
Automatic Synthesis of UML Designs from

Requirements in an Iterative Process

Extended Abstract w

Johann Schumann t and Jon Whittles

t RIACS/NASA-Ames, _ QSS/NASA Ames
email: schumann, j onathw_p_ o lemy. arc. has a. gov

The Unified Modeling Language (UML) is gaining wide popularity for the
design of object-oriented systems. UML [6] combines various object-oriented
graphical design notations under one common framework. A major factor for the

broad acceptance of UML is that it can be conveniently used in a highly iterative,
Use Case (or scenario-based) process (although the process is not a part of UML).

Here, the (pre-)requirements for the software are specified rather informally as
Use Cases and a set of scenarios. A scenario can be seen as an individual trace

of a software artifact. Besides first sketches of a class diagram to illustrate the
static system breakdown, scenarios are a favorite way of communication with

the customer, because scenarios describe concrete interaztions between entities
and are thus easy to understand. Scenarios with a high level of detail are often

expressed as sequence diagrams.

Later in the design and implementation stage (elaboration and implemen-

tation phases), a design of the system's behavior is often developed as a set of
statecharts. From there (and the full-fledged class diagram), actual code develop-

ment is started. Current commercial UML tools support this phase by providing
code generators for class diagrams and statecharts.

In practice, it can be observed that the transition from requirements to design

to code is a highly iterative process. This means that initial versions of require-

ments have to be modified and refined to meet additional (customer) wishes and
constraints. Also modifications of the code can lead to revisions in design. This
iterative behavior is strongly supported by most modern processes, because it
facilitates early detection of inconsistencies and bugs. Fixing a bug which is de-

tected late in the software lifecycle can cost approximately 60-100 times more

than one which is detected early [3].
However, current UML tools do not support the transition from requirements

to design in a comfortable and consistent way. Often, a considerable amount of

time is spent to write down the requirements in great detail. Then the require-
ments tend to be 'Yorgotten" until test cases have to be set up. At this point of
time, it is usually detected that those requirements are hopelessly out of date

and require a major overhaul.

Our work [7] addresses these issues and tries to close the gap between re-

quirements and design. In this talk, we present a set of algorithms which per-
form reasonable synthesis and transformations between different UML notations
(sequence diagrams, OCL constraints, statecharts). Our overall aim with respect



toreasonablesynthesis is centered around the following concepts: detection of
inconsistencies and ambiguities in sequence diagrams, merging of similar or du-
plicated behaviors from different sequence diagrams, the production of highly

readable (structured) statechart, and the support for iterative refinements. More

specifically, we will discuss the following transformations.

Statechart synthesis. From a set of sequence diagrams with object O (as an
instance of a class C) as a participant, we automatically synthesize a state-

chart which reflects C's behavior given in the sequence diagrams. Because the

standard semantics of sequence diagrams is very weak, almost no duplicate or
similar behavior can be merged. In order to overcome this problem, we allow
the designer to specify a set of OCL constraints, describing pre- and postcondi-

tions over a vector of "state-variables" for messages in the sequence diagrams.
These state-variables (currently of type boolean) and the constraints are used

by our algorithm to detect conflicts between a sequence diagram and the OCL
constraints (the domain model) using unification and a version of the frame ax-

iom. Furthermore, potential loops can be detected. Our state variables also form
the basis for constructing the (flat) statechart. In contrast to other approaches

(e.g., that used in the SCED tool [2]), the domain model allows a justified merge
of sequence diagrams. Because OCL constraints need to be defined only for few

(possibly important or ambiguous) messages, we believe that the additional bur-
den for the designer is kept to a reasonable level.

Introduction of hierarchy. As soon as the design gets more complex (i.e., a

statechart contains more than approx. 5 nodes), things usually get out of hand,
because the design cannot be read by the designer/developer in a reasonable

manner. D. Harel [1] tackled this problem by introducing hierarchy and orthog-
onality in his statecharts. Nodes can be grouped into supernodes, increasing

readability and avoiding an explosion of states when new functionality is added.

In order to produce useful designs, our algorithm is capable of synthesizing

hierarchical statecharts. Thereby, the initial flat statechart is partitioned recur-
sively according to a given strategy, usually based upon information in the class

diagram, a given ordering of the state-variables, and user preferences. Because
hierarchy is transparent with respect to statechart semantics, multiple different

hierarchies (or "views") can exist in the system at the same time.

Consistency of modifications. In most software projects, requirements sce-
narios only cover a (hopefully important) fragment of the intended system behav-

ior. Therefore, the synthesized statechart can only be a first design sketch which

needs to be generalized and modified by the designer. A hierarchical structure
(see above) is an important prerequisite for such activities. However, transfor-
mations or modifications easily can invalidate the requirements. Therefore, we
have developed a "backwards direction" algorithm which checks consistency of

the modified statechart with the original requirements and the domain model.

In case an original sequence diagram has been violated, our algorithm proposes

a set of revised (added/modified/deleted messages) according to given criteria.

"Design-Debugglng'. Despite the well-known "fact" that every programmer
always writes error-free code, debugging of a software artifact is an extremely



important(andunfortunatelytime-consumingandcostly)task.Ouralgorithms
supportdebuggingof UMLdiagramsonvariouslevels[5].Earlycheckingof
consistencyintherequirementsisonewayofdebuggingduringveryearlystages
ofthedevelopment,i.e.,alreadybeforetheactualdesignstarts.Ourbackwards-
directionalgorithmfacilitatesfindingbugsinmodificationsoftheoriginaldesign.
Here,theuserisnotrequiredtomanuallygothrough(lengthy)executiontraces.
All theuserhasto doisto checktheproposedmodifications(whichareusually
muchsmaller)ofthesequencediagramswhetherornottheyareconsistentwith
theintendedsystembehavior.

A popularmethodfor debuggingis theso-called"printf-debugging".Here,
theprogrammerinstrumentsthecodewithstatementswhichwrite tracein-
formationandvariablevaluesintoa log-file.Aftertheprogramexecution,the
tracein analyzed.In practice,however,annotationoflargerprogramto detect
a certainbehavioris far fromtrivial.Usually,a lot of distantandseemingly
unrelatedpartsofthecodehaveto beannotated.Here,ouralgorithmforthein-
troductionofhierarchycanbeofgreathelp.Combinedwiththeautomaticcode
generationfacilitiesofcommercialUMLtools,suchaninstrumentationcanbe
accomplishedeasily.Thedeveloperchangesthehierarchyof thestatechart(s)
in sucha waythat all stateswhichareof interestfor thecurrentdebugging
sessionaregroupedtogetherin one(or a few)superstateson thetopof the
hierarchy.Then,all importantpartsareclearlyvisibleandcanbeinstrumented
easily(e.g.,byaddingspecificdebuggingactions).Thechangeofthehierarchy
canbeinitiatedbygivingadditionalconstraintsoverthestatevariables.

Ourentiresetof algorithmsis basedupona logic-basedsemanticsof the
differentUMLnotations.Wearecurrentlyonlyusingasubsetof thesequence
diagramandstatechartnotation,forwhichthereisastraightforward,undisputed
semantics.In future,wewillworkontheincorporationofadditionalelementsof
thestatechartnotationandextensionsofsequencediagrams(see[8]fordetails)
intoourframework.

WehavedevelopedaprototypeofthesealgorithmsinJava.Integrationintoa
UMLtool(usingXMI)iscurrentlyinprogress.Wehavetriedoutouralgorithm
withvarioussmallexamples,liketheATMmachineandacruise-controlsystem.
FutureworkincludesNASA-internalcasestudiesonspaceshuttlesoftwareand
softwareforadvancedairtrafficcontrol.

However,thereismuchworkstill to bedone.Ouroverallgoalis to havean
integratedUMLsupporttoolwhichisconciseandaccurate,buthidestheunder-
lyingformaltechniques(unification,constraintsolving,treesearches)asmuch
aspossible.ByintegrationofthealgorithmsintocommercialUMLtoolsweaim
at "invisibleformalmethods"asproposedby:l.Rushby[4].Theincorporation
of additionaldomaininformationin theformof OCLconstraintsallowscon-
ciseconsistencychecksandjustifiedmergingofsequencediagramswithminimal
overheadfor thesoftwaredesigneranddeveloper.It is thusexpectedthatsuch
toolswill increaseproductivityandqualityofobjectorientedsoftwaresystems.



!¸__7._onof
customer [_ ,

debuggu_

Fig. 1. Automatic synthesis of statecharts in a highly iterative software process

References

1. D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer

Programming, 8:231-274, 1987.

2. T. M_-nnistS, T. Syst_i, and J. Tuomi. SCED report and user manual. Report

A-1994-5, Dept of Computer Science, University of Tampere, 1994.

3. R. Pressman. Software Engineering - a Practitioner's Approach. McGraw-Hill, 1997.

4. J. Rushby. Disappearing formal methods. In Proceedin9s of HASE: Fifth IEEE

International Symposium on High Assurance Systems Engineering, 2000. invited

paper.

5. J. Schumann. Automatic debugging support for UML designs. In M. Ducasse,
editor, Proceedings of the Fourth International Workshop on Automated Debugging,

2000. http://xxx.lanl.gov/abs/cs.SE/O011017.

6. Unified Modeling Language Specification, Version 1.3, 1999. Available from Rational
Software Corporation, Cupertino, CA.

7. J. Whittle and 3. Schumann. Generating Statechart Designs From Scenarios. In

Proceedings of International Conference on Software Engineeering (ICSE 2000),

pages 314-323, 2000.

8, J, Whittle and J. Schumann. Generating Statechart Designs F_om Scenarios,

TOSEM, 2001. submitted.


