
• t

J page 1

--O

Minimizing Cache

Misses Using
Minimum-Surface

Bodies

Michael Frumkin and Rob F. Van der Wijngaart*

Abstract

A number of known techniques for improving cache performance in scientific compu-

tations involve the reordering of the iteration space. Some of these reorderings can
be considered as coverings of the iteration space with the sets having good surface-

to-volume ratio. Use of such sets reduces the number of cache misses in compu-

tations of local operators having the iteration space as a domain. First, we derive

lower bounds which any algorithm must suffer while computing a local operator on

a grid. Then we explore coverings of iteration spaces represented by structured and

unstructured grids which allow us to approach these lower bounds. For structured

grids we introduce a covering by successive minima tiles of the interference lattice

of the grid. We show that the covering has low surface-to-volume ratio and present
a computer experiment showing actuaI reduction of the cache misses achieved by

using these tiles. For planar unstructured grids we show existence of a covering

which reduces the number of cache misses to the level of structured grids. On the

other hand, we present a triangulation of a 3-dimensional cube such that any local

operator on the corresponding grid has significantly larger number of cache misses

than a similar operator on a structured grid.

*Computer Sciences Corporation; M/S T27A-2, NASA Ames Research Center, Moffett Field,
CA 94035-1000; e-maih {frumkin,wijngaar}©nas.nasa.gov NASA Advanced Supercomputing
Division NASA Ames Research Center

_ --®

L

O-

i

page 2

--®

1 Introduction

A number of known techniques for improving cache performance in scientific compu-

tations involve the reordering of the iteration space. We present two new methods

for partitioning the iteration space with minimum-surface cache fitting sets. Such

partitionings reduce the number of cache misses to a level that is close to the the-

oretical minimum. We show that the coverings reduce the number of the misses

by actual measurements of cache misses in computations of a second order stencil

operator on structured three-dimensional grids.

A good tiling of the iteration space for structured discretization grids can be

constructed by using the interference lattice of the grid. This lattice is a set of grid

indices mapped into the same word in the cache or, equivalently, a set of solutions

of the Cache Miss Equation [7]. In [2] we introduced a (generally skewed) tiling of

the iteration space of the explicit operators on structured grids with parallelepipeds
built on a reduced basis of the interference lattice. We showed that for lattices

whose second shortest vector is relatively long the tiling reduces the number of
cache misses to a value close to the theoretical lower bound. Constructing the

skewed tiling, however, is a nontrivial task, and involves a significant overhead in

testing whether a particular point lies inside the tile. Tiling a three-dimensional

grid, for example, requires the determination of 29 integer parameters to construct

the loop nest of depth six, and involves a significant branching overhead.

We start the paper with deriving lower bounds which any algorithm must

suffer while computing an a local operator on a grid.

Then we introduce two new, coverings of structured grids: a covering with

Voronoi cells and a covering with rectilinear parallelepipeds built on the vectors
of successive minima of the interference lattice. In lattices with a relatively long

shortest vector the cells of both coverings have near-minimal surface-to-volume ra-

tios. Hence, the number of cache misses in the computations tiled with these cells

is close to the theoretical minimum derived in [2]. Direct measurements of the
cache misses show a significant advantage of the successive minima covering rela-

tive to the computations using the canonical loop ordering (maximally optimized

by a compiler).

For the computations of local explicit operators on planar unstructured grids

we construct a near-minimum-perimeter covering by applying the Lipton-Tarjan

planar graph separator algorithm [8]. The perimeter-to-area ratio of the sets of this
covering is O(1/v/-S), where S is the cache size. Lastly, we construct an unstructured

grid that triangulates a 3-dimensional cube and show that the grid can not be

covered with sets having small surface-to-volume ratios. The last result shows

that any computation of an explicit operator on such 3-dimensional grid would

suffer larger number of cache misses than a computation of a similar operator on a

structured grid of the same size.

2 Cache Usage in Computations of Local Operators

Local operators on the 9rids. We consider tile problem of computing a local explicit

operator q = Ku on data defined at the vertices of an undirected graph G -- (17, E)

--0

O
pag_ 3

--®

which we call grid. Locality of the operator K means that computation of q(z), z E

V, involves values of u(y), y E V, where y is at a (graph) distance 1 at most r from

x. This r is called the order of K and assumed to be independent of G. K is

explicit, meaning that q and u are distinct arrays and, hence, the values of q can

be computed in arbitrary order.

We consider structured and unstructured grids that have an explicit or implicit

embedding into an Euclidean space. Structured grids are Cartesian products of line

graphs, while edges of unstructured grids are defined explicitly by an adjacency

matrix. We assume that the maximum vertex degree is independent of the total

number of vertices. A grid is called planar if its vertices and edges can be embedded

into a plane without edge intersections• A grid is called a triangulation of a body

B if it can be represented as a 1-dimensional skeleton of a simplicial partition of B.

Cache Model. We consider a single-level, virtual-address-mapped, set-associ-

ative data cache memory, see [3]. The memory, with a total capacity of S words,
is organized in z sets of a (associativity) lines each. Each line contains w words.

Hence, the cache can be characterized by the parameter triplet (a, w, S), and its

size S equals a * z * w words. A cache with parameters (S/w, w, S) is called fully

associative, and a cache with parameters (1, w, S) is called direct-mapped.

The cache memory is used as a temporary fast storage of words used for pro-

cessing. A word at virtual address .4 is fetched into cache location (a(A), z(A), w(A)),

where w(A) = ,4 mod w, z(A) = (A/w) rood z, and a(A) is determined according

to a replacement policy (usually a variation of least recently used). The replacement

policy is not important within the scope of this paper since our lower bounds are

valid for any replacement policy and upper bounds are true even for direct mapped
cache.

The number of cache misses incurred in computation of K depends on the

order in which elements of u are stored in the main memory. We assume that for

structured grids an element u(il,..., id) is stored at address A = il +nli2 +nln2i3 +
•. • + n_ - • • na__ ia, where ha, •.. , rid-1 are the grid sizes. For unstructured grids we

don't assume any particular ordering of the grid points (and, hence, elements of u).

Instead we choose an ordering that reduces the number of cache misses.

Replacement loads• A cache miss is defined as a request for a word of data
that is not present in the cache at the time of the request. A cache load is defined

as an explicit request for a word of data for which no explicit request has been

made previously (a cold load), or whose residence in the cache has expired because
of a cache load of another word of data into the exact same location in the cache

(a replacement load). Cache load is used as a technical term for making some

formulas and their proofs shorter• The definitions of cold and replacement loads

are analogous to those of cold and replacement cache misses [7], respectively, and if
w equals 1 they completely coincide.

Surface-to-volume ratio. One technique for minimization of the number of re-

placement loads is to cover the grid G = (V, E) with conflict-free sets V = U V/, i =

1,...,k, Ig_] = S, that is, sets without vertices mapped to the same location in

1The graph distance is the length of a shortest path connecting two vertices. The length of the
path is the sum of length of edges in the path.

--®

f I

--

j /

i_ page 4

--®

cache. If we calculate q in all vertices of 1/} before calculating it in vertices of

Vj, j > i, a replacement load can occur only at vertices having neighbors in at

least two sets (boundary vertices). We consider only bounded degree graphs, so

if we can find a covering with sets having volumes I_1 close to S and a minimal

number of boundary vertices 101/][(and boundary edges) i.e., bodies with minimum
surface-to-volume ratio, then the computation of/f will have a number of replace-

ment loads close to the minimum. On the other hand, the total partition boundary
k

Y_-i=l [0V, I can be used to obtain a lower bound for the number of replacement

loads, see section 3, el. [2, 9].

3 A lower bound for cache misses for local operators

In this section we consider the following problem: for a given grid and a local

operator K, how many cache misses must be incurred in order to compute q = Ku,

where q and u are two arrays defined on the grid. We provide a lower bound for the

number of cache misses in any algorithm, regardless of the order in which the grid

points are visited for the computation of q. The lower bound contains the minimum

surface-to-volume ratio of sets covering the grid. The ratio can be calculated for a

number of grids: structured grids, planar unstructured grids, FFT-grids, expanders,

and matrix multiplication grids described below. It may be shown that our lower

bound is tight for all above-mentioned grids and in general for any grid which may
be covered by sets having an optimal surface-to-volume ratio.

Vv'e use the following terminology to describe the operator K. Locality of K

means that the value of q at the grid point z is a function of the values u(y), where

y is a grid point at the distance at most r from x (r is called radius of K). In

this section we obtain a lower bound for an explicit operator of radius 1, which,

obviously is a lower bound for operators of larger radii as well.

3.1 Pointwise Computations

Depending on the separability of the kernel of the local operator, it has to be

computed in pointwise or edgewise fashion. If an operator has an unseparable

kernel, then it requires values of u at all neighbor points simultaniously to compute

a value of q. We call such computation pointwise. In this subsection we assume

that computation of q on the grid G = (V, E) is performed in a pointwise fashion,

that is, at any grid point the value of q is computed before computation of the

value of q at another point is started. Operators with separable kernels which can

be computed edgewise are considered in the next section.

In order to compute the value of q at a grid point x, the values of u at the

neighbor points of x must be loaded into the cache (points y and x are neighbours if
they are connected by a grid edge), If x is a neighbor of y and u(y) has been loaded

in cache to compute q(z) but is dropped from the cache before q(x) is computed,

then u(y) must be reloaded, resulting in a replacement miss.

For a given algorithm to estimate the number of elements, p, of array u that

must be replaced, we partition V into a disjoint union ofk sets l/}, with V = Cl{" ll/_ ,

in such a way that q is computed at all points of _ before it is computed at any'

--49

I I

O

t

page 5

--O

5

point of 1//+1, see Figure 1. Let B_ and B_ be (possibly intersecting) subsets of l/_

which have neighbors of Uj<il/) and CJj>il/'j respectively. The set B_ = B_ U B;' is
the boundary of Vi.

G

V 1

7 2

V3

: u
:' B 3

Figure 1. The boundaries BI and B_ of already computed values of q in a

sequence of regions Vi. Reloading of some values of u on the boundary of V3 (heavy

and dotted lines) results in at least IBl31+ IB_I - 2S cache misses.

For computation of q in l_ the values of u at points of B_ have to be present in

cache. The values of u in B I already are in cache since these values are necessary for

computing q at the neigbor points in Uj<il/_ and the computations in these points
have been accomplished before computations in I_) have started. Since the cache
can accomodate at most S of these values at least

p{ = IB{I- s.

values have to be reloaded.

Symmetrically, for computation of q in l_} the values of u at points of B_ have

to be present in cache. The values of u in B_ later will be required for computation

of q in $_, j > i. These computations started after all computations in _.'_ have
been finished. Since the cache can aecomodate at most S of these values, then at
least

p? = tB:'I - s.
values have to be reloaded.

Hence, in each set of the partition at least

p_= p_,+ p_ > IBz,I+ IB_b- 2s > IB_I- 2S

--®

page 6

--®

values have to be reloaded.

The total number of reloaded values in the course of computing q on the entire

grid will be at least
k k

i=l i=l

Let v be the maximum number of points in a set with 3S points on its bound-

arv. Then choosing partition V ko = Ui=iVi in such a way that I1/%1= v we get

p > s IVI. (s)
V

Thus we have the following result.

Theorem 1. The number of cache misses in calculation of an explicit operator on

a grid G = (V,E) is

_>-([Vl+p)> vl(l+ a(a))
W W

where a(G) is the minimum of the surface-to-volume ratio over subsets of V with
3S points on the boundary.

Proof. We sum the number of replacements in (5) with the number of cold loads

IV[and notice that _s = 1/3a(G). Then we notice that each cache miss results in
v

a load of w words in the cache, r7

3.2 Edgewise Computations

The pointwise calculation model used in the previous subsection is too restrictive

in many cases. Using separability of the kernel the number of cache misses can be

_ '? for a matrixreduced. For example, from Theorem 1 it follows a bound of p > c-_

multiplication algorithm (since it is easy to see that a(MM) = O(_)). However, it
_3

is well known [9] that the number of cache misses for this problem is p = 0(_) in

the general case, and the upper bound is achieved by a block matrix multiplication
algorithm with block size x/_. In this section we present lower bounds for more

general computations where values of q may be updated multiple times in arbitrary

order. We call these computations edgewise.

An edgewise computation is performed at the vertices of a bipartite graph

H = (1/1, V °, E) where, V I and V ° are two copies of V, and (x, y), x E l/I, y _ _/O

is an edge in H iff x and y are neighbors in G or x = y. The values of u are given
in the points of I/'I and values of q have to be computed at the points of V °. An

edgwise computation is computation of a function of two variables corresponding to

an edge of H. If a value at an end of the edge is not in cache then the computation

suffers a cache miss. All edges of the grid should be computed. We want to estimate
the number of cache misses that each computation of q = Ku must suffer.

--®

O
t -i -

page 7

The arguments for the obtaining the lower bound of Theorem 1 can be modi-

fied by partitioning of the edges of H into disjoint sets E = U/k=IEi in such a way

that computation of any edge in Ei precedes computation of any edge in Ei+l and

boundary of Ei is at least 3S. Here the boundary of an edge set Ei is the set of

vertices incident to an edge in Ei and to an edge which is not in Ei. The surface-

to-volume ratio of an edge set is the ratio of the number of boundary vertices to the

number of edges. We define _(H) to be the minimum surface-to-volume ratio of

the edge sets in H having surface 3S. The following result can be proved by exactly

same arguments as used for Theorem 1.

Theorem 2. The number of cache misses in a separable calculation of an explicit

operator on a grid G = (1/, E) is

. > .!lEl(1 +

where/3(G) be the minimum of the surface-to-volume ratio over subsets o/E with

3S points on the boundary.

4 Structured Grids

4.1 Interference Lattice

Interference lattice. Let u be a d-dimensional array defined at the vertices of a

structured d-dimensional grid of size nl • • "nd. Let L be a set in the index space of

u having the same image in cache as the index (0,..., 0). L is a lattice in the sense

that there is a generating set of vectors {bi}, i = 1,... ,d, such that L is the set of

grid points {}--_d=l xibi Ixi e Z}. We call L the interference lattice of u. It can be

defined as the set of all vectors (i_,..., id) that satisfy the Cache Miss Equation [7]:

(il + nlie + nln2i3 + ... + nl '''rid-lid) rnod S = 0.

We will use some geometrical properties of lattices. Let B be a convex body
of volume V, symmetrical about the origin. The minimal As such that AiB contains

i linear independent vectors of L is called the i eh successive minimum of a lattice L

relative to B. A theorem by Minkowski, see [1] (Ch. VIII, Th. V), asserts that

2d d 2d__ < [L=a a_-- < --. (9)
d!V - detL - V

Note that the ratios of lattice successive minima relative to the unit cube and to

the unit ball can be bounded: 1/d <)_ub_/A_u <_ d. In the section 4.2 we use
successive minima relative to the unit ball and in the section 4.3 we use successive

minima relative to the unit cube. In any case we call f = ._d/)U the eccentricity of

the lattice (not to be confused with eccentricity of a reduced basis, defined in [2],

Section 4). The eccentricity relative to a ball and cube may differ by a factor of d :_
at most.

--®

®
j page 8

--®

In [2] we have introduced a tiling by parallelepipeds built on a reduced-basis

of the interference lattice, which decreases the number of the cache misses to a
level close to the theoretical lower bound that we also derived. Measurement shows

that this tiling has significantly fewer cache loads than a compiler-optimized code.

However, it has a high computational cost, since it depends on a significant number

of integer parameters (29 integers for a 3D grid), and its implementation scans

through a significant number of the grid points to select those suitable for cache

conflict-free computations. This prompts us to consider tilings with Voronoi cells
and with successive minima parallelepipeds. We show that these tilings have good

surface-to-volume ratio if the lattice has a small eccentricity.

4.2 Voronoi Tiling

A Voronoi tiling is a tiling of the grid by completed cells C (Voronoi tile) of the

Voronoi diagram. For each lattice point x a Voronoi cell is the set of points which are
closer to x than to any other lattice point. All integer points inside each Voronoi

cell are mapped into the cache without conflicts. Voronoi cells may not form a

tiling since some integer points can be located on a cell boundary. There are many

qualitatively equivalent ways to complete the cells to form a tiling. One way is to

choose a basis in the space of the lattice and assign an integer point to the cell

whose center is lexicographically closest to the point.
In order to estimate the surface-to-volume ratio of a Voronoi cell C we note

that the completed Voronoi ceils form a tiling of space. Hence, the volume of C

equals the determinant of the lattice, which is equal to S, see [2]. On the other
hand let Co be a Voronoi cell centered at o. Each vertex v of Co is equidistant from

d lattice points. Let r be that distance. According to the definition of the Voronoi

cell, the ball of radius r, centered at v, contains no other lattice points. Hence

r < R, where R is a radius of a maximal ball of the lattice (a lattice points free ball

of the maximal radius). Hence, Co is contained in a ball of radius R, centered at

o. Thus, the surface area of Co is bounded by the surface of a ball of the radius R,
rrd/2

which equals d_c_dR a-1 where lv_ - r(l+d/2) is the volume of the unit d-dimensional

ball (see [1] Ch. Ix.7).
We estimate the radius of the maximal ball R by induction on the dimension

of a sublattice. Let Ri the radius of the maximal ball inscribed into the lattice L,

built on the first i minima vectors of L. Then according Figure 2 we have

t_ <_ (hi�2) 2 + R_ 1 --< ('_i/2) 2 -+- R2--1

and induction on i givesus the followingassertion.

Lemma 3. For the radius of a lattice points free ball in a d-dimensional lattice L

we have the followin9 relation:

d

R2 _<1/4EA2i- (11)
i=1

where _1 <_ "'" < /_d are successive minima of the lattice L.

__
--G

--

_ _ ¢

page 9

--0

vi _ vi +Li_ 1

Li- 1

Figure 2. The radius of maximal ball inscribed into L can be estimated

through the radius Ri-1 of the maximal ball inscribed into the lattice Li-1 built on

the first i - 1 minima vectors, and through the value of the last minimum Ai = Ivil.

Here hi is the distance between La-1 and vi + Li-1

Hence, for the surface area A of C we have the estimation

A(C) = dl/clR d-1 5 d(v/-d/2)d-lVd_d dd-1 <--d_!rV_/d] (cl-1)2/dS(cl-1)/cI,

2e ¢d-1¢ derived from (9), and the boundwhere we used the estimation had < VjJ

R < -_-_Aa which follows from (11). This implies the following result.

Theorem 4. The surface-to-volume ratio of a Voronoi cell C can be estimated as:

A(C__) < Caf(d_l)2/ds_l/d
v(c)

where ca is a constant depending on d only.

4.3 Successive Minima Tiling

The Voronoi cell tiling has cache-conflict-free tiles of maximum possible volume S,
and of small surface-to-volume ratio. However, the tiles may have many faces, and

it may be computationally expensive to scan through the grid points inside a tile.

In this sense it is desirable to use rectilinear tiles. A successive minima tiling is a

tiling by a Cartesian block built with use of successive minima lattice vectors of the

unit cube. Such a block Q can be described by the system

Ixil _< b_, i = 1,...,d, (14)

where A1 _< b_ < Ad.

The block Q can be constructed by the following "inflating" process. Take an

initial cube of the form (14) with b_ = 1, i = 1,...,d, and increment b_ until the

face xi = bi contains a lattice point. Continue to increment values of all bj for which

the face xj = bj has no lattice points. At the end we obtain a block of the form

(14) containing a lattice point on each of its faces and containing no lattice points

inside except o. In the best case each successive minimum vector will belong to one

--®

I I

__

r

page I(

--0

i0

of tile faces of the block, meaning that bi = Ai (after an appropriate reordering of

the coordinates). On the other side, it is not difficult to construct a 3-dimensional

lattice such that the block bl =)_1, b2 = b3 =)_2 <)_a, so the volume of the block

would be strictly less then A1 •. • Aa.

Anv translation of the block Q' 1= 5Q obviously contains at most one lattice
point and can be used for conflict free tiling. This block has a low surface-to-volume

ratio if the lattice has bounded eccentricity, which can be seen from the following

inequalities: 2A(Q') _< dA_ -1 and V(Q') >_ ,_. Hence, the surface-to-volume of the
block can be estimated as follows:

A(Q') < 2dfd_i//\ 1 < d(d!Vd)l/dfd_ls_l/d
V(Q') -

since Ad = fA1 and At > 2(d.@v_)1/d as follows from (9).
As the representative example, the number of cache misses for tilings of 3-

dimensional grids of sizes 40 ___nx _<99, ny = 97, nz = 99 with successive minima
parallelepipeds is shown in Figure 3. Experiments were performed on an SGI Origin

2000 machine with a MIPS R10000 processor.

g

E

{

Z

150

1 O0

5O

__ successive minima __/

compiler optimized /_

j_

40 60 80 O0

Figure 3. Comparison of cache misses for the second order stencil operator

as a function of the first dimension (40 < nx < 99, ny = 97, nz = 99). The top

graph shows the number of cache misses for the compiler optimized nest. The bottom

graph is obtained for tilings with successive minima paralIelepipeds.

5 Unstructured Grids

5.1 Lipton-Tarjan Covering

In this section we present a covering of a planar bounded degree grid with sets of size

at most S with average perimeter-to-volume ratio equal O(1/v_). The tiling can be

--O

__

f - i
page 11

--®

11

used for computing an explicit first order operator on an n-vertex planar grid with

O(n/v/-S) replacement loads. The tiling is based on the Lipton-Tarjan separator

theorem asserting that any planar graph on n vertices has a vertex separator of the

size O(v_). The separator can be constructed in O(n) time [8].

We consider bounded degree unstructured grids, that is, grids having fixed

maximum vertex degree d, independent of the grid size. (Calculation on unbounded

vertex degree grids causes approximation problems and numerical instability. As

a result, only bounded degree grids are used in numerical methods.) For bounded

degree grids a node cut of size O(n) has a corresponding edge cut of size O(n),

and vise versa. Hence, for bounded degree grids the Lipton-Tarjan separator the-

orem (see [8], section 2, Corollary 2) can be reformulated as follows: By removing

O(v/_) edges of an n-vertex planar graph it can be separated into connected disjoint

subgraphs, each having at most 2n/3 vertices.

We construct the covering by applying the Lipton-Tarjan theorem recursively.
First, we choose any C(n) <_ Cov/-ff cut of the original graph G = (}'; E), where co
is independent of n. According to Lipton-Tarjan theorem the cut can be chosen in

such a way that it will split the graph into connected components Gi = (t_, Ei), i =

1,..., k, IVil < 2n/3. Adding an extra step in this partition we can assume that

tV_I <_ n/2 while C(n) <_ clx/n for a bigger constant cl. Then we recursively bisect

each connected component Gi = (l_;,Ei) while II_}l > S. We will call this covering
Lipton- Tarjan covering.

This partition process can be represented by a cut-tree T where nodes are

partitioned connected components of the grid. A set is connected by edges with the

nodes representing connected components obtained by removing the edges of the
cut applied to the set. However, we do not include in T the connected components

smaller than S in size which were not partitioned. To each node t of T we assign

size s(t) equal to the number of vertices in the set represented by t and weight

w(t) = X,/_. From the definition of the cut-tree it follows that size of each leaf

(i.e. node having no children) exceeds S.

Lemma 5. The total number of edges in all cuts is O(n/x/_).

Proof. In the Lipton-Tarjan covering then the total number of the edges in all cuts
can be bounded by O(a(T)), where

Z (16)
t node of T

We use two properties of the weights:

E w(l) <_ n/vfs (17)
l leaf of T

since the maximum of the _ X/_ conditioned _ s(l) = n, s(1) _> S + 1 is attained

at s(l) = S + 1 for all l. And tile property

w(t) < l/x/2 _ w(_-) (18)
r is son of t

--0

page I:

--®

12

which follows from Proposition 7 below.

Now a(T) can be estimated in two steps. First, we replace weights in each

nonleaf t by the right hand side of (18) going bottom up from the leaves to the root
of T. This operation will not decrease the total weight. Second, carry summation

of new weights across nodes of T by noticing that each leaf I deposits into the total
sum at most

1 1

w(Z)(1 + _ + _ +...) = w(l)(2 + V_).

Hence from (17) it follows that

a(T) _< (2 + v_)n/v/S (20)

and total number of edges in all cuts is O(n/v_). U

Now we prove the main result of this section. From a lower bound on the

number of replacement loads for computations of explicit operators on structured

2-dimensional grids, see Section 3, cf. [2], it follows that the order of this bound

can not be improved.

Theorem 6. Any explicit first-order operator 1(on a bounded degree planar grid

G = (_ E) can be computed with O(IV)/v_) replacement loads.

Proof. First, we reorder vertices of the grid in such a way that vertices of each set

of the Lipton-Tarjan covering will occupy contiguous memory locations. Then we

order the sets arbitrarily and compute K on each set separately. In this computation

replacement loads can happen only at the vertices of the cuts of the grid. According

to Lemma 5 the number of such vertices does not exceed O(IVI/v_). [7

k

Proposition 7. For any positive vl > v2 > ... > Vk such that Vl < _i=2 vi the
/ollowin 9 inequality holds:

i=l

Proof. The proof uses Jensen inequality, see [5], Ch 2.10, Th. 19: for 0 < r < s

k k

i=l i=1

and in particular
k k k

i=1 i=1 i=1

--O
I

__

i ipage 1:

--®

13

Let zi = '-v'Vi, i = "1,..., "x, hence we have to prove

k k

(E x,),_>2Z
i=i i=1

k _25x/2 kwhere :El --< (Ei=2 --i / --< Ei=2 :Z'i'

Let j is the minimal index such that xj > _/k=j+l xi. Obviously, 1 < j < k
then we have:

k k

2 2z2 • 2z__1 +2zj> Z + + + +... +
i=1 i=1

k k

2 2x_ - 2x2_j. 2 2x_, 2 2+..+ > Zx,.
i=i i=i

5.2 Covering of Starry Grids

In this section we show that cache efficiency of starry multidimensional grids is the

same as for structured grids.

Definition 8. We call grid starry if it can be mapped to a grid in T_d that has the

following two properties:

* the ratio of the length L of the longest edge of the grid to the length l of the
shortest edge of the grid is limited by a constant independent of the number of grid

points:

L < col (26)

,** there are no grid points at a distance shorter than I.

A vertex of a starry grid can be adjacant only to grid points contained m a

ball of radius L centered at this point. On the other hand, a ball of radius l around

any vertex of a starry grid is free of other grid points. Hence, a starry grid has a
bounded degree. Another simple property of starry grids is that any subgrid of a

starry grid is a starry grid.

Starry grids are common in computations with particles distributed in a box

and interacting via a short range potential. While there is no obvious way to verify

that an abstract grid is starry, it is easy to verify that a grid in 7_a is starry. One

simple way to construct a starry grid is to delete some vertices and incident them

edges from a structured grid. Also it is easy to see that any starry grid contained

in a cube can be completed to a starry grid triangulating the cube.

We will show that a d-dimensional starry grid G = (V, E) can be covered by

sets of size S having at most c[V[_ boundary points all together, see Theorem

11. This covering, as in the case of planar grids, is based on the Hyperplane Cut

--O

I

--

i i

I page I_

--®

14

Theorem , see Theorem 10, asserting that there is a hyperplane bisecting V into

almost equal size parts while cutting at most c]Vl@ edges of the grid. From this
we deduce the main result of the section.

Theorem 9. Any explicit first-order operator K on a d-dimensional starry grid

G = (_%E) can be computed with (9(IV[S-_) replacement loads.

Proof. First, we reorder vertices of the grid in such a way that vertices of each set

of the covering will occupy contiguous memory locations. Then we order the sets
arbitrarily and compute K on each set separately. In this computation replacement

loads can happen only at the vertices of the cuts of the grid. According to Theorem

11 the number of such vertices does not exceed ©(IV IS-_).

From a lower bound on the number of replacement loads for computations

of explicit operators on structured &dimensional grids, see I21, i_ follows that this

bound can not be improved.

It is not difficult to see that any convex body has a small bisectior (for example

a hyperplane orthogonal to a diametor of the body). It is not surprising that if a

grid well represents the body then it has a small bisection width as well. We will
construct sa et of 3d vectors and show that the bisecting hyperplane can be chosen to

be a normal to one of these vectors. This actually gives an algorithm of complexity

O([V[_) for finding such a bisector.

The following theorem is an analog of the Lipton-Tarjan cut theorem.

Theorem 10. (Hyperplane Cut Theorem) For any starry grid G = (V, E) embed-

ded in 7-4_ there is a hyperplanar cut of the size O(IV]@) separating vertices of the

grid onto two sets of size at least IV[/3.

Proof. Let us consider vectors of unit length ui E T4d, luil= 1, i = 1,...,k and

slabs Si bounded by hyperplanes orthogonal to ui : {x E gd[Ai _< uix < #i},

trisecting V see Figure 4, that is

#{v E Vlu,v < A,} _> JVJ/3 while #{v E Vtuiv < Ai} < 1VI/3, (27)

#{v _ Vlu_v > t*_} _> IVl/3 while #{v C rv%_v > ,,_} < IVI/3.

Since we have the freedom to choose ui we will choose them in such a way" that all
vertices have different projections on each ui and the trisecting hyperplanes (27)

exist. This choice of the slabs implies that each slab containes at least IVI/3 points

while at most IVI/3 grid points can be contained strictly inside a slab. We will show
that ul,..., uk can be chosen in such a way that at least one slab is wide, that is

hi = #_ - ki >_ O(IV]_/d). As explained at the end of the proof of this theorem, it

follows from (26) that there exists a plane H_ = {v : uiv = rli}, _, < rli < #, that

intersects at most O(IV]@) grid edges. This plane separates grid points into sets

containing at least IvI/3 points.
r"

Let V ' be a set of grid points contained in exactly i slabs and l_j* be a subset

--0

f

__

/

page li
i

--®

15

S 3

s
/_/,/%"

v

U B

U3

Figure 4. Finding a wide bisecting slab. V 2 is the set of points inside the

thick-lined polygons minus V 3 contained inside of the shaded polygon.

of V i contained in S a. Since {V i} are disjoint sets and Ui_<klVil c V then

Iv't _<Ivl.

Since each slab contains at least 11/I/3 grid points then

IvsI > Ivl/3.
J

If we sum all points in all slabs then each point in V i will be counted exactly i

times, hence

E ilVil _ _ IVt'

l<_i<k

and
k

E ilVil >- _ Ivl -EiJV_l >- (3 -d+ 1)IV I. (32)

i>_d i<d

Let P,_, m = (il,..., id), ip ¢ i v be parallelepipeds formed by the intersection of d

different slabs. Obviously, U,>aV i C UmPm. Let Um be the number of grid points

in Pro, then

'd) Vi > l/d_-_iV _.b% = . (,i i>d
7T_

Now if we choose k = 3d, then from (32) it follows that

1

_-_Um _ _lVl. (34)

IO

__

i

! page 11
I
--®

16

The balls/_'l of radius of 1 centered at the grid points do not intesect then

_<(c3t)-1 vol(Pm+ B,/,

where c3l d = vol(Bt).

Now we exercise our fl-eedom of choosing vectors u_. We choose them to be

normalized to length 1 rows of a 3d × d Vandermond matrix

W = I(i- c_)Jl, i = 1,...,3d, j = 1,...,d, 0 < c_ < 1

We choose (_ in such a way that ui (vp - vq) _ 0 where vp, vq are different grid points.
These constraints give us at most 3d[l/[2 equations, and we choose (_ not to be a

root any of them. Then each parallelepiped Pm may be described by a system of

inequalities

-h._ <_D_IWm(z -x.,) _<hm

where l_ is a square Vandermond matrix consisting of m = (il,...,id) rows of

W, hm = (hi_,..., hid) t, h_j is a halfwidth of Pm in the direction of the vector uij,
xm is the center point of Pm and D,_ is the normalizing matrix. Hence P,_ + Bt is
contained in the bail of radius

D_[_l_lIhm + II <_(3d)dv_II(i - j)(h + l) < 32_ded+l/Z(h + l).
i<j

where h = maxl<_<ad{hi}. Since h > l then

vol(Pm + Bl) < c4h d.

From this inequality together with (34) and (35) it follows

This results in the desired lower bound for the width of a slab

c6[V[1/dl <_ h.

Now we show that there is a hyperplane parallel to the boundaries of the
d--1

slab which intersects at most c6]1/I--_- edges of the grid. We slice the slab on

[_-J > c6-_ll/'l 1/_ >_ cTIl/I Vd of slices of the width L. Since total number of grid

points in the slab does not exceed IVI, then at least one slice contains less than

c81Vt@ grid points. If a grid edge intersects bisector H of the slice then at least

one end of the edge is inside of the slice (since the slab is L thick and the length

of any edge does not exceed L). Hence, total number of the edges intersecting H
. d--1

does not exceed cslt' I--_-d, where _ is the degree of the grid, which is bounded for

starry grids. Since H is inside of the slab then it separates the grid points into parts

containing at least IVI/3 points each.

--O

__

_ _ j

page l'

--®

17

Now we can formulate our covering result, which implies that computations

of explicit operators on starry grids can be performed with the same cache efficieny

as on structured grids.

Theorem 11. Nodes o] starry grid G = (k, E) can be coverd by sets of size not

exceeding S and with total boundary O(IVI/S1/d).

Proof. The proof closely follows the proof of the main result of Section 5.1. As

mentioned in the beginning of the section, any subgrid of a starry grid is starry,
hence we construct the covering by applying the Hyperplane Cut Theorem recur-

sively. First, we choose any bisector cutting at most co]V I_ edges of the grid G,

where Co is independent of G. According to the Hyperplane Cut Theorem the bi-

sector can be chosen in such a way that it splits the grid into connected components

Gi = (Vi,Ei), i = 1,...,k, I1/'iI < 211/"1/3. Adding an extra step in this partition
we can assume that]_1 -< JVI/2 while the number of edges cut by the bisector

does not exceed cl IV[@ for a bigger constant el. Then we recursively bisect each

connected component Gi = (Vi, Ei) while 117/I> S.

This partition process can be represented by a cut-tree T whose nodes are

partitioned connected components of the grid. A set is connected by edges with the
nodes representing connected components obtained by removing the edges of the

cut applied to the set. However, we do not include in T not partitioned connected

components smaller than S in size. To each node t of T we assign size s(t) equal to

=the number of vertices in the set represented by t and weight w(t) d-,. From

the definition of the cut-tree it follows that the size of each leaf exceeds S. The

total number of the edges in all cuts can be bounded by O(a(T)), where

a(r) : _ w(t) (42)
t node of T

We use two properties of the weights:

w(O <_IVI/sq-'
I leaf of T

(43)

since the maximum of y] s(1) ¢_'s for sizes of the nodes normalized so that y_ s(1) =

[1/'], s(/) > S + 1 is attained at s(1) = S + 1 for all l. And the property

w(t) < c E w(r) (44)
r is son of t

for some c < 1 independent on the grid, which follows from Proposition 12.

Now or(T) can be estimated in two steps. First, we replace weights in each

nonleaf t by the right hand side of (44) going bottom up from the leaves to the root of

T. This operation will not decrease the total weight. Second, carry the summation

of the new weights across nodes of T by noticing that each leaf [deposits into the
total sum at most

w(/)(1 + c + c2 +...) = w(1)Cs.

__
--.@

__

i --page 1_

--4

18

Hence from (43) it follows that

d-1

_(T) <_chlVI/S d

meaning that the total number of edges in all cuts is O(IVI/S@).

(46)

k

Proposition 12. For any positive vl > ".. > vk > 0 such that vl < }--_-i=2vi, the
following inequality holds."

121X",vl/d

i=1 i=1

1/d

Proof. The proof uses Jensen inequality, see [5], Ch 2.10, Th. 19: for 0 < r < s

k k

('5_ 1/,,,v, j < (ZvFs) '
i=l i=l

and in particular
k k k

i=1 i=1 i=1

__ ,U1/ dLetxi i , i= 1,...,k, hence we have to prove

k k

d
(E xi)d > (d + 1)/2 Z xi

i-=l i=1

(K'_k Q,d_l/dwhere xl < <)__i__o x/ and xl > ... > xk > O.-- \A.._i:2 _i / -- -- --
k

Let j be the minimal index such that xj > Y_i=y+I xi. Obviously, 1 < j < k
then we have:

k k k k k

d d-1 d-1 " a"x d-_

i=l i=1 i_2 i=j i=j+l

k

> EX d +dXdl +'"+dXd_l +dxd-l(xj+l +'''+ Xk)

i=l

k k

>Zx_i +dxf +...+dx__ I +dx_+_ +...+dx_ >(d + l)/2Ex _.
,=1 i=1

--®

I

--

page 1!

--®

19

5.3 Cache Unfriendly 3-dimensional Grid

In this section we construct a 3-dimensional grid of N vertices which has a subgrid
of G the size cN that does not have small subsets with sma/l surface-to-volume

ratio. From this property, following the arguments of 3, it can be shown that for

any computation of an explicit operator defined on the grid f_(N/logN) replacement
loads must occur.

Our construction is based on embedding an FFT butterfly graph into a tri-

angulation of a 3-dimensional cube. The 2n-point FFT graph, denoted as F,_, is a

graph having (n + 1)2'* = N vertices arranged in n + 1 layers of 2 '_ vertices each.
In other words, vertices of F,, form an array (k, i), 0 < k < n, 0 < i < 2 '1 - 1 and

a vertex (k, i), k < n is connected with vertices (k + 1, i) and (k + 1, i (_ 2k) where

i (_ 2k signifies taking the complement of k th bit of i, see Figure 5.

X;><
XX

F
rl

Figure 5. A recursive construction of the FFT graph. Fn is built from two

copies of Fn-1 by adding (n + 1) th layer Of 2 n vertices and connecting them with

vertices of n th layer by the butterflies.

Theorem 13.

on a grid Fn is

The number of cache misses in calculation of an explicit operator

where c is a constant.

Proof. The theorem is a direct consequence of Theorem 1 and of an estimation of

the boundary of vertex coverings of F,_ given in Corollary 15. C]

Lemma 14. For any node subset V C Fn we have

IVl ___216V tloglaVI (53)

where dV is the right boundary of V, that is, the set of points m V either on the

right boundary of Fo. or having a right neighbor not in V.

--®

__

page 2(

---@

2O

Proof. Our proof of inequality (53) is based on induction and is similar to the

proof of Theorem 4.1 in [9]. Let V be partitioned into three sets A, B and C, as

shown in Figure 6. From the figure we can see that

e

Figure 6. Induction step for proving the surface-to-volume inequality of a

subset in F,_. We can assume that [Ao[_>]Bol.

[SV[> [SAI+ 15B[+ D + rain(0, ICI - 2[Ao[)

IVI _<IAI+ IBI + 2Ao + min(0, ICI - 2[Aol)

where D = [Aol - IBo[. If IC[_<2lAoI then, by induction,

IVl < 2(15AIlog l&41+ 15BIlog laBI + IA01)_<2(15Vllog lsvt - X)

where

I,SBI D
X = I_AI log(1 + _-_ + j_-_)

1&41 D
+ I,_B)log(1+ _ + ,_,)IOt_l

+ D log(15A I + 16BI + D) - D - t3o.

D
Since IBol < tSBI and IBoj <_1Aol < 15Al and either log(1 + laBI + 7_) -> 1 or

laBI D
log(1 + _ + iTS) > 1, or both, then X > 0. Hence IV[< 2{5V[log [5V[.

If y = min(0, ICI - 2lAo]) > 0 then (53) follows from the fact that v + y <

2(d+y)log(d+y) ifv _< 2dlogd. [q

Corollary 15. Let Fn = UVi, i = 1,...,k, I_._l < s is any partition ands < 2_/s.

Then for the sum of boundaries of the sets of the partition the following inequality
is true:

k

N (5s)
IO(V%)l_>41og---S'

i=1

--®

__

i

page 21

--®

21

Proof. For any subset V C F,_ it follows from (58) that 15V I >_ ½]Vl/log[V[, and

we can estimate the sum of boundaries of the partition.

k k 1_-_ 117/I 2.2__ IO(Vdl _ _ la(Vdl -2.2 _ _ _ loglV_l
i=l _=1 i=1

k

1 2,_
->21ogS_lEI-2 >--

i=1
4 log S'

Where the last inequalty holds since S < 2n/8. 13

The FFT graph can be embedded into a triangulation of a 3-dimensional cube.
A recursive construction of the FFT graph into triangulation of simplices is shown

in Figure 7. The simplices can be embedded into a cube as shown in Figure 9
which then can be partitioned into parallelepipeds with further triangulation of

each parallelepiped.
The butterflies connecting two last layers of Fn can be embedded into a tri-

angulation of a simplex in such a way that the edges of the butterflies are mapped
onto lines of pieces (to, t3, br, b4) and (tT, t4, b3, bo) of one of the ruled surfaces 2 and

two skewed ruled surfaces (to, t3, b3, bo) and (tr, t4, b4, bT)- A simplex built on the

appropriate vertices is separated by a ruled surface into two parts as shown in Figure

10, the top view is shown in Figure 8. The whole simplex (to, tT, b7, bo) can be par-
titioned into the four simplices listed above and 5 primitive simplices: (t3, t4, b3, b4),

(t3, t4, b4, br), (t3, t4, b3, bo), (to, t3, b4, b3) and (tT, t4, b4, b3). Each of the simplices

(to, t3, bT, b4), (t7, t4, b3, bo), (to, t3, b3, b0) and (tT, t4,.b4, br) is separated by a ruled
surface, hence it is sufficient to build a triangulation of a simplex separated by a

ruled surface see Figure 10. This can be done in 3 steps: 1. adding vertices on

the edges which are not parts of the ruled surface, 2. partitioning tile simplex

onto triangular prisms, and 3. triangulating each triangular prism into 3 primitive

simplices.
It is easy to verify that the total number of vertices in the triangulation does

not exceed M = 3n2 n and the degree of each node does not exceed 16. Hence we

have constructed a triangulation having the property declared at the beginning of
this section.

6 Related Work and Conclusions

The reduction of cache misses in scientific computations is an active subject of
research. One of the first lower bounds for data movement between primary and

secondary storage was obtained in [9]. Recently the work has focused on developing

compiler techniques to reduce the number of cache misses. In this direction we

mention [7], where the notion of the cache miss equation (CME) and a tiling of

2A ruled surface is built by linearly parametrizing two crossing lines in 3D space and connecting
corresponding points by lines. A ruled surface can be viewed as a hyperboloid containing the two
crossing lines.

__
--O

--

- t
page 2:

--0

22

t7

b 7 b4 b3 bo

Figure 7. IRecursive con-
struction of embedding of FFT graph

into a triangulations of a simplex.

Figure 9. Recursive triangu-
lation of a cube.

to

b7 b o

t7

Figure 8. Embedding one

layer of FFT graph into a triangulations

of a simplex, top view.

to

t2

_t 4

Figure 10. Triangulation of

a simplex separated by a ruled surface

via adding points sl,s2,s3. Only parti-
tion not shadowed by the ruled surface
is shown.

structured grids with conflict flee rectilinear parallelepipeds were introduced. Some

tight lower and upper bounds for computation of explicit operators on structured

grids were obtained in [2], where a tiling with a reduced fundamental parallelepiped
of the interference lattice was used for reduction of cache misses. Some practical

methods for improving cache performance in computations of explicit operators are

given in [10].

We showed that die reduction of cache misses for computations of explicit

local operators defined on discretization grids is closely related to the problem of

covering the grids with conflict free sets having low surface-to-volume ratio. We

introduced two new coverings of structured grids: a covering with Voronoi cells and

--0

I

--

page 2_

--®

23

a covering with rectilinear parallelepipeds built on the vectors of successive minima
of the interference lattice. The cells of both coverings have near-minimal surface-to-

volume ratios. Direct measurements of the cache misses show a significant advantage

of the successive minima covering relative to computations using the natural loop

order, mmximally optimized by a compiler. We also showed that the computations of

explicit operators on planar unstructured grids can be organized in such a way that
the number of replacement loads is asymptotically close to one of the structured

grids.

--

--0

@.__

!

page 2_

--O

24

@.__ --O

I -- - t
page 2,_

--O

Bibliography

[1] J.W.S. Cassels. An Introduction to the Geometry of Numbers. Springer-Verlag,
1997, 344 P.

[2] M. Frumkin, R.F. Van der Wijngaart. Efficient cache use for stencil opera-

tions on structured discretization 9rids. NAS Technical Report NAS-00-015,

November 2000, submitted to JACM.

[3] J.L. Hennessy, D.A. Patterson. Computer Organization and Design. Morgan

Kaufmann Publishers, San Mateo, CA, 1994.

[4] H. Edelsbrunner. Lectures in Geometry and Algorithms. Urbana-Champaign,
IL, 1994.

[5] G.H. Hardy, J.E. Littlewood, G. Polya. Inequalities 1934.

[6] K. LeichtweitL Konvexe Mengen. Springer-Verlag, 1980.

[7] S. Gosh, M. Martonosi, S. Malik. Cache Miss Equations: An Analytical Rep-

resentation of Cache Misses. ACM ICS 1997, pp. 317-324.

[8] R.J. Lipton, R.E. Tarjan. A Separator Theorem for Planar Graphs. SIAM J.

Appl. Math, Vol. 36, No. 2, April 1979, pp. 177-189.

[9] J.W. Hong, H.T. Kung. I/0 Complezity: The Red-Blue Pebble Game. IEEE
Symposium on Theoretical Computer Science, 1981, pp. 326-333.

[lOJ G. Rivera, C.W. Tseng. Tiling Optimizations for 3D Scientific Computations.

Proc. Supercomputing 2000, Dallas, TX, November 2000.

25

