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The Unified Modeling Language (UML) is gaining wide popularity for the
design of object-oriented systems. UML [6] combines various object-oriented
graphical design notations under one common framework. A major factor for the
broad acceptance of UML is that it can be conveniently used in a highly iterative,
Use Case (or scenario-based) process (although the process is not a part of UML).
Here, the (pre-)requirements for the software are specified rather informally as
Use Cases and a set of scenarios. A scenario can be seen as an individual trace
of a software artifact. Besides first sketches of a class diagram to illustrate the
static system breakdown, scenarios are a favorite way of communication with
the customer, because scenarios describe concrete interactions between entities
and are thus easy to understand. Scenarios with a high level of detail are often
expressed as sequence diagrams.

Later in the design and implementation stage (elaboration and implemen-
tation phases), a design of the system’s behavior is often developed as a set of
statecharts. From there (and the full-fledged class diagram), actual code develop-
ment is started. Current commercial UML tools support this phase by providing
code generators for class diagrams and statecharts.

In practice, it can be observed that the transition from requirements to design
to code is a highly iterative process. This means that initial versions of require-
ments have to be modified and refined to meet additional (customer) wishes and
constraints. Also modifications of the code can lead to revisions in design. This
iterative behavior is strongly supported by most modern processes, because it
facilitates early detection of inconsistencies and bugs. Fixing a bug which is de-
tected late in the software lifecycle can cost approximately 60-100 times more
than one which is detected early [3].

However, current UML tools do not support the transition from requirements
to design in a comfortable and consistent way. Often, a considerable amount of
time is spent to write down the requirements in great detail. Then the require-
ments tend to be “forgotten” until test cases have to be set up. At this point of
time, it is usually detected that those requirements are hopelessly out of date
and require a major overhaul.

Our work [7) addresses these issues and tries to close the gap between re-
quirements and design. In this talk, we present a set of algorithms which per-
form reasonable synthesis and transformations between different UML notations
(sequence diagrams, OCL constraints, statecharts). Our overall aim with respect
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to reasonable synthesis is centered around the following concepts: detection of
inconsistencies and ambiguities in sequence diagrams, merging of similar or du-
plicated behaviors from different sequence diagrams, the production of highly
readable (structured) statechart, and the support for iterative refinements. More
specifically, we will discuss the following transformations.
Statechart synthesis. From a set of sequence diagrams with object O (as an
instance of a class C) as a participant, we automatically synthesize a state-
chart which reflects C’s behavior given in the sequence diagrams. Because the
standard semantics of sequence diagrams is very weak, almost no duplicate or
similar behavior can be merged. In order to overcome this problem, we allow
the designer to specify a set of OCL constraints, describing pre- and postcondi-
tions over a vector of “state-variables” for messages in the sequence diagrams.
These state-variables (currently of type boolean) and the constraints are used
by our algorithm to detect conflicts between a sequence diagram and the OCL
constraints (the domain model) using unification and a version of the frame ax-
iom. Furthermore, potential loops can be detected. Qur state variables also form
the basis for constructing the (flat) statechart. In contrast to other approaches
(e.g., that used in the SCED tool [2]), the domain model allows a justified merge
of sequence diagrams. Because OCL constraints need to be defined only for few
(possibly important or ambiguous) messages, we believe that the additional bur-
den for the designer is kept to a reasonable level.
Introduction of hierarchy. As soon as the design gets more complex (ie, a
statechart contains more than approx. 5 nodes), things usually get out of hand,
because the design cannot be read by the designer/developer in a reasonable
manner. D. Harel [1] tackled this problem by introducing hierarchy and orthog-
onality in his statecharts. Nodes can be grouped into supernodes, increasing
readability and avoiding an explosion of states when new functionality is added.
In order to produce useful designs, our algorithm is capable of synthesizing
hierarchical statecharts. Thereby, the initial flat statechart is partitioned recur-
sively according to a given strategy, usually based upon information in the class
diagram, a given ordering of the state-variables, and user preferences. Because
hierarchy is transparent with respect to statechart semantics, multiple different
hierarchies (or “views") can exist in the system at the same time.
Consistency of modifications. In most software pro jects, requirements sce-
narios only cover a (hopefully important) fragment of the intended system behav-
ior. Therefore, the synthesized statechart can only be a first design sketch which
needs to be generalized and modified by the designer. A hierarchical structure
(see above) is an important prerequisite for such activities. However, transfor-
mations or modifications easily can invalidate the requirements. Therefore, we
have developed a “backwards direction” algorithm which checks consistency of
the modified statechart with the original requirements and the domain model.
In case an original sequence diagram has been violated, our algorithm proposes
a set of revised (added/modified/deleted messages) according to given criteria.
“Design-Debugging”. Despite the well-known “fact” that every programmer
always writes error-free code, debugging of a software artifact is an extremely




important (and unfortunately time-consuming and costly) task. Our algorithms
support debugging of UML diagrams on various levels [5]. Early checking of
consistency in the requirements is one way of debugging during very early stages
of the development, i.e., already before the actual design starts. Our backwards-
direction algorithm facilitates finding bugs in modifications of the original design.
Here, the user is not required to manually go through (lengthy) execution traces.
All the user has to do is to check the proposed modifications (which are usually
much smaller) of the sequence diagrams whether or not they are consistent with

the intended system behavior.

A popular method for debugging is the so-called “printf-debugging”. Here,
the programmer instruments the code with statements which write trace in-
formation and variable values into a log-file. After the program execution, the
trace in analyzed. In practice, however, annotation of larger program to detect
a certain behavior is far from trivial. Usually, a lot of distant and seemingly
unrelated parts of the code have to be annotated. Here, our algorithm for the in-
troduction of hierarchy can be of great help. Combined with the automatic code
generation facilities of commercial UML tools, such an instrumentation can be
accomplished easily. The developer changes the hierarchy of the statechart(s)
in such a way that all states which are of interest for the current debugging
session are grouped together in one (or a few) superstates on the top of the
hierarchy. Then, all important parts are clearly visible and can be instrumented
easily (e.g., by adding specific debugging actions). The change of the hierarchy
can be initiated by giving additional constraints over the state variables.

Our entire set of algorithms is based upon a logic-based semantics of the
different UML notations. We are currently only using a subset of the sequence
diagram and statechart notation, for which there is a straightforward, undisputed
semantics. In future, we will work on the incorporation of additional elements of
the statechart notation and extensions of sequence diagrams (see [8] for details)

into our framework.

We have developed a prototype of these algorithms in Java. Integration into a
UML tool (using XMI) is currently in progress. We have tried out our algorithm
with various small examples, like the ATM machine and a cruise-control system.
Future work includes NASA-internal case studies on space shuttle software and
software for advanced air traffic control.

However, there is much work still to be done. Our overall goal is to have an
integrated UML support tool which is concise and accurate, but hides the under-
lying formal techniques (unification, constraint solving, tree searches) as much
as possible. By integration of the algorithms into commercial UML tools we aim
at “invisible formal methods” as proposed by J. Rushby [4]. The incorporation
of additional domain information in the form of OCL constraints allows con-
cise consistency checks and justified merging of sequence diagrams with minimal
overhead for the software designer and developer. It is thus expected that such
tools will increase productivity and quality of object oriented software systems.
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Fig. 1. Automatic synthesis of statecharts in a highly iterative software process
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