
Certifying Domain-Specific Policies

Michael Lowr/', Thomas Pressburgeff, Grigore Ro,_u I'

"Automated Software Engineering Group

hResearch Institute for Advanced Computer Science

NASA Ames Research Center

Moffett Field. California, 94035-1000, USA

http://ase.arc.nasa.gov/{lowry, ttp,grosu}

Abstract

Proof-checking code for compliance to safe_ policies

potentially enables a product-oriented approach to certain

aspects of software certification. To date, previous research

has focused on generic, low-level programming-language

properties such as memory type safety. In this paper we

consider proof-checking higher-level domain-specific prop-

erties for compliance to safety policies. The paper first de-

scribes a framework related to abstract interpretation in

which compliance to a class of certification policies can

be efficiently calculated. Membership equational logic is

shown to provide a rich logic for carrying out such calcula-

tions, including partiality, for certification. The architecture

for a domain-specific certifier is described, Jbllowed by an

implemented case study. The case study considers consis-

tency of abstract variable attributes in code that performs

geometric calculations in Aerospace systems.

1. Introduction

The benefits of product-oriented approaches to certifica-

tion as compared to process-oriented approaches is to en-

able more efficient software development processes to be

used as technology progresses, while at the same time pro-

viding higher levels of assurance by focusing safety con-

cerns directly on the product rather than the process by

which it is developed. Techniques like theorem proving or

model checking have been formulated in research labs for

product-oriented program verification. These techniques

have high computational complexity. Static analysis has

good scaling properties, and has been proposed for certify-

ing limited types of safety, such as absence of arithmetic or

memory type safety. In this paper we describe a technology

for certification of domain-specific properties.

In this paper we propose a technique based on abstract

interpretation that is designed to find domain-specific in-

consistencies rather than programming-language specific

errors. This method automates finding errors that would

normally take intensive review by a human expert. More-

over, this technique is relatively easy to implement and

modular, so it is easy to adapt to various domains. Thus

even though the range of applicability for any particular

domain-specific property is more limited than low-level

programming language errors, we believe it will still be

cost-effective.

Conceptually, the knowledge used by a domain-specific

certifier has two distinct levels: an abstract domain speci-

fication and a programming language specification. These

levels are linked via two modules: a symbolic evaluation

module and a domain-specific safety abstraction module.

The symbolic evaluation module simulates the execution of

the program, yielding for each variable at each statement a

term denoting the functional value of the variable in terms

of functions and input variables..The domain-specific ab-

straction module takes such terms and interprets them into

the abstract domain. A program is domain-specific safe if

and only if each value calculated along its execution path is

safe.

Our domain-specific certification approach requires

more sophisticated reasoning than in approaches to date for

proof-carrying code [13]. The abstract domain specification

is much richer than memory safety, and verifying the safety

of each line of code can require hundreds of inference steps

in membership equational logic. Nonetheless, these calcu-

lations are bounded (with caching) for each value along an

execution path. The two specification levels are also inde-

pendently reusable; e.g., once an abstract domain has been

formulated it can be used to certify programs written in var-

ious programming languages, and conversely, programs can

be certified for various domain-specific safety policies.

Our method uses membership equational logic as imple-

mented in Maude for both domain and programming fan-

guagc q)cu_licatit)ns. This h_.gic extends broth _)+dcr.s_+rtcd

anti partmt ectuatiunat logics. Efficient algt)rithms t'Pr first-

t)l'dcr rewriting and type. inference Imore precisely: least-

start c(_rnputation) are implemented in Maude.

Scctiun 2 describes the architecture <_f"a domain-specific

certifier and then an implemented case study: certii:ying the

]'rame-satcty o1"programs that calculate observation geome-

tries. Our abstract domain knowledge describes the condi-

tions under which calculations involving matrices and vec-

tors are consistent with respect to coordinate flames, which

are attributes of variables in the abstract domain but only

implicit in the program. The calculations are performed us-

ing subroutine calls from a library developed by the NAIF

group at JPL. Section 3 then introduces the technology

we used: the technical notions of membership equational

logic used in performing the symbolic calculations, and the

Maude system. Section 4 describes the abstract domain.

Section 5 describes related work, and Section 6 presents our

conclusions, scaling issues, and future work.

2. Architecture of a Domain Specific Certifier

This section first presents general principles and compo-
nents of a domain specific safety policy certifier and then

briefly introduces our problem of interest, frame safety.

Later sections provide the remaining details of our frame
safety certifier.

Domain specific certification is different from program-

ming language specific certification, such as memory safety

or standard type checking. In programming language spe-

cific certification, such as in the PolySpace[15] tool, the ab-
stract domain is a subpart of the programming language se-

mantics. In domain-specific certification, the abstract do-

main is entirely separate; in fact our approach would allow

it to be in a different logical system.

Conceptually, a domain-specific certifier consists of four

main components, as shown in Figure 1. The programming
language and the abstract domain are linked via symbolic
evaluation and an abstraction function as described in the

subsequent example. Domain-specific certification requires

domain-specific annotations, which for the example in this

paper require assertions on the program inputs. There are at

least two ways to insert annotations for the inputs: one is to

insert them at the beginning of the program and the other is

to insert them where the inputs are used for the first time in

the code. There are subtle trade-offs between these two op-
tions, involving the potential use of intermediate variables

in expressions annotating input variables. The resolution

of these trade-offs is beyond the scope of the paper; in our

implemented system, program inputs are annotated at the
beginning of the program.

i t_rograrnlnlr_g [.anguagc & I
i Library Spcciticati()a I
[+ j

I
(Symbolic Evaluation t

7
Domain-specific 1

[Safety Abstraction J

Abstract Domain & rSafety Policy Specification!

Figure 1. Domain-specific certifier.

2.1. Certifying Frame Safety

Coordinate flames underly all geometric calculations

used in applications ranging from CAD to robotics to
aerospace. They are implicit attributes of vectors and ma-

trices, although they are not part of the computational do-

main. Geometric computations using vectors and matrices

that have inconsistent coordinate frames yield meaningless

results. Determining consistent use of coordinate frames

normally requires detailed human analysis Of a program.

This section describes an implemented system which cer-

tifies the consistent use of coordinate frames for space ob-

servation geometry calculations.

Abstractly, a coordinate frame consists of an origin and

an orientation which is specified by three orthogonal di-

rections. With a coordinate frame, any point in space can

be uniquely represented in rectangular coordinates by three

real numbers. Directions can be represented by three real

numbers, though not uniquely -- the numbers representing

the direction can be multiplied by any scale factor without
changing the direction. Orientations are used abstractly to

define directions and rotations. Rotations map an orienta-
tion onto another orientation. A translation maps one co-
ordinate frame to another coordinate frame with the same

orientation but a translated origin.

Our membership equational logic axiomatization of co-
ordinate frames, described in Section 4.1, is restricted to

the subdomain of frames that arises in the NAIF domain,

namely those that can be inductively built out of predefined

constant frames (such as 32000), ephemeris of planetary

bodies, and the operations of rotation and translation. The
32000 frame is a standard used for astronomical observa-

tions in the period 1975 to 2025. EphemerLr data specify

lhc I)_mlll_,q arid ,_r_cnlation _f planetary bodies it1 -ur so-
h: svst,,.:'rnrel:,[ivc ,'_ a constant frame. In the domain or"

space nbservati_m geometries, a typical example of a frame

is _me whose origin is at the center of a planet, whose Z

axis lies along the north pole, and whose X and Y axes go

through some fixed, designated points on {he equator of the

planet. Since the planet orbits around the sun and also ro-

tates around its own axis, the sequence of i"rames generated

by a planet over time can be quite complex. Library routines

in NAIF provide this ephemeris data.

The inductive definition of frames corresponds to con-

stant frames, calls to these ephemeris routines, and input

variables to a program. The metric properties of the stan-

dard three dimensional group of rotations are not important
for this abstract subdomain. Our axiomatization is sound

for both our subdomain and the metric domain of frames

and rotations; however, it is not complete for the latter.

2.2. Programming Language and NA!F Library

We consider below a generic assignment-based program-

ming language, similar to Fortran and C (the NAIF library

has alternate implementations in both languages). The lan-

guage has sorts and subsorts, operations are typed by tuples

of input sorts and an output sort, and expressions are built

up by application of opera!ions to subexpressions, variables,
and constants. The only statement is the assignment.

Our simple generic programming language has just a few

sorts, which are prefixed by pl (for programming language)
to distinguish them from the other sorts. The sorts are

PlString, PIInteger, PlReal, PlVector, and PIMa-

trix, withPlInteger beinga stlbso17ofPiReal.

The subroutine library in our case study is the SPICE

library from the Navigation and Ancillary Information Fa-

cility (NAIF) group at the NASA Jet Propulsion Laboratory.

The NAIl= group created this library to aid in solving geo-

metric problems that arise in planetary exploration. The li-
brary contains subroutines for: coordinate system and time

system conversion; matrix and vector operations; geometric

operations (such as finding the outward-facing vector that

is normal to an ellipsoid at a point on the ellipsoid's sur-

face); and calculations that compute the travel time of light

between two objects.

Vectors are implemented as triples of reals in NAIF,

though for our purposes it is sufficient to treat them as an

unstructured sort. The binary vector functions vadd and
vsub are the usual vector addition and subtraction. Two ad-

ditional vector functions are particularly important: vdist

gives the distance between two points specified by the given

vectors, and vsep gives the angle between the two direc-

tions specified by the two given vectors.

Note that at the programming language level there is no

enforcement that two vectors are represented in the same

coordinate system, or frame -- this can't even be slated in

the type system of the programming language. However, by

interpreting the programming language variables and oper-
ations into the abstract domain described in Section 4.2. our

certifier will lind whether these operations are applied in-

consistently.

Rotations are implemented by matrices at the program-

ming language level. More precisely, rotation matrices have

the property that they are invertible and their inverse is ex-

actly their transpose. A vector can be multiplied (raxv) by

a rotation matrix or by the transpose of a rotation matrix
(mt:xv), with the intuition that the frame in which the vector

is defined is rotated.

Besides those above, the NAIF library functions used

in this paper's example are the following: ur, c2et: takes

as input a time represented in "'Universal Coordinated

Time" calendar format (a string) and returns a time in the

"Ephemeris" time system (a real number), which is an inter-
nal format used by other SPICE subroutines; bodvar takes

as input the Id (an integer) of a solar system body and re-
turns the radii of a solar-system body modeled as an ellip-

soid; georec takes as input a point represented in geode-
tic coordinates and returns rectangular coordinates; bodma=

takes as input a body Id and an ephemeris time, and returns

a matrix describing the rotation of the body at that time rel-
ative to the standard j 2 00 0 coordinate frame; findp takes

as input a body Id and an ephemeris time, and returns the

j 2 0 00 position coordinates of a given body; s ur fnm takes

as input 3 reals representing the radii of a body and a point

on the body, and returns the outward vector that is normal to

the surface at that point; and sent takes as input two body

[ds and an ephemeris time, and computes the time a photon

would have left one body so as to arrive at the other body at

the time given to the subroutine.

The example programs which we have used in our case

study come primarily from programs synthesized by Am-

phionfNAIF, incIuding the representative one described be-

low. The Amphion/NAIF synthesis system [i1], given a

high-level specification of a solar-system observation ge-

ometry problem, synthesizes a program, consisting of calls

to SPICE subroutines, that solves the problem. As a test

of our certifier, the programs generated by Amphion/NAW
were mutated by hand to yield many different unsafe pro-

grams. These were detected by our certifier. Also as a result

of our case study, an axiom in Amphion/NA1] = was found to

be incorrect. The complementary roles of program synthe-

sis and program certification are discussed in the concluding

section of the paper.

An interesting lesson that we learned is that the full se-

mantics of the target programming language is not needed

for domain-specific certification. Domain-specific certifica-

tion is not intended to be full program verification, rather,

only specific aspects are certified. In our case study, we

uxcd a .'_mqflc _q_crational sere,reties {)t the programming

language that enabled symb{_lic exprcssitms to be calculated

t)_r the value _t" variables at each step of the program.

[-h_wcvcr, a dora:tin-specific semantics ix required for

d_main-specitic certification. The symbolic expressions

calculated from the operational semantics are lifted to the

abstract domain level. The expressions at the pr_gramming

level are calculated by a symbolic evaluation engine which,

given a program and an expression containing variables de-

tined in the program, calculates the canonical term asso-

ciated to that expression that contains only functions and

input variables.

2.3. Example Program

The example used in this paper is a representative pro-

gram synthesized by the Amphion/NAIF system that cal-

culates the angle at which Saturn appears at a given time

from an observation point on the Earth's surface; the speed

of light is also taken into consideration -- Saturn appears

to be in a slightly different place than it actually is because

of the finite speed of light. The observation point is spec-

ified by geodetic (latitude, longitude, altitude) coordinates

(obsLLA) and the time (utcin) is specified in Universal
Coordinated Time calendar format (UTC). The angle is cal-
culated between the outward normal to the Earth's surface

at the observation point and the direction at which Saturn

appears.

et := utc2et(utcin) ; *** 1

radear := bodvar(earthId, 'radii') ; *** 2
pobs := georec(obsLLA) ; *** 3
d.norm := sur_nm(radear, pobs) ; _** 4

mearth := bodmat(earthId, et) ; *** 5
tsatur := sent(saturnId, earthId, et) ; *** 6
dnorm.2 := mtxv(mearth, dnorm) ; **_ 7
Dearth := findp(earthId, et) ; *** 8
pobs2 := mtxv(mearth, pobs) ; **" 9

psatur := findp(saturnld, tsatur) ; *'* i0
pobs3 := vadd(pearth, pobs2) ; *** Ii

dsatur := vsub(psatur, pobs3) ; ..t 12
rang := vseptdnorm2, dsatur) *** 13

The annotation on the input variable obsLLA, not shown

here, says that, as a vector at the level of the programming

language, it specifies abstractly a point on the Earth relative

to the frame that is centered at the Earth at the input time
ut:cin and rotated as the Earth is at that time. Indeed, this

is because the geodetic position of that point was specified

relative to the Earth as if the point was fixed to the Earth.

Line 1 converts the input UTC time into Ephemeris time
system; line 2 calculates the three radii of the earth regarded

as an ellipsoid; line 3 transforms the geodetic coordinates

into rectangular coordinates; line 4 computes the normal to

the Earth's surface at the given point, in the current Earth's
coordinate frame; line 5 finds the rotation of the Earth at

the given time relative t_ j20{._0: line O co,reputes the time

when light left Saturn s_ as tt_arrive at the Earth at the given

input time: line 7 converts the normal at the specifed point
t_}a coordinate frame positioned as the current frame of the

I_arth, but having the orientation of _12000. and line 8 ac-
tually calculates the position of that frame in j 200o; line 9

converts the given p{_int on Earth into the same frame as the

normal (see line 7): line l0 calculates the position of Saturn

(also in j2000) at the time light left Saturn: line tl con-

verts the position of the given point to a position in j2000

and then line 12 calculates the position of Saturn in the co-

ordinate frame positioned at the given point and having the

orientation of j 2000; line 13 finally calculates the angle be-

tween the normal and the position of Saturn at the specified
time.

The program above is relatively short but it is very easy

to make domain-specific mistakes, especially if the code

is written by hand, and these mistakes cannot be detected

by common type checkers provided by programming lan-

guages. For example, one can forget line 7 which rotates
the normal to the orientation of j 2000 and then calculates

the angle between two directions in frames of different ori-

entation. However, our certifier shows, in 1284 rewrites,

that the program above is frame safe, while mutated ver-

sions are not. An example of the analysis performed by the

certifier during the thousand-plus rewrites is that at line l 1 it

proves that the positions of the Earth and the given point on

its surface, abstracted as translations, are composable; i.e.,
th.at their frames have the same orientation and the source

frame of the point is the same as j 2000 translated to the

position of the Earth. Section 4 describes the frame domain

theory and abstraction in detail.

3. Technology

Membership equational logic and the language Maude
are introduced in this section, providing the technical back-

ground for the formalization in the rest of the paper.

3.1. Membership Equational Logic

Membership equational logic [12, 1] is an extension of

many-sorted equational logic [7] with membership asser-

tions t : s that state that a term t belongs to a sort s. It sub-

sumes a wide variety of specification formalisms, including

order-sorted [6, 8] and partial equational logics. Despite its

generality, it still enjoys the good properties of equational

logics: it is simple, efficiently implementable, and admits

sound and complete deduction as well as tree models. In
this section we informally present membership equational

logic, referring the reader to [12, 1, 2, 3] for a compre-

hensive exposition. We assume the reader is familiar with

many-sorted equational logic.

4

In mcmburship ,:quuti_mal logic (MILL). the '.._rts am

gr'_mpcdin kimLv and the operati_m,_are only definedon

these kinds. A signature If c_>nsists of a set ,5' of sorts, a

set [\ ,_t"kinds, a map ,-r:.5" -+ E', and a [,,'+ x [C-indexed

set S = {E,,,._: I (,u,k) E A" x k} of c)peratio,.r. An

_balgehra is a _-algebra .-I together with a subset .4., C_,-1,:

for each ,G:£ A" and each s Err- _ (k). For any K-indexed

set of variables .Y. T_ (X) denotes the usual (A', -_.)-algebra

of terms. The sentences of MEL generalize the conditional

equations (VX) t = t' if (7 of equational logics by al-

lowing membership assertions. These membership asser-

tions are universally quantified Horn clauses of the form

(VX) t : s if C. In both types of sentences, the condition

C is a finite set {at = vt,...,u,+ = v,_,tt : st,...,t,_ : am}

and t, t', t_, ...t,_, uL, vl, ..., an, v,, are terms in T+r(X). If
n = m = 0 then the sentence is unconditional or atomic.

This paragraph describes satisfaction of atomic sentence;

the general case follows through the standard recursive def-

inition. For an fi-algebra A and an assignment a: X --+ A,

the function a*: TE (X) --+ A denotes the unique extension
of a to a morphism of (K, P,)-algebras. Thus A satisfies

(VX) t = t' (or (gX) t : s) if and only if for each

assignment a, a*(t) = a*(t') (or a*(t) E A_). A MEL

specification or theory is a pair (f2, F), where i" is a set of

f2-sentences, and it defines a class of f't-algebras (those that

satisfy it) denoted Alg(fa,r).

The MEL proof theory is derived from the standard proof

theory of equational logic. Its distinctive characteristic is

that it allows the inference of the memberships of terms to

sorts in addition to the standard equalities of terms. Given a

specification (f/, F), there are two rules that facilitate this

inference. One rule is a modification of the modus po-

hens rule of equational logic to deduce a membership from
a (conditional) sentence in F once its condition has been

proven. The second rule is an extensionality rule over sorts

which asserts that equal terms have the same sort.

Membership:
rF-n(VX) t=t' F_-n(VX) t:s

F +- (VX) t': s

3.2. Maude

Maude [2, 3] is a high-performance rewrite system in the

OBJ family [10] that supports membership equational logic.
Its current version processes 800K rewrites per second on a

300MHz Pentium II. We use Maude notation in this paper

to specify both the abstract domain knowledge and the pro-

gramming language syntax, as well as the abstraction of the
uninterpreted NAIF functions into the abstract domain. A
few notational conventions are introduced next.

Equations and conditional equations are declared via the

keywords eq and ceq, respectively; membership and condi-

tional membership assertions are declared via the keywords

mb and ,crab. Opcratitms can bc dcclared using mLr-fix nota-

tion, where tmdcrscores stalld l"t_r argt, rnents. They can also

be overloaded; however, this is only syntactic sugar for ap-

propriate conditional membership assertions. Declarations
of the form va:- x : s. wheres isa sort. are used to in-

troduce variables; their scope is bounded by the enclosing

module, introduced by £raod . . . end. A module can im-

port another module via one of the keywords pro eec :±rig,

extend±ng, and ±ncluding, or one of their shorthands

pr, ex, and ±nc. The conditional membership assertions
of MEL are denoted in Maudeby crab X : S if C;un-

conditional membership assertions by rrub X : S. Subsort

declarations have the form s < s' and are just syntactic

sugar for a membership assertion: crab X : S' ±_ X :

S. Kinds need not be declared explicitly. They are automat-

ically calculated as the connected components of the partial

order defined by subsort declarations, and one can refer to

the kind of a sort s by using square brackets, Is]. The order
of declarations is not important within a module.

A typical problem of specification formalisms that allow

order-sorting and operator overloading is that some terms

may have multiple correct sorts. The possible sorts of a

term can be deduced using the complete deduction system

of MEL, i.e., sorts(t) is the set {s E S I F k-n (VX) t : s}.

A specification (ft, F) is called regular if and only if for

each term t, sorts(t) is either empty or has a minimal el-

ement with respect to the subsort relation. A detailed dis-

cussion on regularity can be found in [i J, together with de-
cidability results and various syntactic criteria that imply

regularity. Maude implements some of these criteria, and

also warns the user when it cannot deduce regularity.

3.3. Abstraction, Partiality, and Safety in Maude

The least sort of a term in membership equational logic

generalizes the standard notion, for finite lattices, of the

least abstract type of an expression in the context of abstract

interpretation. This generalization is defined in [5], where

an environment for specifying and verifying abstract inter-
pretations is presented. This paper extends the approach

of this previous paper by considering partiality via least

sort calculations. This section gives the reader the intuition

through presentation of a simple example.

At the abstract level, let us consider a signature with two

top sorts, one called Frame and another called FrameSafe,

the second having various subsorts, including one called

Transla:±on. This signature has two kinds, and ['rrans-

lation] and [FrameSafe] coincide. A translation can be

thought of as taking a frame into another frame, so one can

consider two operations, sourceFrm and targetFrm, of

arity Translae±on -> Frame. A translation can always

be inverted and translations can be composed, but not al-

ways: the target frame of the first translation must be the

;mlC 4, [hc _mrcc lramc _fl thc _cc_md. Ir_ Maudc, onc

dctincs an _pcralll)ll-. : Trans Lan Lon _.7 Trans la-

Lon and an operation _+. : Translation Transla-

t ion -:. [Translar_ion 1. This second operation is par-

tial: the result sort of a composition is a well-formed term

of kind [Translationl, but more int\)rmation is needed

in order for it to become of sort Translation. The kind

includes the output c);-"any application of _+_. the sort in-

cludes just the output of well-defined applications. The sort

can be interred using a conditional membership assertion

stating when translations are composable:

cmb Tsl + TSI' : Translation

if targetFrm(Tsl) = sourceF_--m(Tsl')

Unless other membership axioms for composition are given,

the only way by which the result of a composition can be

of sort Translation (and not just the more general kind

[Translation]) is tO actually prove the condition of the

statement above. The detailed methodological approach to

partiality in membership algebra is described in [12].

Once it is inferred that the least sort of a term is a subsort

of Frame...qafe, it means that that term represents a certifi-

ably safe computation. In particular, if the sort of the com-

position of two translations is Translation then the two

were safely composed. Notice that FrameSafe can have

many distinct subsorts standing for various abstract types

of entities in the abstract domain, such as orientations, ro-

tations, directions, etc. All the sort inference computations
are done at the abstract level.

The concrete expressions manipulated by the program-

ming language are first abstracted via an operation

op I--[: Value-> [FrameSafeJ

which is defined recursively on the syntactic constructors of

values that are manipulated by the programming language.

"vectors and matrices are among these values, so they are

defined as appropriate subsorts, i.e., PlVector PiMatrix

< Value. For example, the subtraction of vectors, imple-

mented by vsub in Fortran and similarly in our generic pro-

gramming language, i.e., vsub : PlVector PlVector

-> PlVector, isabstracted as I vsub(v,v') J of sort

[FraraeSafeJ. The semantics of programming language

functions is interpreted in the abstract domain, such as the

following interpretation for vsub:

_q I ,,_ubtv, v'_ I = I- I v' I_ + i v I .

This interprets binary vector subtraction into the abstract

domain as unary translation inverse on the first argument

followed by composition of translations. The abstract type

of vsub is inferred automatically. A somewhat different

example, where the abstract type cannot be inferred auto-

matically and additional attributes need to be provided, is

the function findp : Body!d Time -> Vector. This

is a NAIF library function that takes a body identifier, such

as lh¢ earth's, and a time. and returns a vector representing

the position or" that body at the specilied time in a standard

coordinate t'rame, called j 2000. We represent this abstract

knowledge as fifllows:

mb I E[ndp(-3,'r'; [: Tc-:msLar_Lon .

eq sourceFrm(I findpfB,T) I) = j2000 .

For this function the abstract type Translation iS given

explicitly and the source frame -- a constant -- is given.

Thus, the certification process can be viewed as: abstrac-

tion tbllowed by least sort computation using abstract do-

main knowledge. If the least sort computation yields a safe

sort tbr each abstracted expression calculated in the pro-

gram, then the program is certified as safe for the domain-

specific properties. For the frame-safety certifier described

in this paper, all subsorts of FraraeSafe are sate. In order

to perform these sort inferences, abstract assertions about

the inputs to a program are also needed. This information is

given as annotations in the program.

4. Abstract Frame Domain Theory

In this section, we describe the abstract domain and

present a figure describing its structure. Due to space limita-

tions, the Maude axiomatizations are omitted, but the frame

abstraction module is presented in Section 4.2.

4.1. Frame Domain

There are six sorts in our domain: Real, Orientation,

Rotation, Translation, Direction, and Frame, arld

Translation is a subsort of Direction. This means

thatany translationdefines a direction.Technically,any op-

eration that can be applied to directions, such as the angle

between two directions, can also be applied to translations;

in this way, redundancy is reduced because some operations

don't need to be declared four or more times to cover all

combinations of translations and directions.

The Category of Rotations

Rotations are abstract objects whose function is to rotate

other objects in the domain. These other objects are labeled

with orientations or frames -- and each frame has an ori-

entation. Thus in our domain we can restrict the rotations

to labeled rotations with an explicit source orientation and

target orientation. Labeled rotations, together with orien-

tations, form a partial algebra called a category. In terms

of category theory, the objects of this category are orien-

tations and the morphisms are rotations. Each rotation has

an inverse formed by reversing the label of source and tar-

get. This axiomatization for labeled rotations is sound but

not complete for the general group of unlabeled three di-

mensional rotations. Because it is sound, programs certified

using this abstract domain are sate.

l{,ICh ['()lLLIlttll ild5 ;l X{}I,I[CC :lnd a lal_ct _;rici'llalicln. givcn

hy Ihc _pcrations __o"cceOrr, and t_=ge:Orr_. "['herc is a

unit rotati,m i",r each _rientatum which behaves exactly like

an identity mnrphism in a category, and :in inverse for each

n)tation. The composition of rotations _sa parthil operation,

requiring the target of the first rotati_m to match the source
of the second rotation. The reason tbr this restriction to

labeled rotations is that we don't want to) allow programs

that do meaningless and frame-unsafe calculations, such as

to rotate a direction that is normal to the surface of the Earth

at a given point by the rotation of the frame of a moon of

Saturn relative to Saturn. Thus in order ['or a direction to be

safely rotated, the certifier must prove that the orientation

of the frame in which that direction is represented coincides
with the source orientation of the rotation. As mentioned

previously, the equations for labeled rotations are those of

a category, as are the equations for frames and translations
below.

Frames, Translations and Directions

Frames are formalized as an interrelated abstract data

type to orientations. The orientation of a frame Vrm is the

term frarneort (Frm/. A rotation can be applied to a frame
if its source orientation is the orientation of the frame.

Translations also form a category, where the objects are

the frames, and the morphisms are translations labelled by

a source frame and a target frame. This part of the ax-

iomatization is similar to those of rotations. Additionally,
translations can be rotated. A common operation between

translations with the same source frame is finding the dis-

tance between the origins of their target frames, denoted

[[tsll, CsI2 IJ-

By abuse of language, the orientation of the source frame

of a translation is often called the orientation of the trans-

lation. This is formally defined by the operation frameOrt

(which thereby overloads the operation with the same name

on frames). The orientations of the source and target frames
of a translation are the same. Both the rotation of a trans-

lation and the distance between two translations are partial

operations. For a translation ms]. to be rotatable by a rota-
tion Roe (denoted by 8), the orientation of the translation

must be the same as the one of the rotation, while the dis-

tance between two translations makes sense if and only if
the two translations have the same source frame. The orien-

tation of a translation is also needed when one wants to treat

a translation as a direction, for example, when one wants to

calculate the angle between a translation and a direction,

such as, the angle between the translation to Saturn and a
direction normal to the surface of the Earth.

Direction iS another abstract type. Directions can be

thought of as the equivalence class determined by the rela-

tion of parallelism on the image of the function which for-
gets lengths of translations. We consider that a direction

crimes aulomatically with :lily Iranslation. [rnlikc transla-

tions which carry cl wh,>le t'rame with them, directions only
need to carry their orientation, that is. the orientation of the

frame in which they were defined. Directions can also be

rotated, if tile source orientation of the rotation matches the

orientation of the direction. A standard operation {denoted

by [< dl, d2 >])is finding the angle between twodi-

rections, which makes sense if and only if the two directions
have the same orientation.

The abstract domain also contains an auxiliary useful

frame constructor that was used in an annotation to specify
the frame of an input variable, as mentioned in Section 2.3.

The frame constructor builds a frame from a translation and

a rotation relative to j 20 00.

The ADJ diagram [9] in Figure 2 depicts the sorts and

the operations that form the abstract domain. The sorts

are boxes and the operations are multisource arrows, each

source standing for an argument. The operations having a

circle index are partial. Because of space considerations we

didn't draw the frame constructor explained above.

It is well known that many, if not most, domains of in-

terest do not admit complete finite or not even recursively

enumerable axiomatizations. Perhaps the most notorious

example is the domain of natural numbers. When designing
a domain specific certifier, one should aim toward sound-

ness and clarity with respect to the domain rather than com-

pleteness. In this way, programs which are certifiably safe

are indeed domain safe. After all, the purpose of certifi-

cation is not to allow tricky and convoluted progams, but

rather a reduced set of absolutely safe programs with respect

to the intended policy. Therefore, the reader should regard

our frame safety certifier as an experiment instantiating a

general approach to domain specific certification.

4.2. Frame Abstraction and Safety Policy

Abstraction is the link between the programming lan-

guage and the abstract domain. Each value computed by

the program is first symbolically evaluated, then abstracted
and checked for frame consistency at the abstract level.

This last step is done in Maude via its least sort inference

mechanism, by first declaring a common supersort, Frame-
Safe of all the sorts that abstract concrete values, and

then checking if the abstraction of each value has the sort

FrameSafe. The abstraction operation l-I : Value ->
[FrameSafe] is defined that calculates the abstract sort of

each value. If such a sort exists then we say that the value

calculated by the program is certifiably frame safe:

fmod FRAME-SAFETY-ABSTRACTION is

pr PROGRAMMING-L_GUAGE .

pr ABSTRACT-DOMAIN .

sort FrameSafe .

subsorts Orientation Rotation

Orienta tion I_ "--.....

t t/ :_.o_t _ " "'-..

un't / tl$ourceOrt, __- I , ,
/ Ir'-ar_eto--/_Irramel < _. ITranslationl < flD_rec:ionl

Rotation _ o

_@ o

Figure 2. The ADJ diagram of the abstract domain of frames.

Direction Translation Real < FrameSafe .

op i--I : Value -> [FrameSafe]

vars B B' : Bodyld . vat T : PiReal .

vat U : PiString . var Rd : Attribute .

vars R R' : PiReal . var M : PiMatrix

vars V V" : PIVector .

mbl
_bl
mb I

mb I

crab I
crab I

if

crab I

if

eq I
eq t
eq I
eq I
eq I
eq I
eq sourceOrt([bodmat (B,T)

eq sourceFrm(I findp(B,T)

eq sourceF__m(l georec(V) I)

eq frameOrt {I surfnm(V,V')

= frameOrt (sourceFrm(I V'

endfm

utc2et (U) i : Real .

bodmat(B,T) i : Rotation .

findp(B,T) i : Translation .

bodvar(B,Rd) I : FrameSafe .

sent(B,B',R) I : Real if I R

georec(V) I : Translation

I V I : Translation .

surfnm(V,V') I : Direction

I V' I : Translation .

vdist(v,v,) I = cl Iv I, v' I
vsep(V,V') I = [< I v I, v, I >]
vadd(V,V') t : I v l + I V' I •
vS_b(V,V'I I : {- I V' I) + I V 1
c,v) t = 1 v I _ I M I •
mtxv(M,v) I = I v I e (I M I -) •

) = frameOrt

) = j2000 .

I]

Real .

j200O) .

= sourceF-_-m(I V]) •

)

The abstraction operation is defined recursively, in terms

of abstract operations and sorts. The membership assertions
above reflect the meaning of library functions in terms of

abstract frame knowledge. In this section we ignore possi-
ble errors returned by library functions; these are addressed
in the conclusion section on future work.

In the equation above, bodraa t (B, T) returns a "safe" ro-

tation matrix whose orientation is the frame orientation of

32000, and surfru_(v, v') is a direction whenever v' is

a translation (the shape of the surface, v, doesn't affect the

frame abstraction), its frame orientation being just the same
as the orientation of the frame of the translation. Notice

that there may be functions whose result is none of the sorts

of interest for frame certification, such as bodvar which

returns the three radii of a body modeled as an ellipsoid.
In such situations, we just declare it FrameSafe; the least

sort computation ensures that any use of such a value in

a place where values with more concrete meaning are ex-

pected, such as translations or directions which happen to

"look" the same at the level of programming language, will
be reported as an unsafe use.

Finally, we define the frame safety policy as a predicate

on programs. A program is safe if and only if each assigned

value that is computed internally at each step of the program

is frame safe. We call this strong requirement stepwise

safety. A weaker requirement is output safety. For example,

if a program written in an untyped language is supposed to
return an integer value, say x, and it first executes x :=

n + 3.1foranaturalnumbernandthenx := x + 2.9,

then the program is output safe because the final computed

value is an integer, but not stepwise safe. In our opinion,

output safety is an insufficient requirement for certification.

As can be seen from the above description of the domain

theory, sophisticated inferences for domain-specific certifi-

cation can be carried out in membership equational logic.

Furthermore, the axiomatization in Maude is compact and
modular: the abstract domain consists of 36 axioms, the ab-

straction function consists of 24 axioms, and the frame pol-
icy consists of 2 axioms. Sort and subsort declarations add

further semantic content, but the total Maude specification
is only 250 lines.

5, Related Work

Certification technology based on static analysis is ma-

turing to the point of commercial viability. PolySpace is

such a tool that detects statically, via abstract interpretation
techniques, errors that would normally occur at runtime,

such as arithmetic exception (e.g., division by zero), illegal

p_qntcr dcrelcrcncmg, ()vcrl]ow, read ;tccc_s h_unin_tialb'.ed

dala. oul-olLb_mnds arr:l.y access, etc. l{ is completely auto-
matic in the scnsc that it works dirccdy _m the source code;
no annotations arc needed and no axi()matization o["abstract

domains required. However, it _mly detects what we call

"'programming language specific errors", being unable to

reason about high level, domain-specific safety policies.

Extended Static Checker (ESC) [4, 141 is a tool that finds

programming errors at compile time, such as array index
bounds errors, nil dereferences, deadlocks and race condi-

tions. The user of ESC annotates the programs with spec-

ifications in a precondition-postcondition style which are

checked statically using a theorem prover for untyped pred-

icate calculus with equality. The type system of the target

programming language, Modula-3, is implemented in un-

typed first-order logic. The use of ESC is therefore limited

to programming language definable types. In contrast, our

approach to domain-specific certification totaily separates

the abstract domain of interest from the programming lan-

guage. The abstract domain can be axiomatized using first-

order many-sorted membership and rewriting logic and can

be reused for various target languages. The user of the sys-

tem can modify the abstract domain in a flexible manner.

6. Conclusion and Future Work

This paper described a general architecture for domain-

specific software certification based on abstract interpreta-

tion. Similarities and differences with certification of poli-
cies at the level of programming language semantics were

discussed. A case study of a significant domain-specific
safety policy of interest to NASA, namely coordinate frame

safety, was completed with an implementation of the gen-
eral architecture in Maude. We note that the modules for

the abstract domain are independent of the programming

language level, and hence could be reused in different con-

texts. The implementation in Maude will facilitate experi-

mentation with other domain-specific safety policies.
The case study was done in a domain for which we had

previously developed a program synthesis system. The mo-

tivation was to investigate the relationship between program
synthesis and program certification. This investigation is

still underway, and is an extension of our work in automat-

ically generating documentation for synthesized programs.

In essence, documentation can be used by human reviewers

in the manual certification of programs, while annotations

can be used for the automated certification of programs.

The annotations required in our current investigation on co-

ordinate frame-safety can be restricted to the inputs of a

program; the logical engine is sufficiently powerful to in-

fer intermediate assumptions. In part of our future work we

expect to investigate domain-specific safety policies where

logical inference of intermediate assumptions is no longer

Ir;ictablc [_r a snnple and tru,_tcd ccrtitication system, but

checking _f ammtati(ms pnwidcd hy program synthesis is

tractable. Although our synthesis system is based on de-

ductive technolm,va., the addition _)i extensive decision pro-

cedures to enable tractable program generation raises addi-

tional burdens in showing the correctness of the generated

programs, This burden can be met either by certifying the

correctness of the entire program synthesis system or indi-

vidually certifying the generated programs.

The abstract domain of the certifier was developed inde-

pendently from the domain theory of the program synthesis

system. [t is related to a subset of the Amphion domain the-

ory, but is formulated quite differently since it is oriented

towards bottom-up checking rather than top-down synthe-

sis. Because it was developed independently, it provides an

independent check for synthesized programs as well as for

hand-written programs. In fact. a subtle error in the Am-

phion/NAl'F domain theory was discovered: an extraneous

matrix transpose operation was generated which caused the

resulting synthesized programs to be frame unsafe.

6.1. Scaling Issues

Empirically, programs in the NAIF domain are usually

no larger than one hundred lines of code (because of the

substantial functionality of the NAB: component library).

For programs in this range, the certification is so fast that the

timing profile registers 0 milliseconds. We generated a suite

of synthetic pro_ams up to 1,000 SLOC to determine scal-

ing properties, under two conditions: no caching of rewrite

results, and limited caching of rewrite results (specifically,

caching for the substitution and abstraction operators). At
1,000 SLOC, certification with no caching required 2.2 sec-

onds, while certification with caching required 1.3 seconds.

Without caching, it is expected that the certification scales

quadratically, because each line requires computing a sym-
bolic evaluation including all preceding lines. We validated

this quadratic scaling with our suite of synthetic programs.

With caching, the symbolic evaluation does not need to

be redone for each previous line. In principle, with opti-

mized data structures, caching imposes close to linear over-

head. However, the current implementation of Maude is

not yet optimized for caching, and is known to introduce
quadratic factors. Accordingly, our experiments of certifi-

cation with caching also revealed a quadratic scaling of exe-

cution time in SLOC. While we believe that our approach to

domain-specific certification potentially scales linearly with

more finely optimized rewrite algorithms and data struc-

tures, even with a more conservative quadratic scaling ex-

trapolation, programs in the range of 10,000 SLOC would

only require minutes to certify.

6.2.i)omain-spcciticError flandlin_ Certification

"Fhc NAI[= library has a-mode that allows the program-

mcr to handle errors that are signalled in NAIF library rou-

tines. [n this mode, a NA[F subroutine simply returns it"

it detects an internal error. Subsequent to calling the NAIF
subroutine, the boolean function fa.iled (} can be called to

find out whether an error was detected, and the subroutine

ge_sms can then be called to find out which error occurred.

[n particular, the NAIF routine bod.ma_ detects several er-

rors, one of which occurs when the data necessary to com-

pute the rotation matrix ["or the given body and time has not
been loaded.

We are currently extending our domain-specific certifier
to check statically whether all possible errors due to the

NAIF subroutines are properly handled. There are three sit-
uations that should be considered when a NAIE subroutine

is called: 1) it executes normally without errors; 2) it flags

an error and the returned value is subsequently used in the

program; 3) it flags an error but the returned value is not

used. Only the second situation is unsafe, so the certifier
must detect it.

The least-sort computation of Maude is very suitable to

implement such a domain specific error handling certifier:
we declare the abstractions of all library functions that can

return errors to be of target [FraraeSafe], i.e., they are

seen as partial functions, and then write conditional mem-

bership assertions and/or equations that state when such a
function actually returns a proper value and/or when it re-
turns an error and of what kind. Thus, if the sort of the ab-

straction of a value calculated by the program turns out to
be a subsort of FrameSafe, then it means that all the condi-

tions of the associated membership assertions were proved,

that is, all the errors that can possibly be generated by the

function that returned the value will either provably not oc-

cur or they were already handled by the program through

conditional statements guarded by the function failed ().

References

[I] Adel Bouhoula, Jean-Pierre Jouannaud, and Jos6

Meseguer. Specification and proof in membership

equational logic. Theoretical Computer Science,
236:35-132, 2000.

[2] Manuel Clavel, Francisco J. Dur_in, Steven

Eker, Patrick Lincoln, Narciso Martf-Oliet, Jos6

Meseguer, and Jos6 F. Quesada. Maude: Spec-
ification and Programming in Rewriting Logic,

March 1999. Maude System documentation at

maude, csl. sri. com/papers.

[31 Manuel Clavel, Francisco J. Dur_n, Steven Eker,

Patrick Lincoln, Narciso Marti-Oliet, Jos6 Meseguer,

and J(>sc F. (.)tlC,'.;ad;J. The Maudc system. In P:lliath
Narendr:in and Michai7t Rusim_witch, editors. Pro-

c'eedingx of RLV_)U, volume 1631 of LNCS, pages

240-243. Springcr-Verlag, July 1999.

[41 Compaq. Extended Static Checking fi_r Java, 2000.
URL: www research, compaq, com/SRC/esc.

[51 Bernd Fischer and Grigore Ro_su. Interpreting abstract

interpretations in membership equational logic. Tech-

nical Report TR 0 l- 16, RIACS, May 2001.

[6] Joseph Ooguen. Order sorted algebra. Technical Re-

port [4. UCLA Computer Science Department, [978.

Semantics and Theory of Computation Series.

[7] Joseph Goguen and Jos_ Meseguer. Completeness

of many-sorted equational logic. Houston Journal of

Mathematics. 11(3):307-334, 1985.

[8] Joseph Ooguen and Josd Meseguer. Order-sorted al-

gebra I: Equational deduction for multiple inheritance,

overloading, exceptions and partial operations. Theo-

retical Computer Science, 105(2):217-273, 1992.

[9] Joseph Ooguen, James Thatcher, Eric Wagner, and

Jesse Wright. A junction between computer science

and category, theory, I: Basic concepts and examples

(part 1). Technical report, IBM Watson Research Cen-

ter, Yorktown Heights NY, 1973. Report RC 4526.

[10] Joseph Goguen, Timothy Winkler, Jos6 Meseguer, Ko-

kichi Futatsugi, and Jean-Pierre Jouannaud. Introduc-

ing OBJ. In Joseph Ooguen and Grant Malcolm, edi-

tors, Software Engineering with OBJ." algebraic spec-
_lqcation in action. Kluwer, 2000.

[i1] M. Lowry, A. Philpot, T. Pressburger, and I. Under-

wood. A formal approach to domain-oriented software

design environments. In Proc. 9th Knowledge-Based

Software Engineering Conference, pages 48-57, 1994.

[12] Jos_ Meseguer. Membership algebra as a logical

framework for equational specification. In Proceed-

ings, WADT'97, volume 1376 of Lecture Notes in

Computer Science, pages 18-61. Springer, 1998.

[13] George C. Necula. Proof-carrying code. In Pro-
ceedings of" the 24th ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Langauges

(POPL '97). pages 106-119, Paris, January 1997.

[14] K. Rustan, M. Leino, and Greg Nelson. An extended
static checker for modula-3. In K. Koskimies, edi-

tor, Compiler Construction: 7th International Confer-
ence, CC'98, volume 1383 of Lecture Notes in Com-

puter Science, pages 302-305. Springer, April 1998.

[15] PolySpace Tech. URL: www.polyspace, com.

lO

