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Abstract

Using an ensemble of classifiersiastead of a single classifierhas been

shown to improve generalization performance in many pattern recognition

problems. However, the extent of such improvement depend s greatly on

the amount of correlation among the errors of the base classifiers. There-

fore, reducing those correlations while keeping the classifiers' performance

levels high is an important area of research. In this article, we explore

input decimation (ID), a method which selects feature subsets for their

ability to discriminate among the classes and uses them to decouple the

base classifiers. We provide a summary of the theoretical benefits of cor-

relation reduction, aiong with results of our method on two underwater

sonar data sets, three benchmarks from the Probenl/UCI repositories,

and two synthetic data sets. The results indicate that input decimated

ensembles (IDEs) outperform ensembles whose base classifiers use all the

input features; randomly selected subsets of features; and features created

using principal components anMysis, on a wide range of domains.

1 Introduction

Using an ensemble of classifiers instead of a single classifier has been repeat-

edly shown to improve generalization performance in many pattern recognition

problems [9, 17, 69]. It is well-known that, in order to obtain such improve-

ment, one needs to simultaneously maintain a reasonable level of performance

in the base classifiers that constitute the ensemble and reduce their correla-

tions [1, 29, 44, 49, 64]. There are many ensemble methods that actively promote

diversity (e.g., modify error surface, lower correlations in the outputs) among

their base classifiers [49, 58, 64]. Most work in this field, however, focuses on

pattern-level selection (e.g., Bagging [9], Boosting [22]). These methods bring

about diversity in the base models by training them with different subsets of

the training set. One drawback of such methods is that by definition, only a

portion of the available data is used during learning. This can lead to poor

performance, particularly when the data sets are small to begin with. Training



the base classifiers using different subsets of features avoids this issue as all the

patterns can be used in the training while still yielding base model diversity.

Two possible feature selection/extraction methods are Principal Component

Analysis (PCA)[31, 521 and random subspace selection [t0, 25]. PCA constructs

new features such that the data has maximum variability over those features.

However, PCA, when used in combining, not only generates the same features

for all potential classifiers in the pool, but also fails to take class information

into account. Random subspace selection overcomes the first shortcoming of

PCA, but it too does not consider the class labels when generating the feature

subsets. These two methods do not attempt to choose features in a manner that
is helpful in the classification task.

In this paper, we present input decimation--a method of choosing different
subsets of the original features based on the correlations between individual

features and class labels, and training classifiers on those subsets prior to com-

bining. This method not only reduces the dimensionality of the data, but uses

this dimensionality reduction to reduce the correlations among the classifiers
in an ensemble, thereby improving the classification performance of the ensem-

ble [51,63,6z].
Our results indicate that input decimation reduces the error up to 90% over

single classifiers and ensembles trained on all features, randomly-selected sub-

sets of features, and principal components. While we expected strong ensemble

performance, input decimation als0 provided improvements in the base classi-

tiers in many cases by pruning extraneous or irrelevant features, thus simplifying

the learning problem faced by each base classifier. In this study we focus on

the "averaging" combiner for two reasons: (i) despite its simplicity (or perhaps

because of it) this combiner has been shown to perform well and hold its own

against a wide array of more sophisticated methods [16, 17]; and (it) by choosing
a simple combiner we isolate the effects of input decimation from those of the

combining method. Furthermore, pattern-level ensemble methods such as bag-

ging, boosting, and stacking can be used in conjunction with input decimation

which is a feature-level ensemble method (i.e., input decimation is orthogonai

to those methods). Therefore, one can make meaningful comparisons between

averaging combiners with and without input decimation, or say, between stack-

ing or bagging with and without input decimation (not reported in this article),

not between input decimated ensembles and bagging or boosting.

In Section 2, we summarize a theory of classifier ensembles that highlights

the connection between correlation among base classifiers and ensemble perfor-

mance, along with a brief overview of different dimensionality reduction meth-

ods. In Section 3 we present the details of the input decimated ensemble, and

in Section 4 we provide experimental results on two real underwater sonar data

sets, three data sets from the PROBEN1/UCI benchmarks [6, 54], and two

synthetic data sets which allow a systematic study of input decimation. We

conclude with a discussionon the effectivenessofinput decimation under vari-

ous circumstances along with futureresearchdirectionsin Section 5.



2 Background

Model selection is a ubiquitous problem in many pattern recognition problems.

Neither the selection of the method (e.g., multi-layer perceptron, nearest neigh-

bor algorithm), nor the tuning of that algorithm can yet be fully automated

for all problems [15, 20, 23]. The use of ensembles provides partial relief since

by pooling the classifiers before a decision is made, potential sensitivity to any

single model is greatly reduced. Of course, the more similar the classifiers are,
the less likely it is that new information will be present in the ensemble, result-

ing in little more than a "rubber stamping" committee. In this section we first

formalize this connection between the correlation among the classifiers' errors

and ensemble performance and then discuss various methods that aim to reduce
that correlation.

2.1 Correlation and Ensemble Performance

In this article we focus on classifiers that model the a pasteriari probabili-

ties of the output .classes. Such algorithms inctudeBayesian methods [4], and

properly trained feed forward neuraJ networks such as Multi-Layer Perceptrons

(MLPs) [56]. We can model the ith output of such a classifier as follows (details

of this derivation are in [63, 64]):

£(x) =P(C{Iz)+

where P(Cilx) is the posterior probability of the ith class given pattern x, and

_i(x) is the error associated with the ith output. Given an input x, if we have

one classifier, we classify x as being in the class i whose value fi(x) is largest.

Instead, if we use an ensemble that calculates the arithmetic average over

the outputs of N classifiers f_(x), m E {1,... ,N}, then P(C{lx ) is given by:

where:

N
1

rn:l

1 N

and U/n(x) is the error associated with the ith output of the ruth classifier.
Now, the variance of _i(x) is given by [64]:
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If we express the covariances in terms of the correlations (coy (x, y) = corr (x, y)G= a_),

2 across classifiers, and use the average correlationassume the same variance G_,
factor among classifiers, 5i, given by

N
I

6,= :v(N- 1)
rn=l I¢rn

then the variance becomes:

N N - 1_ 2 1 + 5{(N - 1)o._,(.)"

(2)

Based on this variance, we can compute the variance of the decision boundary

and, generalizing this result to the classifier error, we obtain the relationship

between the model error (beyond the Bayes error) of the ensemble (Eam_oedel)and

that of an individual classifier (E,_od_) [63, 64]:

_e (l + 5(N-1)}E._odelEm°del = N
(4)

where

L

= (5)
i=1

and P_ is the prior probability of class i.
Equation 4 quantifies the connection between error reduction and the cor-

relation among the errors of the base classifiers. This result leads us to seek to

reduce the correlation among classifiers prior to using them in an ensemble.

2.2 Correlation Reduction Methods

As shown above, if the classifiers to be combined repeatedly provide the same

(either erroneous or correct) classification decisions, there is little to be gained

from combining, regardless of the chosen scheme. As equation 4 shows, reducing

5 and increasing N are two ways to improve the performance of a classifier

ensemble. However, these two ways are not independent. This phenomenon

is best illustrated by Figure 1, where the error reduction depending on the

correlation among the classifiers is displayed as a function of the number of

classifiers (based on Equation 4). For example, even though increasing the
number of classifiers from 4 to 8 does not provide any sizeable gains when the

correlation is .9, it provides significant gains if the correlation is .1. That is,

keeping the correlations low not only provides better error reduction for a given

number of classifiers, but provides greater gains when adding classifiers.

To improve ensemble performance one must either actively promote diversity

during training or achieve diversity through the selection of the data presented to

(3)
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Figure I: Effect of correlationon errorreduction.

the base classifier training algorithms. Examples of the former include distorting

the output space through error-correcting output codes [18], using principal

component analysis on the output space [45],using genetic algorithms to train

the classifier [50, 61] or modifying the error function used for training [58].

Examples of the latter include bagging [9], cross-validation partitioning [40, 64]

and even boosting [22] (though the goal there is not to reduce correlation, the

net effect is the same). The most common data selection methods focus on the

"pattern" space, though dimensionality reduction methods which manipulate

the feature space can also be used. Feature space methods have the advantage

that they do not reduce the number of patterns available for training each
classifier. They generally fall into one of two different classes of methods: feature
selection or feature extraction.

Feature extraction algorithms such as Principal Components Analysis (PCA)

[5, 31, 52] or Independent Component Analysis (ICA) [28] reduce the dJmen-
sionality of the data by creating new features. Linear PCA, perhaps the most

commonly used feature extraction method, creates new features that are linear

combinations of the original features. The aim of PCA, however, is to devise

features on which the data shows the highest variability, whether those features

are useful for classification or not [5]. Furthermore, because all the information
present in the initial features is "crammed" into fewer principal components,

there is a danger that classifiers trained on the principal components will have

higher, not lower correlations among them. Figure 2 demonstrates the perils of

not using class information. The left half of the figure shows a case in which PCA

works effectively. In this case the first principal component (Yl) corresponds to

the variable with the highest discriminating power. The right half shows a simi-

lar data set (similar data distribution and linearly separable). However, because

the first principal component is not "aligned" with the class labels, selecting this
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Figure 2: PCA and classification: The first principal (Yl) can provide a good

discriminating feature (left) or a poor one (right), since the class membership
information is not used.

component is a poor choice for this problem. Indeed, an input set consisting

of only the first component wouldprovide practically random decisions on this

data set} Yet, PCA remains one of the most frequently used dimensionality

reduction methods in many classification domains, including medicaI and space

applications [55, 60].

Feature selection algorithms focus on selecting a subset of the features to

present to the classifiers. One example is the random subspace method [10, 27]

where random subsets of the original features are presented to the classifiers.

However, looking at Yz and y2 (assuming those two are the original features) in

Figure 2 shows a pitfall of random feature selection. Randomly selecting feature

yz in the class configuration shown in (a) will lead to satisfactory classification,

whereas randomly selecting feature yl in (b) will lead to all discriminating in-

formation being lost. Many other feature selection methods use various criteria

for deciding the relevance of each feature to the task at hand and choose some

subset of the features according to those criteria [3, 7, 8, 19, 30, 43]. The

subset selection can be distinct from the learning, which is the case with fil-

ter methods. However, most of these feature selection methods attempt to

choose features that are useful in discriminating across all classes. Using such

a method within an ensemble learning scheme would have limited effectiveness
since it would choose the same features for every base classifier, leading to rela-

ZThere are variations on PCA that use local and/or nonlinear processing to improve di-

mensionality reduction I13, 33, 34, 47, 48, 59]. Although these methods implicitly account

for some class information and therefore are better suited than global PCA methods for clas-

sification problems, they do not directly use class information.



tively small correlation reduction. One exception is to break an L-class problem

into (2z) two-class problems and perform feature selection within each of those

problems [41]. In many real-world problems, there are features that are use-

ful at distinguishing whether a pattern is of one particular class but are not

useful at distinguishing among the remaining classes. In the next section we

present input decimation, which takes advantage of this fact to reduce both the

dimensionality and correlation in classifier ensembles.

3 Input Decimated Ensembles

Input Decimation decouples the classifiers by exposing them to different aspects

of the same data, ID trains L classifiers, one corresponding to each class in an

L-class problem. 2 For each classifier, the method selects a user-determined

number of the input features having the highest absolute correlation to the

presence or absence of the corresponding class. 3 The objective is to "weed"

out input features that do not carry strong discriminating information for a
particular class, and thereby reduce the dimensionality of the feature space to

facilitate the learning process. Additionally, the classifiers' features are selected

using different relevance criteria, which leads to different feature subsets for each

base classifier and a reduction in their correlations.

Let the training set take the following form:

{(Xl, Yl), (x2, Y2),..., (Xm, Ym)},

where m is the number of training examples. Each xi has I]FI] elements (where
F is the set of input features) representing the values of the input features in

example i. Each Yi represents the class using a distributed encoding, i.e., it has

L elements, where L is the number of classes, Ya - 1 if example i belongs to

class l and Yiz = 0 otherwise. In this study our base classifiers consist of MLPs

trained with the backpropagation algorithm#

Given such a data set, and a base classifier learning algorithm, input deci-

mated ensembles operate as follows:

• For each class l E {1,2,...,L},

1. Compute the absolute value of the correlation between each feature

j (xlj for all patterns i) and the output for class I (yu for all patterns
i).

2. Select the nz features having the highest absolute correlation, result-

ing in new feature set Fl. One can either predetermine n_ based on

2More generally, one trains nL classifiers where n is a positive integer.
SNore that this method requires the problem to have at least three classes. In a two-class

problem, features strongly correlated with one class will be strongly anti-correlated with the
other class, so the same features would be chosen for both classifiers.

4In principle, any learning algorithm that estimates the a posteriori class probabilities can
be used.



priorinformationaboutthedataset,or learnthevalueto optimize
performance.

3. Construct a new training set by retaining only those elements of the

xl's corresponding to the features F_ and all the outputs.

4. Run the base classifier learning algorithm on this new training set.
Call the resulting classifier fz.5

Given a new example x, we classify it as follows:

• For each class k 6 {1, 2,..., L}, calculate f_Ve(x) = -_ _=1/lk(X), by

presenting the proper features Fi of example x to each of the L classifiers

ft.6

• Return the class K = argmaxkff_e(x).

Fundamentally, input decimation seeks to reduce the correlations among

individual classifiers by using different subsets of input features, while pattern-

level methods such as bagging and boosting attempt to do so by choosing dif-

ferent subsets of training patterns.

4 Experimental Results

In this section, we present the results of input decimation on two underwater

sonar data sets, three Probenl/UCI benchmark data sets and two synthetic

data sets. In all results reported below, the base classifiers Consist of Multi-Layer

Perceptrons (MLPs) with a single hidden layer trained with the backpropagation

algorithm. The learning rate, momentum term, and number of hidden units were

experimentally determined. In all cases, we report test set error rates averaged
over 20 runs, along with the differences in the means. 7

4.1 Passive Sonar Signals

A real world problem with all the characteristics required for a complete study
is that of classifying short duration underwater signals obtained from passive

sonar signals [14]. Both biological and non-biological phenomena produce such

short duration sounds, and experts can determine the cause by studying their

pulse signatures or spectrograms. Automating this classification process is a

difficult process because these signals are highly non-stationary, have different

spectral characteristics depending on sources or propagation paths and may

5If one is training nL classifiers for n > 1, then the algorithm calls the base classifier
learning algorithm n times to create n classifiers fm f_ .., f_,_ with feature set _.

a_e6If we are instead training nL classifiers for n > 1, then we caJculate f_ (x) --

ZThat is, for an error with mean # and vaziance _2, we report the # 4- _/v/K where K
is the number of repetitions (K=20 for experiments reported here). Confidence inter_'als of
desired sensitivity can be obtained directly from the differences in the meatus.



havesignificantoverlap.A moredetaileddescriptionof thesonarsignalsand
thedifficultyassociatedwiththeirclassificationcan be found in [24, 63].

The two data sets used for this experiment are both extracted from short-

duration passive sonar signals due to four naturally occurring oceanic sources

(sound of ice cracking, porpoise and two different whale sounds). Although there

is some complementarity among the data sets, for the purposes of this study
we will treat them as different data sets. s The first set, SONAR1, consists of

25 features, including 16 Gabor wavelet coefficients, 9 signal duration and other

temporal descriptors and spectral measurements. There were 496 training and

823 test patterns. The second set, SONAR2, consists of 24 features, including

reflection coefficients corresponding to the maximum broadband energy segment

using both short and long time windows, signalduration and other temporal

descriptors.There were 564 trainingand 823 testpatters. For both data sets,

we used an MLP with 50 hidden units.

Tables I shows the error rates, differences in the mean, and correlation

among the base classifiers for both the full feature set and the input decimated

set. In this case, each base classifier had an input decimated set of 22 features for
both SONAR1 and SONAR2 after features with little correlation to each out-

put were deleted. Retaining more features did not result in a significant drop

in correlations, whereas removing more features resulted in drops in individual

classifier performance that were too large to be compensated by combining. In

fact, this data set is not particularly well-suited for input decimation because it

has a stool] number of carefully-extracted, relevant features.

Table I: Ensemble Performance on both sonar data.

SONAR1

SONAR2

I1

4

8

1

4

8

Full Feature Set input Decimation
Error Rate I d Error Rate

7.47 4- .10 8138 4- .15

7.05 + .07 .89 7.10 4- .07 .68

7.17 + .05 6.99 4- .06
9.95 4- .16 9.73 4- 1'16

9.26 4- .15 .76 8.80 4- .06 .72

8.94 4- .11 8.62 4- .06

For SONAR1, the deletion of even lowly-correlated inputs affects the perfor-

mance of the base classifier significantly. However, due to the correspondingly

large reduction in the error correlation, input decimated ensembles perform at

the level of the full feature set, with IDE for N = 8 providing a statistically

significant gain over the full feature set ensemble and IDE for N = 4 at the

= .05 level. For SONAR2, the gains are more significant in that even the

input decimated base classifier improves slightly upon the full featured base

classifier, allowing for sizable gains by the input decimated ensemble. This is

SSee [63] for a study where the two data sets were used in conjuc_ion.
_Gabor wavelet coeffi,c.;ents provide a muItiscale representation that does not assume signal

stationarity [12].



achievedin spiteof therelativelymodestdropin theerrorcorrelationamong
thebaseclassifiers.Also, note that for SONAR1, because the correlation is high

for the base classifiers trained on the full feature set, increasing the number of

classifiers from 4 to 8 does not provide any gains (instead it provides statistically

equivalent errors).

4.2 Probenl/UCI Benchmarks

In the SONAR data presented above each feature carried a significant amount

of discriminating information. In fact, because each feature was carefully ex-

tracted from the raw data, one should not have expected much improvement

through input decimation. In this section we perform a more detailed analysis

on three benchmark data sets where we gradually decrease the dimensionality

until we end up with 5-10% of the original features. On these benchmark sets,
we expect this more extreme case of input decimation to expose the strengths
and weaknesses of this method.

The three data sets from the UCI/PROBEN1 benchmarks [6, 54 l selected for

this study were: The Gene dataset from the PROBEN1 (i.e., using train/test

split from PROBEN1), and the Splice junction gene sequences and Satellite

Image datasets (Statlog version) from the UCI Machine Learning Repository.
The Gene data set has 120 input features and three classes [46, 54]. The MLP

has a single hidden layer of 20 units, a learning rate of 0.2 and a momentum

term of 0.8. The Splice data consists of 60 input features and three classes [6].

Here we selected an MLP with a single hidden layer composed of 120 units, a

learning rate of 0.05, and a momentum term of 0.1. The Satellite Image data

set has 36 input features and 6 classes [6]. We selected an MLP with a single
hidden layer of 50 units, and a learning rate and momentum term of 0.5. The

ensembles consisted of three classifiers for Gene and Splice and six classifiers for

Satellite Image--the same as the number of classes.

Figures 3-5 show the classification performance and classifier correlations for

all three data sets, averaged over 20 runs. For clarity we omit the error bars,

since they ranged from 0.05 to 0.25% and as such were smaller than the symbols

representing the data points. The rightmost point in each graph (e.g., the point

corresponding to 120 features for the Gene data set) shows the full feature set

performance. For the Gene data, the full feature ensemble is significantly more

accurate than the single classifier, while for the Satellite Image and Splice data

sets, the ensemble is only marginally more accurate.

In case of the Gene data, the average ensembles with 20, 30, and 40 in-

puts are significantly more accurate than both the original network ensembles

described in the previous section and their PCA counterparts. With IDE, the

performance of the ensemble goes up as the number of features increases until

aI1 the relevant features are included and then starts declining with the addition

of irrelevant features. The average correlation behaves the same way. For 10 or

fewer features, we expect the average correlation to be low because different sets

of 10 features have the highest relevance to each class. As the number of features

increases up to 30, the base classifiers have an increasing number of common

10
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features. At 30, the base classifiers have virtually all common features--the 30

that are relevant to all three classes; therefore, we would expect maximum av-

erage correlation. Beyond 30, each base classifier is getting (probably different)

irrelevant features, leading to a reduction in correlation. With PCA, the perfor-

mance of the ensemble is relatively stable and inferior to 1-DE. This is consistent

with the fact that principal components are not necessarily good discriminative

features, and adding principal components beyond the first few would likely

have little effect on the classification performance. The performance of the en-
semble with random feature subsets increases in random increments with the

addition of features depending on how relevant they are. On this dataset, the

performance of random feature ensembles was uncompetitive because random

selection never yielded good feature subsets.

In the Splice data experiments, all the decimated feature-based ensembles

significantly outperformed both the original ensemble and the PCA-based en-

sembles. Random feature-based ensembles performed somewhat better here

than in the Gene data set. With 40 and more features, it was competitive

to input decimation. However, the best performing predictor overall is clearly

the input-decimated ensemble with 10 inputs per classifier. What is particu-

larly notable in this case is that a reduction of dimensionality based on PCA

has a strong negative impact on the classification performance. With 20 prin-

cipal components for example, the performance of the single classifiers drops

by 7% relative to the single classifier with all the input features, whereas the

performance of the ID single classifier increases by 3%. The improvement of

the performance of the single classifiers due to decimation is an initially sur-

prising aspect of these experiments since one may not expect to find too many
"irrelevant" features in these real data sets. However, an analysis shows that

the inputs that were decimated were in fact providing "noise" to the classifier.

Although it is theoretically true that the classifier with more information will
do at least as well as the classifier with less information, in practice with only a

limited amount of data, extracting the correct information can cause a problem

for such classifiers causing them to perform worse than their counterparts with
less information.

On the Satellite Image data however, the input decimated ensemble with

27 features was the only one that did not perform significantly worse than the

single classifier and the original ensemble. Both the PCA and random fea-

ture ensembles outperformed IDE. Because the single IDE classifiers performed

much worse than the PCA and random feature single classifiers, we examined

the features that were chosen in each ensemble. Figure 6 shows the average cor-

relations among the features chosen for the base classifiers in the three types of
ensembles. The features that IDE chose have a much higher correlation among

themselves relative to random and PCA ensembles, especially for smaller num-

bers of inputs. This means that IDE often chooses several features with high

correlations to the class without realizing that they may be redundant. Ran-

dom feature selection does not fall into this trap since it does not consider
correlations at all. PCA's correlations are the lowest because it creates features

specifically designed to have low correlations among each other. Among the

14
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three Probenl/UCI datasets, this is the one with the lowest dimensionality, and

shows two things: (i) in order to take advantage of input decimation, the initial

dimensionality has to be high, as there are likely to be more irrelevant features

that can be removed; and (ii) if there are features that have significant meaning,

they need to be included in the feature set regardless of their correlation to the

particular output. We observed that consecutive groups of four features in the

satelliteimage data set correspond to spectra] values for a given pixel. In ex-

amining the eigen%zlues and eigenvectors, we found that the highest eigenva]ue

was 91.6% of the sum of the eigenva]ues, and the corresponding eigenvector was

a simple linear combination of the four spectra] values across all the pixels. In

this case, the higher principal components provide good discriminative features

(i.e., the data "looks" like that in Figure 2(a)). A potential improvement to

input decimation is to select "wild card" features based on correlation with all

the classes and incJude them in each decimated subset.

4.3 Synthetic Data

In this section we construct synthetic data sets to enable us to study the prop-

erties of input decimated ensembles in a systematic manner. To that end we

use the following two synthetic data sets:

• Set A:
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- Three classes-one unimodal Gaussian per class.

- 300 training patterns and 150 test patterns-100 training and 50 test
patterns per class.

- 100 features per pattern where there are:

* 10 relevant features per class. Patterns that belong to a class
are generated from a multivariate normal distribution in 10 in-

dependent dimensions distributed as N(40, 5_). There are no di-

mensions in common among the three classes. Therefore, there
are 30 relevant features. For patterns in each class, the 20 fea-

tures that are relevant to the other two classes are distributed as

U[-100,100]. 1°

* 70 irrelevant features-distributed as U[-100, 100].

Set B: Same as Set A, except that there is overlap among the relevant

features for each class. That is, each class has three relevant features in
common with every other class, but there are no features that are relevant
to all three classes.

In data set A there is an abundance of features that are irrelevant for the

classification task. This data set was chosen to represent large data mining
problems where the algorithms may get swamped by irrelevant data. In data

set B the overlap among features relevant to each class provides a more diffi-

cult problem where the base classifiers are now forced to select some common
features, reducing the potential for correlation reduction.

4.3.1 Synthetic Set A

Figure 7 presents the classification accuracies and base classifier correlations on

Synthetic dataset A as a function of the number of inputs (which are either
the number of selected principal components or the number of features selected

for each base classifier through input decimation). The original single classifier

and original ensemble use all the input features. 11 The points for the maximum

number of features (e.g., 100 features in this data set), always represent the

performance of the original classifier/ensemble.

An important observation that is apparent from these results is that neither

PCA ensembles nor PCA base classifiers are particularly sensitive to the number

of inputs. The correlations among the base classifiers reinforce this conclusion.
Fewer input features in PCA means the base classifiers are more correlated since

they all share the same principal features. Note however, that input decimated

base classifiers have low correlation for small numbers of features, increasing
correlation up to 30 features, and decreasing correlation after that. The base

l°Cleazly, because of this, all 30 features have some relevance to all three classes; however,
the 10 features used to generate patterns belonging to each class ave clearly substantially more
relevant than the other 20 features.

11The base classifier used was an MLP with a single hidden layer consisting of 95 units,
trained using a learning rate of 0.2 and a momentum term of 0.5.
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classifiers'averageperformancefollowsa similarpattern. Interestingly,input
decimatedensemblesarenotadverselyaffectedbythepoorperformanceofthe
baseclassifiers(e.g.,input decimatedensembleswith5 featuresoutperformed
inputdecimatedensembleswith50featureswhilebaseclassifierswith5features
gavesignificantlyworseresultsthanbaseclassifierswith50features).

In caseswheremorethan30featureswereused,the performanceof the
ensembledeclinedwiththeadditionofadditionalfeatures,i.e.,asmoreandmore
irrelevantfeatureswereincluded.However,allthe input decimationensembles
providedstatisticallysignificantimprovementsovertheoriginalensembles,PCA
ensembles,andrandom-featureensembles.

Thesingledecimatedclassifierswith 20 and more features outperformed

the original single classifier. This perhaps surprising result (as one might have

expected only the ensemble performance to improve when using subsets of the

features) is mainly due to the simplification of the learning tasks, which allows

the classifiers to learn the mapping more efficiently.

Interestingly, the average correlation among classifiers does not decrease un-
til a very small number of features remain. We attribute this to the removal

of noise---removing noise increases the amount of information shared between
the base classifiers. Indeed, the correlation increases steadily as features are

removed until we reach 30 features (which corresponds to the actual number of
relevant features). After that point, removing features reduces the correlation

because the base classifiers' feature sets have a decreasing number of common

features. The base classifiers' performances also decline; however, the ensemble

performance still remains high. This experiment clearly shows a typical trade-off

in ensemble learning: one can either increase individual classifier performance

(as for input decimation with more than 30 features) or reduce the correlation
among classifiers (as for input decimation with less than 20 features) to improve

ensemble performance.

4.3.2 Synthetic Set B

Figure 8 presents the results for the second synthetic data set, which is similar

to the first data set except that there is overlap among the relevant features for
the classes. 12 Because of this overlap, this feature set has fewer total relevant

features and thus it constitutes a more difficult problem (as indicated by com-

paring the results on the full feature base classifiers and ensembles on this data
set to the previous one).

Note that the correlations in this data set remained fairly constant across
the board for IDE and PCA-based ensembles. Input decimation did not reduce

the correlations dramatically for small feature sets in dataset B the way it did

in case of dataset A. This is mainly caused by the "coupling" among the base

classifiers due to their common input features.
In spite of these difficulties, input decimation ensembles perform extremely

well. Indeed, they significantly outperform the original ensemble, PCA ensem-

12The single classifier used was an MLP with a single hidden layer consisting of 95 units,
traSned using a learning rate of 0.2 and a momentum term of 0.5.
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bles, and random-feature ensembles on all but a few subsets where they only

provide marginal improvements. Furthermore the input-decimated single classi-
tiers also outperform their original and PCA counterparts for all but the 60 and

70 feature subsets. This is particularly heartening since this feature set is a more

representative abstraction of real data sets (data sets with "clean" separation
among classes are quite rare). This experiment demonstrates that when there

is overlap among classes, class information becomes particularly relevant. PCA
and random feature selection operate without this vital information, therefore

they are unlikely to provide competitive performance.

5 Discussion

This paper discusses input decimation, a dimensionality reduction-based ensem-

ble method that provides good generalization performance by reducing the cor-

relations among the classifiers in the ensemble. Through controlled experiments,

we show that the input decimated single classifiers often outperform the single

original classifiers (trained on the full feature set), demonstrating that simply

eliminating irrelevant features can improve performance. In addition, elimi-

nating irrelevant features in each of many classifiers using different relevance

criteria (in this case, relevance with respect to different classes) yields signif-

icant improvement in ensemble performance through correlation reduction, as

seen by comparing our decimated ensembles to the original ensembles. Selecting

the features using class label information also provides significant performance
gains over PCA-based ensembles and ran_om feature subset selection.

Through our tests on synthetic and real data sets, we examined the char-

acteristics that data sets need to have to fully benefit from input decimation.
We observed that input decimation yields the greatest improvements over the

original ensemble when (i) there are a large number of features (i.e., where it is

likely that there will be irrelevant features); and (ii) when the number of training

examples is small relative to the input dimensionality (i.e., where it is difficult

to properly learn all the parameters in a classifier based on the full feature set).
In both cases, by removing the extraneous features, input decimation reduces

noise and thereby reduces the number of training examples needed to produce a

meaningful model (i.e., alleviating the curse of dimensionality). Our synthetic

data sets were generated using multivariate distributions where the feature val-

ues were generated independently. We plan to generate synthetic data sets with

dependencies among the features to see how they affect our method. Our ex-

periments with real datasets--especially the Satellite Image dataset--showed

that input decimation may benefit by keeping out redundant features and in-

cluding those features that have a high correlation with all classes on average

even though they do not have high correlation with any one class. We plan to

investigate various possible methods of doing this.

Note that input decimation shares the central aim of generating a diverse

pool of classifiers for the ensemble with many methods such as bagging. How-

ever, by focusing on the input features rather than the input patterns, input
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decimation focuseson a different"axis"ofcorrelationreductionthan does bag-

ging. Consequently, input decimation is orthogonal to bagging, and one can use

input decimation in conjunction with bagging. We plan to experiment with this
in the future.

A final observation is that input decimation works well in spite of our rather

crude method of feature selection (i.e., using statistical correlation of each fea-

ture individually with each class). One reason why this simple method succeeds

is that we have greatly simplified the relevance criterion: unlike other feature

selection methods that consider the discriminatory ability across all classes, we

only consider the relevance of the features to a single class. This typically causes

each classifier in the ensemble to get a different subset of features, leading to

the superior performance we have demonstrated. Nevertheless, we are currently

extending t.his work in four directions: considering cross-correlations among the

features; investigating mutual information-based relevance criteria; incorporat-

ing global relevance into the selection process; and selecting a different number
of features for each classifier.
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