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Abstract

This paper presents an overview of various intelligent control technologies currently being developed and studied
under the Intelligent Flight Control (IFC) program at the NASA Ames Research Center. The main objective of the
intelligent flight control program is to develop the next generation of flight controllers for the purpose of automatically
compensating for a broad spectrum of damaged or malfunctioning aircraft components and to reduce control law
development cost and time. The approaches being examined include: (a) direct adaptive dynamic inverse controller
and (b) an adaptive critic-based dynamic inverse controller. These approaches can utilize, but do not require, fault
detection and isolation information. Piloted simulation studies are performed to examine if the intelligent flight control
techniques adequately: 1) Match flying qualities of modern fly-by-wire flight controllers under nominal conditions; 2)
Improve performance under failure conditions when sufficient control authority is available; and 3) Achieve consistent
handling qualities across the flight envelope and for different aircraft configurations. Results obtained so far
demonstrate the potential for improving handling qualities and significantly increasing survivability rates under various
simulated failure conditions.

In troduction

In the last 30 years, at least 10 aircraft have experienced major flight control system failures claiming more than 1100
lives [1,2]. The Intelligent Flight Control (IFC) research program began in 1992 to address the need to examine
alternate sources of control power to accommodate in-flight control system failures. The major feature of IFC
technology is its ability to adapt to unforeseen events through the use of a self-learning neural flight control
architecture. These events can include sudden loss of control surfaces, engine thrust, and other causes that may
result in the departure of the aircraft from safe flight conditions.

To provide a real-time system capable of compensating for a broad spectrum of failures, NASA researchers began
investigating techniques for integrating both flight and propulsion control. The concept was to develop a system
capable of utilizing all remaining sources of control power after damage or failures. In order to adapt to varying levels
of performance under different control allocation schemes, Propulsion Controlled Aircraft (PCA) technologies [3,4]
were incorporated into a neural flight control architecture [5,6]. The resulting Integrated Neural Flight and Propulsion
Control System (INFPCS) uses a daisy-chain control allocation technique to ensure that conventional flight control
surfaces will be utilized under normal operating conditions. Under damage or failure conditions, the system may
allocate flight control surfaces, and incorporate propulsion control, when additional control power is necessary for
achieving desired flight control performance.

This research was conducted using a neural flight control architecture that is based upon the augmented model
inversion controller, developed by Rysdyk and Calise [7]. This direct adaptive tracking dynamic inverse controller
integrates feedback linearization theory with both pre-trained and on-line learning neural networks. Pre-trained neural
networks are used to provide estimates of aerodynamic stability and control characteristics required for model
inversion. On-line learning neural networks are used to generate command augmentation signals to compensate for
errors in the estimates and from the model inversion. The on-line learning neural networks also provide additional
potential for adapting to changes in aircraft dynamics due to damage or failure. Reference models are used to filter
command inputs in order to specify desired handling qualities. A Lyapunov stability proof guarantees boundedness of
the tracking error and network weights [7].

Piloted simulation studies were performed at NASA Ames Research Center on a commercial transport aircraft
simulator [6]. Subjects included both NASA test pilots and commercial airline crews. This paper contains a brief
overview of the system architecture, and presents simulation results comparing the performance to conventional
systems under nominal and simulated failure conditions.
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The current research at NASA Ames is focused on improving two aspects of the IFC architecture implemented in the
earlier study and to further validate IFC technologies using a C-17 test bed. The improvements and the technologies
that enable the improvements are discussed in the body of the paper. In the rest of the paper, first we discuss
categorization of intelligent control approaches to give a perspective on where we are in the hierarchy of IFC. In the

next section we detail the implementations of the two approaches (past and present) and discuss the results of the
past research.

Intelfigent Control Approaches

There are two main aspects to intelligent control: (1) the "intelligence" to analyze the changing environment; and (2)
the resources to respond to the changing environment. Intelligence connotes the analytical ability to comprehend
and react to the changing environment. Resources connote the physical components of the system that are

necessary to react to the environment. In this work, we concentrate on the need to harvest and interpret the
information from the network of sensors and to apply it for control such that good performance is maintained under
any of the following situations:

• Loss of control due to failure

• Aircraft characteristics change due to damage (center of gravity, inertia, etc.)

• Changing operating conditions (altitude, mach, etc.)
• Environmental effects due to wind and turbulence

Intelligent Control application focus on control problems that otherwise cannot be solved, or cannot be solved in a
satisfactory way by traditional control techniques alone. Intelligent control as practiced today encompasses many
fields from conventional control such as optimal control, robust control, stochastic control, linear control, and

nonlinear control, as well as the more recent fuzzy, genetic, and neuro-control technologies. In the next subsection,
Intelligent Control is classified based on the idea of self-improvement as the goal toward higher levels of intelligence.

Levels of Intelligent Control

In a general sense, an intelligent controller design can be stated as the following:

given the dynamic system as:

X(t+l) = f(X(t),U(t),t)+rl; where X are the state variables, U is the control vector,

and rl is an unknown disturbance

a set of goals generated as a function of time as

Xg(t+l) = g(Xg(t),X(t),t)

a performance measure as:

J(t+l)= 3(M(Xg(t),X(t),U(t),t)); where 3 is an operator (usually summation over T)

and a planning function as

P(t+l ) = p(X(t),P(t),t,v); where v is system faults and emergencies

the intelligent controller needs to arrive at a control, U(t), such that the system (in the order of priority)

• is locally stable (includes handling quality of the system)

• follows closely the desired path (closeness defined by the performance measure)

• constantly optimizes long-term and short-term goals

• reacts to changing environments by properly adapting the planning functionality.

Over the past decade, several innovative control architectures utilizing the intelligent control tools have been
proposed. We believe that a practical way to accommodate the above needs is to approach the system as having

various levels of capabilities for self-improvement. We emphasize here that self-improvement is an important goal of
human intelligence. Self-improvement is quantifiable and measurable in various ways. By defining Intelligent Control
with various levels of intelligence, the definition is left 'open ended' such that it will not become obsolete, and it will



accommodateeasilytheinnovationsthatwillinevitablycomefromthecontributionsof suchfieldsascognitive
science,computerhardware,sensorsandactuators,learningtheory,andcontrolarchitectures.

KrishnaKumar[8,9]hasproposeda classificationschemebasedontheabilityofthecontrolarchitectureforself-
improvement(seeTable1). Theclassificationschemedividesthecontrolarchitecturesamonglevelsofintelligent
control(LIC).Forinstance,mostof theproposedarchitecturescanbedividedamonglevel0,level1,level2,and
level3 intelligentcontrolschemes.Basedon thisclassificationscheme,severalseeminglydifferingcontrol
architecturescanbelookedatasachievingsimilargoals.

Level Selfimprovementof
0
1

Table 1. The Levels of Intelligent Control

Tracking Error (TE)

TE + Control Parameters (CP)

TE + CP + Performance Measure

(PM)

TE+CP+PM+ Planning Function

Description
Robust Feedback Control: Error tends to zero.

Adaptive Control: Robust feedback control with adaptive control
parameters (error tends to zero for non-nominal operations;

feedback control is self improving).

Optimal Control: Robust, adaptive feedback control that
minimizes or maximizes a utility function over time.

Planning Control: Level 2 + the ability to plan ahead of time for
uncertain situations, simulate, and model uncertainties.

Level 0 Intelligent Control -- A Robust Controller: Self-improvement of Tracking Error (TE) is an important goal of
many control techniques. To achieve this, one designs robust feedback controllers with constant gains that improve

the error as time goes to infinity. We consider this as "Level 0 Intelligent Control".

Level 1 Intelligent Control -- An Adaptive Controller: Self-improvement of control parameters towards the goal of
achieving better tracking error or some error oriented goal, is the next level in intelligent control. We consider this as

"Level 1 intelligent Control". This level is essentially a robust feedback controller with adaptive parameters that helps
the error tend to zero for non-nominal operations and feedback controller is self improving.

Level 2 Intelligent Control -- An Optimal Controller: Self-improvement of an estimate of the performance error (or
some measure of performance over time) towards the goal of minimization or maximization of an utility function over

time (error tends to zero and a measure of performance is optimized) is the next level in interligent control. We
consider this as "Level 2 Intelligent Control". This level is essentially a robust feedback controller with adaptive
parameters that helps the error tend to zero for non-nominal operations, feedback controller is self improving, and a
measure of performance that is self-improving is optimized over time.

Level 3 Intelligent Control -- A Planning Controller: In addition to level 2 capabilities, Level 3 Intelligent Control
includes self- improvement of planning functions. Planning functions include contingency planning, planning for

emergencies, planning for faults, etc. These planning functions could be static for Level 2 but needs to be self-
improving for Level 3.

Figure 1 presents the implementation of a Level 2 Intelligent Control on a C-17 test bed. The levels as outlined earlier

are labeled in the figure. It should be noted that Level 0 is non-adaptive whereas Level I is adaptive. Level 1 is non-
optimal whereas Level 2 is optimal,

Figure 2 presents a Level 3 Intelligent Control architecture for intelligent aircraft autonomous maneuvering. In this
application of IFC, a Level 3 capability for adapting the path (maneuvering) is included.
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RM: Reference Models: The pilot commands roll rate and aerodynamic normal and lateral accelerations through stick

and rudder pedal inputs. These commands are then transformed into body-axis rate commands, which also include
turn coordination, level turn compensation, and yaw-dampening terms. First-order reference models are used to filter

these commands in order to shape desired handing qualities.

PI Error Controller: Errors in roll rate, pitch rate, and yaw rate responses can be caused by inaccuracies in

aerodynamic estimates and model inversion. Unidentified damage or failures can also introduce additional errors. In
order to achieve a rate-command-attitude-hold (RCAH) system, a proportional-integral (PI) error controller is used to
correct for errors detected from roll rate, pitch rate, and yaw rate (p, q, r) feedback.

NN: On-Line Learninq Neural Networks: The on-line learning neural networks work in conjunction with the error

controller. By recognizing patterns in the behavior of the error, the neural networks can learn to remove biases
through control augmentation commands. These commands prevent the integrators from having to windup to remove
error biases. By allowing integrators to operate at nominal levels, the neural networks enable the controller to provide

consistent handling qualities.

Dh Dynamic Inversion: Dynamic inversion is based upon feedback linearization theory. No gain-scheduling is
required, since gains are functions of aerodynamic stability and control derivative estimates and sensor feedback. To

perform the model inversion, acceleration commands are used to replace the actual accelerations in the quasi-linear
model. The model is then inverted to solve for the necessary control surface commands

CA: Control Allocation: A daisy-chain control allocation technique is used to ensure that conventional flight control
surfaces will be utilized under normal operating conditions. Unconventional flight control surface allocations are only

utilized when the primary flight control surface commands exceed the known limits of deflection. For example, in the
longitudinal axis pitch rate control is normally provided through symmetric elevator deflections. If this command
should saturate, then the remaining portion of the command is applied to symmetric ailerons. If the symmetric aileron

command saturates, then the remaining portion of that command is applied to symmetric thrust. The symmetric
aileron command is limited, by the differential aileron command, so that secondary pitch control does not interfere

with primary roll control.

M: Pre-Trained Neural Network Model: A Levenberg-Marquardt (LM) multi-layer perceptron [10] is used to provide

dynamic estimates for model inversion. The LM network is pre-trained with stability and control derivative data

generated by a Rapid Aircraft Modeler, and vortex-lattice code [11]. This block can be replaced by other on-line
derivative (parameter) estimation techniques.

Critic 1 and 2: Adaptive Critics are utilized to optimize the control allocation scheme and to shape the reference

model dynamics in the event of a failure.

Figure 1. Level 2 Intelligent Flight Control System
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staying within performance boundaries.

Figure 2. Level 3 IFC Architecture

Intelligent Aircraft Control Research at NASA Ames

An aircraft system is a non-linear distributed system with complex interactions between the pilot, the aircraft, and the
environment. Complexity here implies that a simple failure can lead to a catastrophic aircraft response. Intelligent
control provides a means to adapt the control law to changes in the system and to gracefully degrade the

performance in instances of catastrophic failures. Due to this obvious benefit along with other benefits that include
low developmental costs, a great deal of interest has been shown towards intelligent control applications to aircraft

and spacecraft operations.

Past Research

This section describes an integrated neural flight and propulsion control system that was extensively studied using

piloted simulations with simulated failure conditions. Under normal operating conditions, the system utilizes
conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight
conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize
unconventional flight control surface allocations, along with integrated propulsion control, when additional control

power is necessary for achieving desired flight control performance. Piloted simulation studies were performed on a
commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews.
Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under

various simulated failure conditions [6].

System Architecture

The neural flight control architecture is based upon the augmented model inversion controller, developed by Rysdyk

and Calise [7]. This direct adaptive tracking dynamic inverse controller, shown in Figure 1 (without the Level 2
components), integrates feedback linearization theory with both pre-trained and on-line learning neural networks. Pre-
trained neural networks are used to provide estimates of aerodynamic stability and control characteristics required for
model inversion. On-line learning neural networks are used to generate command augmentation signals to

compensate for errors in the estimates and from the model inversion. The on-line learning neural networks also

provide additional potential for adapting to changes in aircraft dynamics due to damage or failure. Reference models
are used to filter command inputs in order to specify desired handling qualities. A Lyapunov stability proof guarantees

boundedness of the tracking error and network weights.

A daisy-chain control allocation technique is used to ensure that conventional flight control surfaces will be utilized
under normal operating conditions. Under damage or failure conditions, the system may utilize unconventional flight

control surface allocations, along with integrated propulsion control, when additional control power is necessary for

achieving desired flight control performance. Of significant importance here is the fact that this system can operate
without emergency or backup flight control mode operations. An additional advantage is that this system can utilize,

but does not require, fault detection and isolation information or explicit parameter identification.
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Simulator Description

The INFPCS system was evaluated on the Advanced Concepts Flight Simulator (ACFS) at NASA Ames Research

Center. The simulator is equipped with a six degree-of-freedom motion system, programmable flight displays, digital
sound and aural cueing system, and a 180-degree field of view visual system [12].

The simulated aircraft is representative of a mid-size two-engine jet transport with general characteristics of a wide-
body, T-tail, low wing airplane with twin turbofan engines located under the wings. The aircraft is based on a
Lockheed Georgia Company Commercial transport concept developed in 1983. The physical dimensions are similar
to a Boeing 757 aircraft, with flight characteristics representative of a mid-sized jet transport. This particular transport

aircraft, designed as a platform for testing advanced concepts, is equipped with active flight controls representative of
an advanced fly-by-wire control system.

The Dryden turbulence model provides turbulence RMS and bandwidth values which are representative of those
specified in Military Specifications MiI-Spec-8785 D of April 1989. The Earth atmosphere is based on a 1976 standard
atmosphere model.

Test Description

The INFPCS system was evaluated by a total of 12 pilots, 6 NASA test pilots and 6 commercial airline pilots (3
commercial airline crews). Test pilots performed select maneuvers and approach and landing scenarios under
nominal and simulated failure conditions. Handling characteristics were compared to those of a standard "Open-
Loop" cable-driven controller, and a "Conventional" rate-command-attitude-hold (RCAH) fly-by-wire (FBW) controller.

Commercial pilots performed full-mission flights, from takeoff to landing, in order to evaluate the effectiveness under
select operational scenarios. The evaluation criterion was based upon performance measurements, Cooper-Harper

Ratings (CHR), and pilot comments.

Failure conditions consisted of "frozen" flight control surfaces at neutral or offset positions, shifts in the center of
gravity, and special controller failures to measure levels of adaptation. The failures used in this evaluation were
selected in order to investigate specific control issues, and to represent realistic scenarios encountered in aircraft

accidents and incidents involving the loss of some or all flight control surfaces.

Figure 3 presents a comparison of INFPCS with and without Level 1 adaptation for a normal and a failed condition. It
is clearly seen that the INFPCS with Level 1 adaptation is significantly better for the failed condition. Similar data
were obtained for several other failure conditions. These test cases included (see Reference 6 for more details).

• Approach and Landing Tests
• Tail Failure Tests

• Control Allocation Transition Tests

• Control Saturation Tests

• Operational Scenario Tests
• Dead-Band Adaptation Tests
• Out-of-trim Tests
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Figure 3a. Lateral Cooper-Harper Ratings for Nominal condition
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During the Controller Failure tests, the effect of adaptation became more apparent. Figure 4 displays roll rate and

pitch rate errors respectively, during a sample test case when performing sequential sets of maneuvers. The first set

of maneuvers, performed without adaptation, contains the largest errors. Adaptation is then used during the second

set of maneuvers, starting with untrained neural networks. The magnitude of the error continues to reduce as the

maneuver is repeated a third time, representing trained neural networks. Pilots commented that there was a "big

difference" in performance, as lateral ratings improved from 6.7 to 3.8 CHR, and longitudinal ratings improved from

6.6 to 4.2 CHR.
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Figure 4. INFPCS Roll-Rate and Pitch-Rate Errors (Controller Failure)

Current Research

The research highlighted above was successful in demonstrating the benefits of intelligent adaptive control. One of

the improvements suggested by the pilots included a faster control allocation technique. The Level 1 architecture did

not support an optimal allocation scheme. The scheme used an ad-hoc approach as outlined in Table 2 below.

Table 2. Daisy-Chain Control Allocation

Lat. Dir. Long.

Primary 8daft 8drud 8elev
Allocation

Secondary yaw-based _dthr (_ail
Allocation roll control

Tertiary
Allocation

The above approach cannot be easily scaled to aircraft with several redundant control surfaces, such as the C-17. it

is highly desirable to "optimally" allocate the control surfaces in the event of failure and it is desirable to arrive at a

technique that is independent of the aircraft. In addition, in the event of a severe degradation in performance, pilot

handling qualities as dictated by the reference model cannot be maintained. Once again, it will be desirable to



"optimally" modify the dynamics of the reference model to suit the situation in hand. Towards these goals an adaptive
critic augmentation that enables a Level 2 IFC is being developed (see Figure 1).

Adaptive Critic Technoloqy

Adaptive critic designs have been defined as designs that attempt to approximate dynamic programming. Paul

Werbos [22], who is one of the foremost proponents of adaptive critics, has stated that "adaptive critics are the only
design approach that show serious promise of duplicating critical aspects of human intelligence: the ability to cope
with large number of variables in parallel, in real time, in a noisy nonlinear environment".

The three inputs required for designing an adaptive critic design are:
• The cost function.

• A parametedzed representation of the critic.

• A method for adapting the parameters of the critic.

The choice of the cost function that the critic approximates comes from the problem at hand. The cost could be
distributed over the entire length of time or be defined at the end of the process. Typical examples of the two types

are minimizing the fuel spent for a certain flight mission or intercepting a projectile where the utility depends only on
the final error.

Parameterization of the critic is achieved by the use of the neural network formulation. Neural networks provide
nonlinearity and ease of implementation.

The choice of the method for training the critic depends on the problem at hand. Some of the methods proposed for
training the adaptive critics based on dynamic programming are the heuristic dynamic programming (HDP) approach,
the dual heuristic programming (DHP) approach, the global dual heuristic dynamic (GDHP) programming approach.
References 21 and 22 provide a more detailed discussion on the subject. Adaptive critic methods have been

successfully applied to aerospace problems in references 13 and 14.

Test Article

The adaptive critic architecture and its control reallocation characteristics will initially be assessed in piloted full-

motion simulations using a C-17 model currently being integrated with the Advanced Concepts Flight Simulator
(ACFS). The high-fidelity C-17 model has substantially more control effectors than the baseline generic transport
ACFS model, providing a chance to utilize multiple sources of control redundancy in each axis. After the software is
validated in the simulator, it will be integrated with a C-17 airframe and flight tested at Dryden Flight Research Center

in conjunction with the USAF and Boeing.

Conclusions

In the event of damage or failure, an aircraft's response can change to the point of essentially becoming a new
aircraft. Since conventional transport aircraft have limited additional control power available, altemate control
allocation schemes may be necessary. The Intelligent Flight Control research demonstrates the effectiveness of

using neural networks to not only adapt to changes in aircraft dynamics, but also to adapt to different control
allocation schemes.

The Intelligent Flight Control technology potentially can be developed and installed in commercial and military aircraft
to provide information and assistance to the flight crew in situations of major damage or component failure of its
control systems and has been flown in initial stages on the X-36 and F-15 ACTIVE. While these systems will

increase the safety and survivability of the vehicle, they must also be produced in shorter time spans, with lower
costs, and ultimately increase profitability in order for the US industry recipients to remain competitive. The use of
neural networks also leads to the concept of Intelligent Vehicle Systems that takes advantage of advances in

information technology that enable aircraft on-board flight systems to detect characteristic changes, predict future
systemic events and independently regain its original state or achieve an optimal state through reconfiguration or re-
planning.
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