edgesthat are incident
upon it. Similarly, eachedgehasa list of all the elementsthat shareit. Theselists eliminate
extensivesearchesand are crucial to the efficiencyof the overall adaption Scheme.

Mesh refinement is performed by first setting a. bit flag to one for each edgethat is
targeted for subdivision. The edgemarkings for eachelementare then combinedto form a
6-bit pattern. Elementsarecontinuously upgradedto valid patterns correspondingto the
threeallowedsubdivisiontypes until noneof the patterns showany change.Eachelementis
then independentlysubdivided basedon its binary pattern. Meshcoarseningalso usesthe
edge-markingpatterns. If a child elementhasanyedgemarked for coarsening,this element
and its siblings are removedand their parent is reinstated. The parent edgesand elements
are retained a.t eachrefinementstep so they do not have to be reconstructed. Reinstated
parent elementshavetheir edge-markingpatterns adjusted to reflect that someedgeshave
beencoarsened.The parents are then subdividedbasedon their new patterns by invoking
the meshrefinementprocedure.As a result, the coarseningand refinementproceduresshare
muchof the samelogic.

Details of the distributed-memory implementationaregiven in [24]. The parallel version
consistsof a.nadditional 3000lines of C++ and MPI codeasa.wrapperaround the original
serialmesha.daptionprogram. An object-orientedapproachallowedthis to beperformedin a
cleanand efficientmanner. The parallelada.ptioncodeconsistsof threephases:initialization,
execution,and finalization. The initialization and finalization stepsare executedonly once
for eachproblemoutside the main solutione+a.daption_load-balancingcycle within PktJM
shownin Fig. 1. The executionstep runs a local copy of the meshadaption algorithm on
eachprocessor.Good parallel performanceis therefore critical during this )ha.sesinceit is
executedseveraltimes during a flow computation.



The initialization phasetakes as input the global initial grid and the corresponding
partition information that placeseachtetrahedral element in exactly one partition. It then
distributes the global data acrossthe processors,defining a local number for each mesh
object, and creating the mapping for objects that aresharedby multiple processors.

The executionphaserunsa copyof 3D_TAGoneachprocessorthat adaptsits local region,
while maintainingaglobally-consistentgrid alongpartition boundaries.Communicationmay
be required to upgradeelementsto oneof the three allowedsubdivision patterns. However,
onceall edgemarkingsarecomplete,eachprocessorexecutesthe meshadaption codewithout
the needfor further communication, sinceall edgesareconsistentlymarked. The only task
remaining is to update the sharededgeand vertex information asthe meshis adapted. This
is handled asa post-processingphase.

It is sometimesnecessaryto createa singleglobal meshafter oneor moreadaption steps.
Somepost processingtasks, suchasvisualization, needto processesthe whole grid simul-
taneously. Storing a snapshotof a grid for future restarts could alsorequire a global view.
The finalization phaseaccomplishesthis task by connecting individual subgrids into one
global mesh.Each local object is first assigneda unique global number. All processorsthen
update their local data structures accordingly. Finally, a gather operation is performed by.
a host processorto concatenatethe local data structures into a global mesh. The host can
then interface the meshdirectly to the appropriate post-processingmodule without having
to perform any serialcomputation.

4. DYNAMIC LOAD BALANCING

In this paper, wepresenta novelmethod, calledPLUM,to dynamically balancethe pro-
cessorworkloadsfor unstructured adaptive-gridcomputationswith a global view. Portions
of this work reported earlier [2,3,23,29]have successfullydemonstrated the viability and
effectivenessof our load balancing framework. All major componentswithin PLUM have
now been completely implementedand integrated. This includes interfacing the parallel
meshadaption procedurebasedon actual flow solutionsto a data remapping module, and
incorporating an efficientparallel meshrepartitioner. A data remapping cost model is also
proposedthat canaccurately predict the total cost of data redistribution given the number
of tetrahedral elementsthat haveto bemovedamongthe processors.

Our load balancingprocedurehas five novelfeatures: (i) a dual graph representationof
the initial computational meshkeepsthe complexity and connectivity constant during the
courseof an adaptivecomputation; (ii) a parallel mesh repartitioning algorithm avoids a
potential serial bottleneck; (iii) a heuristic remappingalgorithm quickly assignspartitions
to processorsso that the redistribution cost is minimized; (iv) an efficient data movement
schemeallows remappingand meshsubdivisionat a significantly lowercost than previously
reported; and (v) accurate metrics estimate and comparethe computational gain and the
redistribution cost of having a balancedworkload after eachmeshadaption step.

_.1. Dual Graph of Initial Mesh

Parallel implementation of CFD flow solvers usually require a partitioning of the compu-

tational mesh, such that each tetrahedral element belongs to an unique partition. Commu-

nication is required across faces that are shared by adjacent elements residing on different



processors.Hencefor the purposesof partitioning, we consider the dual of the computational

mesh.

Using the dual graph representation of the initial mesh for the purpose of dynamic load

balancing is one of the key features of this work. The tetrahedral elements of this mesh are

the vertices of the dual graph. An edge exists between two dual graph vertices if the corre-

sponding elements share a face. A graph partitioning of the dual thus yields an assignment

of tetrahedra to processors. There is a significant advantage of using the dual of the initial

computational mesh to perform the repartitioning and remapping at each load balancing

step of PkUM. This is because the complexity remains unchanged during the course of an

adaptive computation.

Each dual graph vertex has two weights associated with it. The computational weight,

Wcomp , indicates the workload for the corresponding element. The remapping weight, Wremap,

indicates the cost of moving the element from one processor to another. The weight Wcomp

is set to the number of leaf elements in the refinement tree because only those elements that

have no children pa./ticipate in the flow computation. The weight Wremap, however, is set

to the total number of elements in the refinement tree because all descendants of the root

element must move with it from one partition to another if so required. Every edge of the

dual graph also has a weight Wcomm that models the runtime interprocessor communication.

The value of Wcomm is set to the number of faces in the computational mesh that corresponds

to the dual graph edge. The mesh connectivity, Wcomp, and Wcomm determine how dual

graph vertices should be grouped to form partitions that minimize both the disparity in the

partition weights and the runtime communication. The Wremap determines how partitions

should be assigned to processors such that the cost of data redistribution is minimized.

New computational grids obtained by adaption are translated to the weights Wcomp and

Wr_map for every vertex and to the weight Wcomm for every edge in the dual mesh. As a result,

the repartitioning and load-balancing times depend only on the initial problem size and the

number of partitions, but not on the size of the adapted mesh.

One minor disadvantage of using the initial dual grid is when the starting computational

mesh is either too large or too small. For extremely large initial meshes, the partitioning

time will be excessive. This problem can be circumvented by agglomerating groups of ele-

ments into larger superelements. For very small meshes, the quality of the partitions will

usually be poor. One can then allow the initial mesh to be adapted one or more times before

forming the dual graph that is then used for all future a.daptions.

4.2. Preliminary Evaluation

Before embarking on an intensive load balancing phase, it is worthwhile estimating if

the impending mesh adaption is going to seriously imbalance the processor workloads. The

preliminary evaluation step achieves this goal by rapidly determining if the dual graph with

a new set of Wcomp should be repartitioned. If projecting the new values on the current

partitions indicates that they are adequately load balanced, there is no need to repartition the

mesh. In that case, the flow computation continues uninterrupted on the current partitions.

If, on the other hand, the loads are unbalanced, the mesh is repartitioned.

A proper metric is required to measure the load imbalance. If Wmax is the sum of the

Wcomp on the most heavily-loaded processor, and Wavg is the average load across all proces-

sors, the average idle time for each processor is (Wmax - Wavg). This is an exact measure of



the load imbalance. The meshis repa,rtitioned if the imbalancefactor Wmax/Wavg is unac-

ceptable.

4.3. Parallel Mesh Repartitioning

If the preliminary evaluation step determines that the dual graph with a new weight

distribution is unbalanced, the mesh needs to be repartitioned. Note that repartitioning is

always performed on the initial dual graph with the weights of the vertices and edges adjusted

to reflect a mesh adaption step. A good partitioner should minimize the total execution time

by balancing the computational loads and reducing the interprocessor communication time.

In addition, the repartitioning phase must be performed very rapidly for our PLUM load

balancing framework to be viable. Serial partitioners are inherently inefficient since they do

not scale in either time or space with the number of processors. Additionally, a bottleneck

is created when all processors are required to send their portion of the grid to the host

responsible for performing the partitioning. The solution must then be scattered back to all

the processors before the load balancing can continue. A high quality parallel partitioner is

therefore necessary to alleviate these problems.

Some excellent parallel partitioning algorithms are now available [18,27,28,35]; however,

we need one that is extremely fast while giving good load balance and low edge cuts. For

the test cases in this paper, an alpha version of parallel MeTiS [18] was used as the repar-

titioner. MeTiS is a multilevel algorithm which has been shown to quickly produce high

quality partitions. It reduces the size of the graph by collapsing vertices and edges using a

heavy edge matching scheme, applies a greedy graph growing algorithm for partitioning the

coarsest graph, and then uncoarsens it back using a combination of boundary greedy and

Kernighan-Lin refinement to construct a partitioning for the original graph. A key feature

of parallel MeTiS is the utilization of graph coloring to parallelize both the coarsening and

the uncoarsening phases. An additional benefit of the algorithm is the potential reduction in

remapping cost since parallel MeTiS, unlike the serial version, uses the previous partition as

the initial guess for the repartitioning. Results indicate that this partitioner can be effectively

used inside PLUM; however, any other partitioning algorithm can also be used as long as it

quickly delivers partitions that are reasonably balanced and require minimal communication.

4.4. Similarity Matrix Construction

Once new partitions are obtained, they must be mapped t0 processors such that the

redistribution cost is minimized. In general, the number of new partitions is an integer

multiple F of the number of processors. Each processor is then assigned F unique partitions.

The rationale behind allowing multiple partitions per' processor is that performing data

mapping at a finer granularity reduces the volume of data movement at the expense of

partitioning and processor reassignment times. However, the simpler scheme of setting F to

unity suffices for most practical applications. Quantitative effects of varying F for our test

cases are shown in Section 5.

The first step toward processor reassignment is to compute a similarity measure S that

indicates how the remapping weights Wremap of the new partitions are distributed over the

processors. It is represented as a matrix where entry Si,j is the sum of the Wremap of all the

dual graph vertices in new partition j that already reside on processor i. Since the partition-

ing algorithm is run in parallel, each processor can simultaneously compute one row of the



o_
t,-4

O
r_

r_

¢)

©

Figure 2" An example of a

entries are shown.

New Partitions

nnnnnnnn
1020 120

500 443 372

129 130 229 43 446 I

13 410 281 198

similarity matrix S for P = 4 and F = 2. Only the non-zero

matrix, based on the mapping between its current subdomain and the new partitioning. This

information is then gathered by a single host processor that builds the complete similarity

matrix, computes the new partition-to-processor mapping, and scatters the solution back to

the processors. Note that these gather and scatter operations require a minuscule amount of

time since only one row of the matrix (P×F integers) needs to be communicated to the host

processor. A similarity matrix for P = 4 and F = 2 is shown in Fig. 2. Only the non-zero

entries are shown.

4.5. Processor Reassignment

The goal of the processor reassignment phase is to find a mapping between partitions

and processors such that the data redistribution cost is minimized. Various cost functions

are usually needed to solve this problem for different architectures. We present two general

metrics: TotalV and MaxV, w.hich model the remapping cost on most multiprocessor systems.

TotalV minimizes the total volume of data moved among all processors, while RaxV minimizes

the maximum flow of data to or from any single processor.

The metric TotalV assumes that by reducing network contention and the total number

of elements moved, the remapping time will be reduced. In general, each processor cannot

be assigned. F unique partitions corresponding to their F .largest weights. This is the case

for the similarity matrix shown in Fig. 3(a) where the F largest weights for each processor

are shaded. Note that P = 4 and F = 1 in this case. To minimize TotalV, each processor i

must be assigned F unique partitions Ji-I, f = 1, 2,..., F, so that the objective function

P F

= E E s,,j,_,
i=1 f=l

is maximized subject to the constraint

Ji__ ¢ Jk_s, Vi ¢ k; r, s = l, 2, . . . , F.

Both an optimal and a heuristic greedy algorithm have been implemented for solving

this problem. When F = 1, the problem trivially reduces to a maximally weighted bipartite

graph (MWBG), with P processors and P partitions in each set. An edge of weight Si,j

exists between vertex i of the first set and vertex j of the second set. If F > 1, the

processor reassignment problem can be reduced to the MWBG problem by duplicating each
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Figure 3: A similarity ma, trix S for P = 4 a.nd F = 1 (a.) before, a.nd (b-d) a.fter processor

rea.ssignment using (b) optima.1 MWBG algorithm a.nd TotalV metric, (c) heuristic MWBG

a.lgorithm and TotalV metric, a.nd (d) optima.1 BMCM a.lgorithm a,nd MaxV metric.

L

processor a.nd a.ll of its incident edges F times. Ea.ch set of the bipa.rtite graph then ha.s P x F

vertices. After the optima.1 solution is obta.ined, the solutions for a,ll F copies of a. processor

a.re combined to form a. one-to-F mapping between the processors a,nd the pa.rtitions, The

optima, l solution a.nd the corresponding processor a,ssignment using the TotalV metric for

the simila.rity ma.trix in Fig. 3(a,) is shown in Fig. 3(b). The optima,1 algorithm requires

O(VE) steps, where V a.nd E a,re the number of vertices a.nd edges in the weighted bipa.rtite

graph, respectively.

for (j=0; j<npart; j++)part_map[j] = unassigned;

for (i=0; i<nproc; i++) proc_unmap[i] = npart / nproc;

generate list L of entries in S in descending order using radix sort;

count = O;

while (count < npart) {

find next entry S[i] [j] in L such that

proc_unmap[i] > 0 and part_mapKj] = unassigned;

proc_unmap Ki]-- ;

part_map[j] = assigned;

count++ ;

map partition j to processor i;

}

Figure 4: Pseudocode for our heuristica.lgorithmfor solving the processor reassignment

problem.

We ha.ve developed a, heuristic greedy a,lgorithm tha.t gives a, suboptima.l solution in O(E)

steps. The pseudocode for our heuristic a.lgorithm is given in Fig. 4. Initia.lly, a,ll pa.rtitions

are flagged a.s unassigned a.nd ea,ch processor ha.s a, counter set to F tha.t indica, tes the re-



maining number of partitions it needs.The non-zeroentriesof the similarity matrix S are

then sorted in descending order. Starting from the largest entry, partitions are assigned to

processors that have less than F partitions until done. If necessary, the zero entries in S are

also used. Applying this heuristic algorithm to the similarity matrix in Fig. 3(a) generates

the new processor assignment shown in Fig. 3(c). The value of the objective function jc is

280 for the heuristic solution but is 305 for the optimal solution.

Theorem 1: The value of the objective function _ using the heuristic algorithm is always

greater than half the optimal solution.

Proof: We prove by the method of induction. Let Ski denote the entry in the i-th row and

j-th column of a k × k similarity matrix. Let 0pt k and Hen k denote the optimal and heuristic

solutions, respectively, for the similarity matrix S k. When k - 1, 0pt 1 -- Hen 1 since there is

only one entry in S 1 and must be chosen by both algorithms. Thus, 2 Hen 1 _> opt 1.

Assume now that the theorem is true for some n >_ 1; that is, 2 Hen n _> Opt ". We need

to show that 2 Hen _+1 > Opt _+1.

Without loss of generality, create S "+_ from S _ by adding a new row and column such
n+l n+l

that en+_ > max (S_,_+1, S_+_,!) for 1 < i < n. Therefore. by definition of the heuristic_n+l,n÷l ....

algorithm, Heu n+1 = Heun + S_+_,_+1. Since 2 Heun >_ 0pt n, we get 2 Heu n+1 >_ Opt n +

2 _+l,n+_.qn+l There are now two cases that can occur for the optimal solution.
c,n+l

Case I. _n+l,n+l iscontained in the optimal solution.

qn+l which impliesq_+l Thus. 2 Hen n+l > 0pt n+l + _,+1,,_+1,This means Opt n+l = Opt _ + _+_,_+1. . _

2 Hen n+l >_ Opt _+1. []

Case 2 cn+l is not contained in the optimal solution.
• _n+l,n+l

qn+_ and qn+_Without loss of generality, assume that _n,n+_ _n+l,,_ are contained in the optimal so-
qn+ i

¢n+1 ¢,+1 By definition of _'nWl,n+l we getlution. This means Opt n+l = Opt "-1 + _n,n+l + _n+l,n"
qn+lqu+l Since Opt n > Opt n-1 we have Opt n+l < Opt n + 2 _,_+1,n+1Opt n+1 _< Opt n-1 + 2 _n+l,n+l" -- , -- "

Therefore, 2 Hen n+l ___0pt n+l. []

Corollary: A processor assignment obtained using the heuristic algorithm can never

result in a data movement cost that is more than twice that of the optimal assignment.

Proof: We assume that the data movement cost is proportional to the number of elements

that are moved and is given by E _ S_,j - _'. We need to show that _ _ S ._. - Heu" <

2 (_ _ S_,j - 0pt_); that is.. _ _ S._._,J- 2 Opt _ + Hen _ _> 0.
Let Int k be the sum of the similarity matrix entries that are contained in both 0pt k and

Hen _. Therefore, _ _ S ._. > Opt _ + Hen _ - Int _ This implies _ _ S ._. - 20pt n + Hen" >
• _,3 -- " _,_ --

2 Hen _ - Opt _ - Int _. By Theorem 1, 2 (Hen _ - Int _) _> (Opt _ - Int_), since (Hen _ - Int _)

and (Opt _ - Int n) are the heuristic and optimal solutions for a similarity matrix S _ c_ S _.
[]

The metric MaxV, on the other hand, considers data redistribution in terms of solving a

load imbalance problem, where it is more important to minimize the workload of the most

heavily-weighted processor than to minimize the sum of all the loads. During the process

of remapping, each processor must pack and unpack send and receive buffers, incur remote-

memory latency time, and perform the computational overhead of rebuilding internal and

shared data structures. By minimizing a x max(ElemsSent) and _ x max(ElemsRecd) (where

10



c_ and f_ are machine-specific parameters), MaxV attempts to reduce the total remapping time

by minimizing the execution time of the most heavily-loaded processor. This problem can be

solved optimally as the bottleneck maximum cardinality matching (BMCM) problem [13] in

O((Vlog V)I/_E) steps, and has been implemented for F - 1. The new processor assignment

for the similarity matrix in Fig. 3(a) using this approach with c_ =/_ = 1 is shown in Fig. 3(d).

Notice that the total number of elements moved in Fig. 3(d) is larger than the corresponding

value in Fig. 3(b); however, the maximum number of elements moved is smaller.

Note that TotalV does not consider the execution times of bottleneck processors while

gaxV ignores bandwidth contention. A quantitative comparison of the two metrics for our

test cases is presented in Section 5. In general, the objective function may need to use a

combination of both metrics to effectively incorporate all related costs.

4.6. Cost Calculation

Once the reassignment problem is solved, a model is needed to quickly predict the ex-

pected redistribution cost for a given architecture. Accurately estimating this time is very

difficult due to the large number and complexity of the costs involved in the remapping

procedure. The computational overhead includes rebuilding internal data structures and

updating shared boundary information. Predicting the latter cost is particularly challenging

since it is a function of the old and new partition boundaries. The communication overhead

is architecture-dependent and can be difficult to predict especially for the many-to-many

collective communication pattern used by the remapper.

Our redistribution algorithm consists of three major steps: first, the data objects moving

out of a partition are stripped out and placed in a buffer; next, a collective communica-

tion appropriately distributes the data to its destination; and finally, the received data is

integrated into each partition and the boundary information is consistently updated. Per-

forming the remapping in this bulk fashion, as opposed to sending individual small messages,

has several advantages including the amortization of message start up costs and good cache

performance. Additionally, the total time can be modeled by examining each of the three

steps individually since the two computational phases are separated by the implicit barrier

synchronization of the collective communication. The computation time can therefore be

approximated as:

X max(ElemsSent) +/g × max(ElemsRecd) + 5,

where c_ and _ represent the time necessary to strip out and insert an element respectively,

and 5 is the additional cost of processing boundary information. The maximum values of

ElemsSent and ElemsRecd can be quickly derived from the solved similarity matrix. Since

the value of 5 is difficult to predict exactly and constitutes a relatively small part of the

computation, we assume that it is a small constant. To simplify our model even further, we

assume that c_ =/_.

A significant amount of work has been done to model communication overhead including

LogP [9], LogGP [1], and BSP [32]. All three models make the following assumptions which

hold true for most architectures including the SP2: a receiving processor may access a

message or parts of it only after the entire message has arrived; and, at any given time a

processor can either be sending or receiving a single message (also known as a single port

model). Note that these models do not account for network contention (hotspots), since they
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areextremely difficult to capture. Finally, BSP and LogGP arrive at similar cost metrics for
bulk collectivecommunication. Our redistribution procedureclosely follows the superstep
modelof BSP.

All reported resultswere performedon the wide-nodeIBM SP2 locatedat NASA Ames
ResearchCenter.The processorsareconnectedthrough a.high performanceswitch,call the
Vulcan chip. Eachchip connectsup to eight processors,and eight Vulcan chips comprise
a switching board. An advantageof this interconnectionmechanismis that all nodescan
be consideredequidistant from one another. This allowsus to predict the communication
overheadwithout the needto model multiple hopsfor individual messages.We approximate
our communicationcost as:

9 × max(ElemsSent) + 9 × ma.x(ElemsRecd) + l,

where g is a. machine-specific cost of moving a. single element and l is the time for barrier

synchronization.

The total expected time for the redistribution procedure can therefore be expressed as:

7 × MaxSR + O,

where SaxSR = ma.x(ElemsSent) + max(ElemsRecd), 7 = _ + 9, and O = 6 + I. In order

to compute the slope and intercept of this linear function, several data. points need to be

generated for various redistribution patterns a.nd their corresponding run times. A simple

least squares fit can then be used to approximate 7 and O. This procedure needs to be

performed only once for each architecture, and the values of 7 and O can then be used in a.c-

tua.1 computations to estimate the redistribution cost. Note that there is a. close relationship

between MaxSR of the remapping cost model and the theoretical metric MaxV. The optimal

similarity matrix solution for MaxSR is provably no more than twice that of MaxV.

The computational gain due to repartitioning is proportional to the decrease in the load

imbalance achieved by running the adapted mesh on the new partitions rather than on the

old partitions. It can be expressed as Titergadapt(W TM -- wnew), where Titer is the time re-

quired to run one solver iteration on one element of the original mesh, Nadapt is the number

of solver iterations between mesh adaptions,, and WTM.- max and Wnew.• max are the sum of the Wcomp

on the most heavily-loaded processor for the old and new partitionings, respectively. The

new partitioning and processor reassignment are accepted if the computational gain is larger

than the redistribution cost. The numerical simulation is then interrupted to properly re-

distribute all the data..

4. 7. Data Remapping

The remapping phase is responsible for physically moving data when it; is _rea.ssigned to a

different processor. It is generally the most expensive phase of any load balancing strategy.

This data movement time ea.n be significantly reduced by considering two distinct phases

of mesh refinement: marking and subdivision. During the marking phase, edges are chosen

for bisection either based on an error indicator or due to the propagation needed for valid

mesh connectivity [4]. This is essentially a. bookkeeping step duringwhich the grid remains

uneha.nged. The subdivision phase is the process of actually bisecting edges and creating

new vertices and elements based on the generated edge-marking patterns. During this phase,

the data volume corresponding to the grid grows since new mesh objects are created.
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A key observationis that data remapping for a refinement step should be performed
after the marking phasebut beforethe actual subdivision. Becausethe refinementpatterns
are determinedduring the marking phase,the weightsof the dual graph can.beadjustedas
though subdivisionhasalready takenplace. Basedon the updateddual graph, the load ba.1-
a.ncerproceedsin generatinga.newpartitioning, computing the new processorassignments,
and performing the remappingon the original unrefinedgrid. Sincea smallervolumeof data
is movedusing this technique,a potentially significant cost savingsis achieved.The newly
redistributed meshis then subdividedbasedon the marking patterns. This is the strategy
that is usedin PLUM(cf. Fig. 1).

An additional performancebenefit is obtained as a side effect of this strategy. Since
the original meshis redistributed sothat meshrefinementcreatesapproximately the same
number of elementsin eachpartition, the subdi.visionphaseperforms in a more load bal-
ancedfashion. This reducesthe total meshrefinement time. The savingsshould thus be
incorporated as an additional term in the computational gain expressiondescribedin the
previoussubsection.The new partitioning and mapping are acceptedif the computational
gain is larger than the redistribution cost:

/ wnew )TiterNadap t (W TM _ wnew_ qt_ rrefine f'" max 1
,"max "" max, _ Wold

> 7 × MaxSR + O,

where Trefin e is the time required to perform the subdivision phase based on the edge-marking

patterns.

5. RESULTS

PLUM has been implemented on the IBM SP2 distributed-memory multiprocessor located

at NASA Ames Research Center. The code is written in C++, with the parallel activities

in MPI for portability. Note that no SP2-specific optimizations were used to obtain the

performance results reported in this paper.

The computational mesh used for most of the experiments in this paper is the one used

to simulate the acoustics wind-tunnel test of Purcell [25]. In that experiment, a. 1/7th-sca.le

model of a UH-1H helicopter rotor blade was tested over a range of subsonic and transonic

hover-tip Mach numbers. Numerical results and a detailed report of the simulation are given

in [31]. A cut-out view of the initial tetrahedral mesh is shown in Fig. 5.

In the first set of experiments, only one level of adaption is performed with varying

fractions of the mesh in Fig. 5 being targeted for refinement. Three different cases are

studied. The strategies, called REAL_l, REAL_2, and REAL_3, subdivided 5%, 33%, and

60% of the 78,343 edges of the initial computational mesh. Edges are targeted for subdivision

based on an error indicator [23] calculated directly from the flow solution. Table I lists the

grid sizes for this single level of refinement for each of the three cases.

Figure 6 illustrates the parallel speedup for each of the three edge-marking strategies.

Two sets of results are presented: one when data remapping is performed after mesh re-

finement, and the other when remapping is performed before refinement. The REAL_3 case

shows the best speedup performance because it is the most computation intensive. Remap-

ping the data before refinement has the largest relative effect for REAL_l, increasing the

13



•

!!
Figure 5" Cut-out view of the initial tetrahedra.1 mesh.

TABLE I

Grid Sizes for the Three Different Refinement Stra, tegies

Vertices Elements Edges Bdy Fa.ces

Initial Mesh 13,967 60,968 78,343 6,818

REAL_I 17,880 82,489 104,209 7,682

REAL_2 39,332 201,780 247,115 12,008

REAL_3 61,161 321,841 391,233 16,464

speedup from 9.3X to 23.9X on 64 processors. This is because the refinement region is the

smallest for this stra.tegy a.nd load bala.ncing the refined mesh before a.ctua.1 subdivision re-

turns the biggest benefit. The results are the best for REAL_3 with da.ta, rema.pping before

refinement, showing a 52.5X speedup on 64 processors. Extensive performance a.na.lysis of

the pa.rallel mesh adaption code is given in [24].

Figure 7 shows the rema.pping time for ea.ch of the three cases. As in Fig. 6, results

are presented when the da.ta, remapping is done both after a.nd before the a.ctua.1 mesh

subdivision. A significa.nt reduction in rema.pping time is observed when the adapted mesh

is load ba.lanced by performing data. movement prior to actual subdivision. This is beca.use

the mesh grows in size only after the da.ta, ha.s been redistributed. The biggest improvement

is seen for REAL_3 when the rema.pping time is reduced to less than a third from 3.71 secs to

1.03 secs on 64 processors. These results in Figs. 6 and 7 demonstra.te that our methodology

within PLUM is effective in significantly reducing the data. rema.pping time a.nd improving

the pa.ra.llel performa.nce of mesh refinement.

Figure 8 compares the execution times and the amount of data. movement for the REAL_2

stra.tegy when using the optimal a,nd heuristic MWBG processor assignment a.lgorithms.

Both a.lgorithms use the TotalY metric. Four pa.irs of curves a.re shown in ea.ch plot for

F = 1, 2, 4, and 8. The optimal method a.lwa.ys requires almost two orders of magnitude
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Figure 6: Speedup of the 3D_TAG parallel mesh adaption code when data is remapped either

after or before mesh refinement.
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Figure 7: Remapping times within PLUM when data is remapped either after or before mesh

refinement.

more time than our heuristic method. The execution times also increase significantly as F is

increased because the size of the similarity matrix grows with F. However, the volume of data

movement decreases with increasing F. This confirms our earlier claim that data movement

can be reduced by mapping at a finer granularity. The relative reduction in data movement,

however, is not very significant for our test cases. The results in Fig. 8 illustrate that our

heuristic mapper is almost as good as the optimal algorithm while requiring significantly less

time. Similar results were obtained for the other edge-marking strategies.

Table II presents additional comparisons for the REAL_2 strategy in terms of the processor

reassignment time and the amount of data movement. Since F = 1 in Table II, results for

the optimal BMCM algorithm are also included. Unlike the MWBG algorithms which use

the TotalV metric, the BMCM algorithm uses the MaxV metric. The optimal BMCM method

always requires more time than the optimal MWBG method. The execution times for all

three methods increase with the number of processors because of the growth in the size of
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Figure 8: Comparison of the optimal and heuristic MWBG remappers in terms of the exe-

cution time (top) and the volume of data movement (bottom) for the REAL_2 strategy.

the similarity matrix; however, the heuristic MWBG time for 64 processors is still very small

and acceptable. The total volume of data movement is obviously smaller for the MWBG

algorithms because they use the TotalY cost metric. In the optimal BMCM method, the

maximum of the number of elements sent or received is explicitly minimized; however, the

MWBG methods give identical numbers. These values are shown in the second column of

Table II. There were some differences in the maximum number of elements received among

the three methods; however, the maximum number of elements sent was consistently larger

and these are consequently reported. This demonstrates that for our test case, the heuristic

algorithm does an excellent job of minimizing both the TotalV and the MaxV cost metrics.

Similar results were obtained for the other two strategies. Although theoretical bounds

have not been established, empirical evidence indicates that our heuristic MWBG algorithm

closely approximates the MaxV solution. It was therefore used to perform the processor

reassignment for all the experiments reported in this paper.

Figure 9 shows how the execution time is spent during the refinement and the subsequent
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TABLE II

Comparison of the MWBG and BMCM Rema.ppers for the REAL_2 Stra.tegy with F = 1

2

4

8

16

32

64

Max

(Sent,

Recd)

11295

6827

8169

7131

4410

2264

Opt MWBG

Total Rea.ss.

Elems Time

22522 0.0002

16813 0.0004

30071 0.0013

35096 0.0045

34738 0.0177

38O59 0.0650

Heu MWBG

Total Rea.ss.

Elems Time

Opt BMCM

Total R.eass.

Elems Time

22522 0.0003

16813 0.0006

35506 0.0019

50488 0.0070

49641 0.0323

52837 0.1327

22522 0.0000

16813 0.0001

30071 0.0002

36520 0.0005

35032 0.0017

38283 0.0088

load ba.lancing phases for the three different cases. The reassignment times are not shown

since they are negligible compa.red to the other times and are very similar to those listed

in Table II for all the three cases. The repartitioning curves, using pa.rallel MeTiS [18],

are almost identical for the three cases because the time to repartition mostly depends on

the initia.1 problem size. Notice that the repartitioning times are a.lmost independent of the

number of processors; however, for our test mesh, there is a minimum when the number

of processors is about 16. This is not unexpected. When there are too few processors,

repartitioning takes more time because each processor ha.s a bigger share of the total work.

When there are too many processors, an increase in the communication cost slows down

the repartitioner. For a larger initial mesh, the minimum pa.rtitioning time will occur for

a higher number of processors. For REAL_2, the MeTiS partitioner required 0.58 secs to

generate 64 pa.rtitions on 64 processors. The remapping times gradually decrea.se as the

number of processors is increa.sed. This is because even though the total volume of data.

movement increases with the number of processors, there a.re actua.lly more processors to

sha.re the work. Notice that the refinement, repa.rtitioning, a,nd rema.pping times a.re genera.lly

compa.ra.ble when using more tha.n 32 processors. For example, the refinement a.nd rema.pping

phases required 0.55 secs and 0.89 secs, respectively, on 64 processors for REAL_2.

We also investigate the ma.ximum and the actual impact of load ba.lancing using PLUM

on flow solver execution times. Suppose that P processors are used to solve a problem on a

tetra.hedra.1 mesh consisting of N elements. In a. load balanced configura.tion, each processor

has NIP elements assigned to it. The computational mesh is then refined to generate a total

of GN elements, 1 _< G __ 8 for our refinement procedure. If the workload were ba.la.nced, each

processor would have GN/P elements. But in the worst case, all the elements on a subset of

processors are isotropica.lly refined 1-to-8, while elements on the remaining processors remain

unchanged. The most heavily-loaded processor would then have the smaller of 8NIP and

GN-(P-1)N/P elements. Thus, the ma.ximum improvement due to loa.d bala.ncing for a
1

single refinement step would be E min (8, P(G-1)+I).

The maximum impact of load balancing for the three strategies are shown in the top

ha.lf of Fig. 10. The mesh growth fa.ctor G is 1.35 for the REAL_I case, giving a. ma.ximum

improvement of 5.91 with load balancing when P _> 20. The value of G is 3.31 and 5.28

for REAL_2 and REAL_3, so the maximum improvements are 2.42 (for P _> 4) and 1.52
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Figure 10: Maximum (top) and actual (bottom) impact of load balancing on flow solver

execution times for different mesh growth factors G.

(for P > 2), respectively. There is obviously no improvement with load balancing if G = 1

or G - 8. Notice that maximum imbalance is attained faster as G increases; however,

the magnitude of the maximum imbalance gradually decreases. The actual impact of load

balancing is shown in the bottom half of Fig. 10. The three curves demonstrate the same

basic nature as those for maximum imbalance. The improvement due to load balancing on 64

processors is a factor of 3.46, 2.03, and 1.52, for REAL_l, REAL_2, and REAL_3, respectively.

The impact of load balancing for these cases is somewhat less significant than the maximum

possible since they model actual solution-based adaptions that do not necessarily cause

worst case scenarios. Note, however, that the maximum improvement is already attained for

REAL_3. The REAL_I and REAL_2 strategies would also attain their respective maxima if

more processors were used. It is important to realize that the results shown in Fig. 10 are for

a single refinement step. With repeated refinement, the gains realized with load balancing

may be even more significant.

In the second set of experiments, a total of three levels of a.da.ption are performed in
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TABLE III

Progression of Grid Size through a Sequence of Three Levels of Adaption

Vertices Elements Edges Bdy Faces

Initial Mesh 13,967 60,968 78,343 6,818

Level 1 35,219 179,355 220,077 11,008

Level 2 72,123 389,947 469,607 15,076

Level 3 137,474 765,855 913,412 20,168

sequence on the mesh shown in Fig. 5. Table III shows the size of the computational mesh

after each adaption step. Notice that the final mesh is more than an order of magnitude

larger than the initial mesh. A close-up of the final mesh and pressure contours in the

helicopter rotor plane are shown in Fig. 11. The mesh has been refined to adequately resolve

the leading edge compression and capture both the surface shock and the resulting acoustic

wave that propagates to the far field.

Figure 11: Final adapted mesh and computed pressure contours in the plane Of the helicopter

rotor.

Figure 12 shows how the execution time is spent during the adaption and the subsequent

load balancing phases for the three levels. The reassignment times are not shown since they

are several orders of magnitude smaller than the other times. The repartitioning curves,

using parallel MeTiS [18], are almost identical to those shown in Fig. 9. Slight perturbations

in the repartitioning times are due to different weight distributions of the dual graph. The

mesh adaption times increase with the size of the mesh; however, they consistently show an

efficiency of about 85% on 64 processors for all three levels. In fact, the efficiency increases

with the mesh size because of a larger computation-to-communication ratio. The remapping

time increases from one adaption level to the next because of the growth in the mesh size.

More importantly, the remapping times always dominate and are generally about four times

the adaption time on 64 processors. This is not unexpected since remapping is considered
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the bottleneck in dynamic load balancing problems. It is exactly for this reason that the

remapping cost needs to be predicted accurately to be certain that the da.ta redistribution

cost will be more than compensated by the computational gain.
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The third set of experiments are performed to compute the slope 7 and the intercept

O of our redistribution cost model. Empirica.1 data. is gathered by running various redis-

tribution patterns. Data points are generated by permuting all possible combinations of

the following four parameters: number of processors P (8,16,32,64), mesh growth factor G

(1.4,3.3,5.3), rema.pping order (before refinement, a.fter refinement), and similarity matrix

solution (default, heuristic). This produces 48 redistribution times which are then plotted

against two metrics, TotalV and MaxSR, in Fig. 13. Results demonstrate that there is little

obvious correlation between the tota.1 number of elements moved (TotalY metric) and the

expected run time for the rema.pping procedure. On the other hand, there is a. clear linear

correlation between the maximum number of elements moved (MaxSR metric) and the a.ctual

redistribution time. There are some perturbations in the plots resulting from factors such
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asnetwork hotspotsand shareddata irregularities, but the overall results indicate that our
redistribution modelsuccessfullyestimatesthe data remappingtime. This important result
indicates that reducing the bottleneck, rather than the aggregate,overheadguaranteesa
reduction in the redistribution time.

6. CONCLUSIONS

Fast and efficient dynamic mesh adaption is an important feature of unstructured grids

that makes them especially attractive for unsteady flows. However, mesh adaption on parallel

computers can cause serious load imbalance among the processors. Dynamically balancing

the processor loads at runtime is a complex task.

We have described PLUM, our framework for efficiently performing parallel adaptive nu-

merical computations in a message-passing environment. It includes a novel method to

dynamically balance the processor workloads with a global view. This paper presented

the implementation and integration of all major components within PLUM. Several salient

features of PLUM were described: (i) dual graph representation, (ii) parallel mesh repar-

titioner, (iii) optimal and heuristic remapping cost functions, (iv) efficient data movement

and refinement schemes, and (v) accurate metrics comparing the computational gain and

the redistribution cost. The code is written in C and C++ using the MPI message-passing

paradigm and executed on an SP2.

Two different tests of PLUM were performed on a realistic-sized computational mesh used

to simulate a helicopter acoustics experiment. The mesh adaption was based on numerical

solutions obtained from an Euler flow solver. The first strategy targeted varying fractions

of the initial tetrahedral mesh for refinement while the second strategy consisted of three

successive levels of adaption. Results indicate that by using a high quality parallel partitioner

to rebalance the work, a perfectly load balanced flow solver is guaranteed with minimum
communication overhead.

We developed two generic metrics to model the remapping cost on most multiprocessor

systems. Optimal solutions for both metrics, as well as a heuristic approach were imple-

mented. It was shown that our heuristic algorithm quickly finds a solution which satisfies

both metrics. Additionally, strong theoretical bounds on the heuristic time and solution

quality were presented.

We also observed that data movement for a refinement step should be performed after

the edge-marking phase but before the actual subdivision. This efficient remapping strategy

resulted in almost a four-fold cost savings for data movement when 60% of the mesh was

refined. A more load balanced refinement phase was an additional benefit of this approach.

As a result, a three-fold improvement was observed in the refinement speedup.

Large-scale scientific computations on an SP2 showed that load balancing can dramati-

cally reduce flow solver times over non-balanced loads. With multiple mesh adaptions, the

gains realized with load balancing may be even more significant. Finally, a new remapping

cost model for the SP2 was presented and quantitatively validated. Results indicated that

reducing the bottleneck overhead guarantees a reduction in the total redistribution time.

In conclusion, we have shown that our parallel load balancing strategy for adaptive un-

structured meshes will remain viable on large numbers of processors as none of the individual
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moduleswill bea bottleneck.
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