
A Polynomial Time, Numerically Stable Integer Relation Algorithm

Hclam-xn R. P. Ferguson and David H. Bailey

RNR Tcctmical Report RNR-91-032

July 14, 1992

Abstract

Let x = (xl,x2,'" ,::,_) be a vector of real numbers, x is said to possess an integer

relation if there exist integers al not all zero such that alXl + a2x2 + "" + a,_:r,_ = O.

Beginning in 1977 sever.d algorithms (with proofs) have been discovered to recover the

ai given x. The most e:l]cient of these existing integer relation algorithms (in terms of

run time and the precision required of the input) has the drawback of being very unstable

numerically. It often requires a numeric precision level in the thousands of digits to reliably

recover relations in mo&_st-sized test problems.

We present here a new algorithm for finding integer relations, which we have named

the "PSLQ" algorithm. It is proved in this paper that the PSLQ algorithm terminates

with a relation in a nurrber of iterations that is bounded by a polynomial in n. Because

this algorithm employs a numerically stable matrix reduction procedure, it is free from

the numerical difficulties that plague other integer relation algorithms. Furthermore, its

stability admits an effic;ent implementation with lower run times on average than other

algorithms currently in use. Finally, this stability can be used to prove that relation bounds

obtained from computer runs using this algorithm are numerically accurate.

Ferguson is with th,, Supercomputing Research Center, 17100 Science Drive, Bowie,

MD 20715. Internet: he].amanf©super, org. Bailey is with NASA Alnes Research Center,

Mail Stop T045-1, Moff,_tt Field, CA 94035. Internet: dbailey©nas .nasa.gov.

1. Introduction

Let x = (Xl,X2,-.. ,x_) be a vector of real numbers, x is said to possess an integer

relation if there exist integers ai not all zero such that alxl + a2x2 + ... + anx,_ = O.

By an integer relation algorithm, we mean an algorithm that is guaranteed (provided the

computer implementation has sufficient numeric precision) to recover the integers ai and

to produce bounds within which no integer relations can exist.

One application of an integer relation algorithm is to solve "subset sum problems,"

wherein one determines what subset of a certain list of integers has a given sum. In other

words, a subset sum problem is an integer relation problem where the relation coefficients

ai are zero or one. This application is discussed in [11] and [5].

Another application of an integer relation algorithm is to determine whether or not

a certain mathematical constant, whose value can be computed to high precision, is a

root of a polynomial of degree n or less. This can be done for a constant a by setting

x = (1, _, _2,..., a,_-l) and applying an integer relation algorithm to x. If any integer

relation is found to hold (within the limits of the available machine precision), then the

resulting ai are precisely the coefficients of a polynomial satisfied by a (to within machine

precision). Even if no relation is found, a calculation with an integer relation algorithm can

establish, for example, that the constaslt cannot possibly satisfy any polynomial of degree

n or less whose coefficients are smaller than a bound established by the algorithm. This
application is discussed in [4].

The problem of finding integer relations among a set of real numbers was first studied by

Euclid, who gave an iterative algorithm which, when applied to two real numbers, either

terminates, yielding all exact relation, or produces an infinite sequence of approximate

relations. The generalization of this problem for n > 2 has been attempted by Euler, Jacobi,

Poincare, Minkowski, Perron, Brun, Bernstein, among others. However, none of their

iterative algorithms have been proven to work for n > 3, and numerous couuterexamples
have been found.

The first integer relation algorithm with the desired properties mentioned above was

discovered by one of the authors (Ferguson) and R. Forcade in 1977 [7]. In the intervening

years a number of other integer relation algorithms have been discovered, including a

non-recursive variant of the original algorithm [8], the "LLL" algorithm [12], the "H,ILS"

algorithm [10] (which is based on the LLL algorithm), and the "PSOS" [4] algorithm.

These newer algorithms are significantly faster when implemented oil a computer and

require much less precision in the input x vector to recover the relation than the original
algorithm.

2. The HJLS Algorithm

Tile HJLS algorithm is superior among these existing integer relation algorithms in

several respects. For one thing, it has been proven that the number of iterations required

for HJLS to recover a relation is bounded by a polynomial in n [10], whereas proofs of

this property are lacking for the other algorithms. Further, the HJLS algorithm appears

to be the most efficient of these algorithms in terms of its ability to recover the relation

satisfiedby an input vectorknownonly to limited precision.Finally, basedon the authors'
experience,HJLSappear,lto requirethe lowestaveragecomputertime to recovera relation
amongpreviouslyexistingalgorithms.

Unfortunately, the H.JLSalgorithm has one seriousdrawback: it is extremely un-
stable numerically. Even for modest n and small relations, enormous numeric preci-

sion is often required fcr the algorithm to work properly. For example, consider the

17-long vector (1,a, a2, ...,at6), where a = 31/4- 21/4 . This vector has the relation

(1, 0, 0, 0, -3860, 0, 0, 0, -666, 0, 0, 0, -20, 0, 0, 0, 1). Although only 100 digits or so of a are

required as input for the relation to be recovered using H.ILS, the authors have found that

computations must be performed with a numeric precision level of over 10,000 digits.

One outward sympto_n of numerical failure in a H.ILS run is that the program aborts

due to the appearance of _n extremely large entry in a matrix, one which cannot be rounded

exactly to the nearest integer in the current working precision. Another outward symptom

of numerical failure is that a computer run with H.ILS produces a bound on the norm of

possible relations that e::cludes a relation known to exist. In this second type of failure,

comparison with runs us,ng higher precision reveals that some matrix entries had become

so corrupted by numerical error that all significance had been lost.

In some trials, computer runs using the H.ILS algorithm succeed "by accident" in

recovering a relation usii,g only moderate levels of numeric precision, whereas the relation

would not be recovered at that point in the computer run if it were performed with higher

precision. But such goc.d fortune cannot be relied on, and it is just as likely that the

relation will be missed a_ the point where it should be recovered.

If one asks what lewd of precision is required for a lnodest-sized problem before the

computer run using H.]LS is identical to one using "infinite" precision, then the answer in

many cases appears to te thousands of digits, based the authors' experience. "Identical"

here means that all decisions are the same and all relation bounds are the same (to 8 digits

or so) up to and including the point of recovery. Cases that require very high precision

are infrequent for n < 1(* but are quite common for larger n. There does not appear to be

any a priori means of d,_termining the required H.ILS working precision level for a given

problem.

As one would expect, these very high levels of numeric precision require large amounts of

memory and processing time, although amazingly enough, H,]LS is still faster on average

than other previously kaown integer relation algorithms. However, the most significant

disadvantage of the H.]I_S numerical instability is that one can never know with certainty

that a relation of a certain size has been excluded, because the bound that is obtained

after running H,ILS for a while might be completely corrupted with numerical error. One's

confidence in a bound Jesult can be enhanced by increasing the numeric precision and

verifying that the sequeuce of norm bounds is the same up to the point determined in the

previous run, but one can never be certain of the result.

The root cause of this numerical instability is not known, but it is believed to derive

from the fact that H.JL'_ is based upon the Gram-Schmidt orthogonalization algorithm,

which is known to be ut merically unstable [9].

3

3. The PSLQ Algorithm
Recentlyoneof the authors (Ferguson)discovereda new polynomial time integer re-

lation algorithm. This algorithm has been named "PSLQ," since it is based on a partial

sum of squares scheme like the PSOS algorithm, yet it can be efficiently implemented with

a LQ (lower trapezoidal--orthogonal) matrix factorization.

The PSLQ algorithm exhibits the favorable features of the HJLS algorithm, including

its ability to recover relations in x vectors known to only limited precision, while completely

avoiding its catastrophic instability. Although a straightforward implementation of PSLQ

does not appear to be faster than HJLS on average, at least for modest-sized n, the

numerical stability of PSLQ admits an efficient implementation using a combination of

double precision and multiprecision arithmetic that does appear to be faster than HJLS on

average for a wide range of problem sizes. Most importantly, one can show that by using

a working precision level that is only slightly higher than that of the input data, bound

results obtained from computer runs are reliable.

Let x E R '_ be a nonzero n-tuple x = (Xl,X2,' .. ,Xn_l,X,_). Define the partial sums of
2

squares, s.i , for x by %. = _j<k<,_ x_. Assume that z is a unit vector, so that Sl = Ixl = 1.

Define the lower trapezoidal n x (n - 1) matrix H_ = (hl,i) by

hi0 = 0 l<i<j<n-1 (1)

hi,j -- Si+l 1 _< i = j _< n - 1 (2)
si

hi,.i = - xix'i 1 <_ j < i <_ n (3)
sjSj+l

Let P be the n x n matrix given by P = HH _, which has rank n - 1. By expanding this
• 2 andexpression, it can be seen that P = In -xt.x, i.e., P = (pi,j) where pi,i = 1 -x i

P<i = -x,xj for i # j. From this it follows that if :r. m t = 0 then Pmt = mt. Let I"] denote

the Frobenius norm, i.e.,]A I' = _ a?. Then it can be seen that IPI = IHI = _ - 1t,,/"

Given an arbitrary lower trapezoidal n x (n- 1) matrix H = (h_,j), define aa_ associated

n x n lower triangular matrix D E GL(n, Z) as follows. The entries of the n x n matrix

D = (di,.i) are given from di,i-1 back to dia by means of the recursions

di,.i = 0 l<i<j<_n (4)

di,j = 1 l<i=j_<n (5)

(1)d/j = hint hjj _ di,khkj l_<j<i_<n (6)
, l<_j<k<_i

The function hint denotes the nearest integer function.

The inverse of D, namely E = D -a, can be defined with recursions similar to the above

for E = (ei,.i) by

ei,.i = 0 1 <_ i < j <_ n (7)

ei,j = 1 1 _< i = j _< n (8)

ei,j = -- E ei,kdk,.i 1 <_ j < i < n (9)
l<j<k<_i

for ei,i-1 back to el,1.
Given an arbitrary lower trapezoidal n x (n- 1) matrix H = (h_,.i) and a fixed integer

j, 1 < j < n - 1, define the (n - 1) x (n - 1) orthogonal matrix Gj E O(n - 1) as follows.

If j = n - 1 set G,_-I = In-l, the matrix identity. Otherwise, for j < n - 1, set hj,.i = a,

hj+l,j+l = c, hj+l,j = b, and d = v_ + c2. The entries of the (n - 1) × (n - 1) matrix

Gj = (gi,k) are given by

gi,i = 1 l_<i<jorj+l <i_<n (10)

g.i,J = b/d (11)

gj,j+l = -c/d (12)

gj+l,.i = c/d (13)

gj+l,j+l = b/d (1.4)

gi,k = 0 otherwise (15)

Given a fixed integer j, 1 _< j < n - I define the n × n permutation matrix Rj to be that

matrix formed by excharging the j-th and j + 1-st rows of the n × n identity matrix I..

5. One Iteration of PSLQ

Select a constant 3' > 2/x/_ = 1.1547.... Suppose we are given three matrices, H, A, B,

where H is a n × (n - 1) lower trapezoidal matrix and A and B are n x n integral matrices,

with B = A -1. An iteration of the algorithm PSLQ is defined by the following three steps.

1. Replace H by DH.

2. Select an integer j. 1 < j < n - 1 such that -yJlh.;,jl >_ "/Ih_,,[for all i, 1 < i < n - 1.

3. Replace H by RjHG.i, A by RjDA and B by BERj.

Theorem. Fix 7 > 2/,/3 and set 62 = 3/4 - 1/72. Suppose some integral linear com-
bination of the entries of x E R" is zero, so that x has an integer relation. Let M > 1

be the least norm of an) such relation m. Normalize x so that Ix] = 1 and iterate PSLQ

beginning with the following set of three matrices: H = H=, A = I,_, B = I_. Then

1. A relation for x will appear as a column of B after fewer than _n2(n + 1)log(Mn 2)

iterations of PSLQ.

2. The norm of such a relation for x appearing as a column of B is no greater than

v/-;ilHIIBPIM.

3. If after a number (,f iterations of PSLQ no relation has yet appeared in a column of

B, then there are Jlo relations of norm less than the bound 1/IHI.

6. Proof of the PSLQ Algorithm

Suppose m E Z '_ is a relation for x, so that xm t = 0 with m # 0. For any integral

invertible C E GL(n, Z) and orthogonal Q E O(n - 1),

1 _< Icm'l = [cpmq <_ ICpllml--ICH_llrnl = ICHxQIIml (16)

Note that after some fixed iteration of PSLQ, H = AH_G, where G is the product of the

Gj. Perform Step 1. Note that 0 -¢ hi,i if no relation has been found. Then for any relation

m, including one of norm M,

1 < ImllHI < Italy/ _ (n-i+ 1)h_, i (17)
!/l<i<n-a

Observe that]hi,i] < 1 from the beginning so that

(n- i + 1)h_, i < _ (n- i + 1)lh,,,I < y_ (n- i + 1)[hi,il x/n (18)
l<i<n-1 l<i<n-1 l<i<n-1

Now select the integer j, 1 < j < n- 1 as in Step 2 and assume without loss of

generality that a = Ih.j,_l,b --]hj+l,jl,c = Ihj+,,j+xl. Then 0 < b < a/2 and 0 < c < a/7.

Set t = v_ + d/a so that t < v/f-5 _ = _/1/4 + 1/7 _ < 1 with 7 > 2/v/g. Perform Step

3 and denote the diagonal entries of RjHGi by hi,i. Then

(n - i + l)lh,,,I _/'_ (19)
l<i<n-1

= -(n - j -4- 1)al/_(1 - t l/n) + ('_ -- j)cl/n(t -1In -- 1) (20)

+ __. (n- i+ 1)lhi,il 1/n (21)
l<i<n--1

= --ai/n(1--tl/n){i-t-(ll--j)[l--(_)i/n]} (22)

+ _ (n-i+ 1)lhi,,I iln (23)
l<i<n--1

< _ (n- i + 1)lh_,_l_/_ - al/n(1 -t 1/_) (24)
l<i<n-1

52
(25)2< (1 27n2(n+l) y_ (n-i+l)lh_,_l _/'_

l<i<n--1

Inequality (24) follows from the fact that the expression in braces in (22) is always at least

one. Inequality (25) follows from the three approximations

1 - t 1In > _2/(2n) for n _> 1 (26)

> Ih ,,I (27)

_Tn(n + > _ (n - i + a)lh;,_l1/" (28)1)al/n

l<i<n-1

Suppose that k iterations of PSLQ have been done and that no relation has appeared.

Then from (17) and (25)

52

1 < Iml (1 27,:2(n + li) k ,z2 (29)

By taking logarithms, this becomes

27 2
k < _-,_ (n + 1)loglmln _ (30)

Consider the intersection of the hyperplane perpendicular to x and the convex hull of

the 2n vertices given by :t: the rows of the transpose of B. Since]det B[= 1 there are no

relations in the interior o_"this intersection. The radius of the largest 7_- 1 dimensional ball

in this intersection is th,_ minimum of the 2" quantities 1/16H{ where 5 = (+1,-..,+1).

This radius is bounded below by I/(v/_]HI). Consequently, as IH[becomes smaller this

relation-excluding ball becomes larger. The nearest candidates for relations correspond to

columns of B. This concludes the proof of part 1 of the theorem. Part 2 of the theorem

follows from the fact tha_; the radius above is less than M, the norm of a smallest relation.

Part 3 of the theorem follows from the general inequality 1/]CH QI < Iml with which the

proof began, where C = A and Q = G in the case of the PSLQ algorithm.

Note that the numericM expression 2"y/62 has a minimum of 8 when 3' = 2. Thus

it would appear from this proof that 7 = 2 is the best choice. However, in practice we

have found that smaller values of _t, while requiring more iterations, are more effective in

recovering relations when the input vector is known to only limited precision.

7. Computer Implementation

The basic PSLQ algorithm can be implemented easily using ordinary floating point

arithmetic on a computer. Using double precision (i.e., 64-bit) arithmetic, relations of

modest height can be re(overed for ,z up to about 6. Beyond this level, precision is quickly

exhausted. Thus a serious implementation of PSLQ or any other integer relation algorithm

must employ some form of multiprecision arithmetic. The authors' implementation of

PSLQ employs an automatic lnultiprecision translator [2] and a multiprecision arithmetic

package [3], both of whi,:h were developed by one of the authors (Bailey).

A straightforward implementatioll of PSLQ as described in section 5 is adequate for

recovering relations, bu: its run time is not competitive with H.ILS, at least for small

n. Fortunately, the stability of the PSLQ algorithm admits a multi-level implementation,

i.e., one that utilizes two or even three levels of working precision, which results in greatly

reduced run times. The :_wo-level scheme can be described as follows. To initialize, perform

the initialization step of the standard PSLQ algorithm (i.e., normalize x, compute H_, and

set A and B to the idel_tity matrix) using full precision. Also set y0 = x. Then perform

the following three step_,.

First, convert the multiprecision arrays Y0 and H as accurately as possible to the dou-

ble precision arrays V0 _md /t, scaling the results to the maximum entries in y0 and H,

respectively. Set the double precision arrays A and /) to the identity matrix.

Second, perform the basic PSLQ algorithm as described ill section 5 using double

precision arithmetic for as many iterations as possible until precision is exhausted. The

authors have found that an adequate condition to detect exhaustion of double precision is

that either an entry of tile A matrix exceeds l0 s or an entry of 9 = /3_0 is smaller than
10 -14"

Third, perform an "accurate update". This is done as follows. First, replace the

multiprecision A by AA and B by B/3. Then compute K = AHx and perform a lower

trapezoidal-orthogonal (LQ) factorization on K. This LQ factorization can be done by

employing a multiprecision version of the LINPACK routine DQRDC [6], if desired. Note

that when K is (uniquely) factored as LQ, where L is lower trapezoidal and Q is orthogonal,

then since H = AH_G is lower trapezoidal, it follows that L = H and Q = G -1. Thus

H may be set to the lower trapezoidal result of the LQ factorization, and the orthogonal

result of the LQ factorization may be discarded.

Finally, set the multiprecision V = zB. If any entry of this updated V vector is zero (to

within the multiprecision epsilon), then a relation has been detected and is contained in

the corresponding column of the B matrix. The bound on possible relations may also be

checked at this point using the updated H matrix. The algorithm may be continued by

repeating the above procedure beginning with the conversion step, where Vo now is set to

the current updated y.

One detail has been omitted in the above procedure. In some iterations, often including

the very first iteration, the entries of the y0 vector or the H matrix have such a large

dynamic range that they cannot be meaningfully converted to double precision values. In

these cases it is necessary to perform the basic algorithm using multiprecision arithmetic

for a number of iterations until these large dynamic ranges are eliminated.

With this implementation scheme, for n < 20 the run time is dominated by the time

required for the double precision iterations and thus is very efficient. For larger n a three-

level implementation can be used employing double precision, an intermediate level of

perhaps 100 digits, and full nmltiprecision. With this scheme, the run time is dominated

by the cost of double precision iterations for as large a value of n as is practical to perform

on current scientific computer systems.

One major advantage of the PSLQ algorithm is that it permits a very simple analysis

affirming the accuracy of computed bound results. This can be seen from the above,

since the H matrix can be updated directly from the original H_ matrix. The formation

of the H_ matrix requires at most two operations per entry. The matrix multiplication

H = AHx requires at most 2n operations per entry, and the entries of A are integers. The

LQ factorization of H using Householder transformations is known to be very stable [9],

requiring at most 2n operations per matrix entry. Finally, the computation of the bound

1/[HI is very stable, involving only the sum of squares and a division.

In short, the H matrix, from which relation bounds are computed, is not the result of

a long iterative computation, but instead may be computed directly from the original H_

matrix at any point in the calculation with fewer than 4n operations per element. Thus it

follows that the accuracy of the bound can be guaranteed provided that these operations

are performed with a level of precision only a few digits higher than that required to

accurately represent the integer A matrix that has been developed at a given point in the

calculation. For exaxnple, suppose that n = 25, the entries of the A matrix do not exceed

I0 w°, and the result of each multiprecision arithmetic operation is known to be correct

to within one bit in the last place. Then the norm bound result is guaranteed correct to

at least eight decimal places, provided that the initial H_ and updated H matrices are

computed with at least [40 digit precision. In practice, the authors have found that a

working precision level of only 20 digits or so beyond the size of the largest A matrix entry

is sufficient to produce r¢liable bounds.

Along this line, it should be mentioned that the inequality (16) above is true for any

matrix norm. For exainple, the norm given by

/ ?_2h?IHI = max_ ,,.,
1 _<i__<n V l<j_<rt_ 1

gives better bounds thar_ the Frobenius norm. It should also be emphasized that Part 2

of the Theorem gives a measure of how well PSLQ is doing in regard to constructing the

shortest integer relation. In practice, the PSLQ algorithm almost always finds the shortest
relation.

It can be seen from the above that the two- and three-level implementation schemes rely

on the fact that the dyn.unic ranges of the V vector and the H matrix are of modest size

for most iterations. It also appears that in most computer runs, after the first 1000 or so

iterations, hundreds of iterations at a time may be performed in double precision between

accurate updates. The reason for this fortunate behavior is not completely understood, but

it may be related to a higher dimensional analog of the Kuzmin probability distribution

of small partial quotients in continued fractions. We conjecture that the dynamic range of

the diagonal entries of/_t, i.e., max_ [hi,_[/mini Ih.i,sl, is bounded by "7'_7_k after the initial
cn 2 iterations for some fixed k and c.

8. Performance Resu!ts

Tables l, 2, and 3 give performance results for the PSLQ algorithm. Both PSLQ and

H.JLS were implemented by one of the authors (Bailey) m}d perform high precision arith-

metic using this author's MPFUN multiprecision package [3]. H,ILS was "hand-coded" with

direct calls to the MPFIiN arithmetic routines. PSLQ was written in ordinary Fortran-77,

using some Fortran subroutines from the LINPACK library [6] and a matrix multiply rou-

tine from the LAPACK library [1], and was converted to multiprecision using this author's

automatic multiprecision translator [2].

The tests in Table I were constructed using pseudorandom number generators, and

both algorithms were given the same set of ten test problems for each value of n. The

tests were run on a single processor of a Silicon Graphics 380 workstation, which has a

LINPACK 100 rating of 5 MFLOPS (double precision). The column headed "Dim. n"

gives the dimension n of the relation vector, h is the height of the constructed relation

coefficients: each ai except a,_ is chosen at random between -h and h. The column headed

d gives the number of significant digits in the randomly generated x vector. The columns

headed "Min. Prec." and "Max. Prec." give, in digits, the minimum and maximum

working precision levels used for the runs in a given set. The column headed "Succ." gives

the number of successful trials in the ten trials of a single set, i.e., the number of trials

where the original constructed relation was recovered. The columns headed "Ave. Bound"

give the average of the final norm bounds produced. The column headed "Ave. Time"

gives the average CPU run time in seconds.

The purpose of the trials in Table 1 is to compare the effectiveness of the algorithms

in recovering relations for input vectors known to only limited precision. Thus these cases

were chosen with values of d just sufficient so that the constructed relation is the relation

of minimum norm. The authors found that if d is set even 5 or 10 digits below the level

listed ill Table 1, extraneous relations are recovered by PSLQ with smaller norms than

the original constructed relation. This finding underscores the fact that PSLQ is very

economical ill the input precision required to recover a relation and is, ill fact, quite close

to the information theoretical minimum in this regard.

The two-level variant of the PSLQ algorithm described in section 7 was employed for

the runs in Table 1, with 7 = 2/v/_.

For the H,JLS runs in Table 1, the working precision level was initially set at 230 digits,

which is somewhat greater than that for the PSLQ runs. In some of the H.JLS runs, the

calculation aborted because multiprecision numbers were encountered in the calculation

that were larger than could be precisely rounded to the nearest integer in the current

precision. In other runs, the HdLS algorithm terminated with the erroneous assertion that

the norm bound had excluded the norm of the constructed relation. Whenever a H.JLS

run failed to recover the original constructed relation for one of these reasons, the working

precision level was doubled and the run repeated, up to a precision level of 7400 digits (32

times the original level) if necessary.

In some of the HdLS runs, relations were recovered "by accident" -- the relation would

not have been recovered at that point in the run if the calculation had been performed

at higher precision. In these cases the run time was taken to be the time for the run

at the lower precision. In a number of other trials, HdLS recovered a relation, but this

relation was an extraneous relation with a larger norm than the constructed relation. In

two trials, numerical failure occurred even at 7400 digit precision, and these trials were

deemed failures. Average run time and bound statistics for H,JLS runs were computed only

over runs where some relation was recovered, even though this results in lower average run

times for H.JLS than would be the case if the failures were counted.

For those H.]LS runs that required a precision level of 1850 digits or more, a version

of the author's H.]LS program was employed that calls the advanced multiplication aud

division routines of the MPFUN package. The advanced multiplication routine employs a

fast Fourier transform, and the advanced division routines use a Newton iteration. Usage

of these routines resulted in much lower run times for those HdLS runs that required very

high precision.

The results in Table 1 show that PSLQ appears to be even more effective than H,]LS

10

PSLQ

Dim. Min. Max.
n h d Prec. Prec. Succ.

10 12

15 8

20 6

25 5

30 4

H.ILS 10 12

15 8

t 20]6

] 25]5

I 3oI 4

125 140 140

130 145 145

150 165 165

160 175 175

200 215 215

125 230 460

130 920 7400

150 920 7400

160 920 3700

200 920 3700

Table

Ave. Ave.

Bound Time

10 7.971 × 1011 13

10 9.412 × l0 T 48

10 1.029 × 10 6 157

10 7.471 × 104 462

10 6.371 x 103 941

10 1.265 x 10 a2 38

9 1.585 x l0 s 2382

9 1.414 × 10 6 2979

4 1.164 × l0 s 641

9 1.142 × 104 1126

1: Random Relation Tests

in recovering relations from input vectors known to only limited precision. In 9 out of a

total of 50 trials, HJLS f_iled to recover a relation that PSLQ succeeded in recovering. Ill

those cases where it did Jecover a relation, HJLS is slower on average than PSLQ. Ill some

individual trials, HJLS actually recovered relations faster than PSLQ, but in other trials,

where very high numeri(al precision had to be employed for HJLS runs, H.JLS was many

times slower than PSLQ. The PSLQ run times varied no more than 25% within a given

set.

Some other results co nparing PSLQ and HJLS are shown in Table 2. In these trials, the

problem is to recover the polynomial of degree n satisfied by a, where a = 31/_ - 21/_. In

other words, the input vector x = (1,c_,(_2,..-,a'_-l), where n = rs + 1. Here the working

precision was set to the level required by PSLQ or H.]LS, respectively, as determined by

some prelinfinary test rtns, and the input vector was computed with ample precision to

recover the relation. In this way, these tests simply compare run times, not effectiveness

in recovering relations with limited input precision.
The results in Table 2 demonstrate even more dramatically the erratic precision re-

quirements and correspo:ldingly erratic run times of HJLS. Whereas the first two problems

required less than 100 digits working precision, and ran quite fast as a result, the last

three problems required thousands of digits of precision, and the run times were hundreds

of times greater than tie corresponding PSLQ run times. In fact, it appears from this

and other runs made b3 the authors that the HJLS algorithm is generally unusable for

recovering non-trivial algebraic relations when n is greater than 25.

A final set of results i:_given in Table 3. These results do not compare PSLQ with HJLS,

but instead merely explore how large a relation can be recovered in a reasonable amount

11

of time using the PSLQ algorithm. These runs were made using the three-level variant of

the PSLQ algorithm, as described in section 7, with 7 = 2/x/_. The trial problems are, as

before, algebraic relations with a = 31# - 21/s. These runs were made on a single processor

of a Silicon Graphics 380 system.

The results ill Table 3 show that it is feasible at present, using a R ISC workstation,

to recover relations with the PSLQ algorithm for n greater than 80 and, simultaneously,

for relation coefficients larger than 1013 . These figures are significantly larger than any

with which the authors are familiar for other integer relation algorithms (compare with

the results ill [11], for example). It is worth noting that if a simple-minded, exhaustive

search procedure had been employed to recover the polynomial satisfied by a = 31/9 - 21/9,

assuming only its numerical value and the fact that it is an algebraic number of degree

not exceeding 81, with coefficients bounded by 10 TM, then it would have been necessary to

examine more than 1011°° polynomials.

12

PSLQ

HJLS

7" 8

Working Max. Relation
Prec. Bound Norm

10 3 3 30

11 2 5 40

13 3 4 55

15 2 7 70

16 3 5 75

17 4 4 75

10 3 3 80

11 2 5 80

13 3 4 1200

15 2 7 14800

16 3 5 14800

17 4 4 14800

7.414 x 10:

3.773 x 102

2.442 x 102

3.027 x 103

9.277 x 102

1.255 x 10a

7.441 x 101

1.835 x I02

1.787 x 102

4.165 x 103

1.618 x 103

1.390 x 10a

1.650 x 102

5.898 x 102

6.446 x 102

8.248 x 103

2.699 x 10a

3.917 x 103

1.650 x

5.909 x

6.446 x

8.248 x

2.699 x

3.917 x

102

102

102

103

103

10 a

Table 2: Algebraic Relation Tests

Run

Time

1

3

6

17

18

22

2

3

131

10480

11112

11490

Dim. Working
n 7" s Prec.

21 4 5 110

26 5 5 160

31 5 6 230

37 6 6 300

43 6 7 400

50 7 7 500

57 7 8 700

65 8 8 850

73 8 9 1050

82 9 9 1300

5.770 x 103

3.092 x 104

2.380 x 10.5

1.034 x 106

1.756 x l0 T

5.871 x 107

2.142 x 109

2.028 x 10l°

4.677 x 1011

5.026 x 1012

Relation

Norm

1.473 x 104

1.169 x 105

6.686 x l0 s

5.344 x 106

6.022 x 107

3.308 x 108

9.531 x 109

1.205 x 1011

3.120 x 1012

7.973 x 1013

Rlln

Time

71

218

656

1680

3981

8493

20730

46897

93368

185787

Ta)le 3: Large Algebraic Relations with PSLQ

13

References

[1]

[21

[3]

[4]

[5]

[6]

[7]

Is]

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum,

S. Hammarling, A. McKenney, S. Ostrouchov a_d D. Sorenson, The LAPACK Users'

Guide, SIAM, Philadelphia, 1992.

D. H. Bailey, "Automatic Translation of Fortran Programs to Multiprecision," RNR

Technical Report RNR-91-025, NASA Ames Research Center, 1991.

D. H. Bailey, "MPFUN: A Portable High Performance Multiprecision Package," RNR

Technical Report RNR-90-022, NASA Ames Research Center, 1990.

D. H. Bailey and H. R. P. Ferguson, "Numerical Results oil Relations Between Nu-

merical Constants Using a New Algorithm," Mathematics of Computation, vol. 53

(October 1989), p. 649 - 656.

M. J. Coster, B. A. LaMacchia, A. M. Odlyzko and C. P. Schnorr, "An hnproved

Low-Density Subset Sum Algorithm" in D. W. Davies, ed., Advances in Cryptology:

Eurocrypt '91, Springer Verlag, New York, to appear 1992.

.J..J. Dongarra, C. B. Moler, .l.R. Bunch and G. W. Stewart, The LINPACK Users'

Guide, SIAM, Philadelphia, 1979.

H. R. P. Ferguson and R. W. Forcade, "Generalization of the Euclidean Algorithm

for Real Numbers to All Dimensions Higher Than Two," Bulletin of the American

Mathematical Society, 1 (1979), p. 912 - 914.

H. R. P. Ferguson, "A Non-Inductive GL(n,Z) Algorithm That Constructs Linear

Relations for n Z-Linearly Dependent Real Numbers," Journal of Algorithms, Vol. 8
(1987), p. 131 - 145.

[9] G. H. Golub and C. F. Van Loan, Matrix Computations, .Johns Hopkins, Baltimore,
1989.

[10]

[11]

[12]

J. Hastad, B. ,Just, .J.C. Lagarias and C. P. Schnorr, "Polynomial Time Algorithms

for Finding Integer Relations Among Real Numbers," SIAM Journal on Computing,

vol. 18 (1988), p. 859 - 881.

.J.C. Lagarias and A. M. Odlyzko, "Solving Low-Density Subset Sum Problems,"

Journal of the ACM, vol. 32 (January 1985), p. 229 - 246.

A. K. Lenstra, H. W. Lenstra and L. Lovasz, "Factoring Polynomials with Rational

Coefficients," Math. AnnMen, vol. 261 (1982), p. 515 - 534.

14

