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1 Introduction

We consider high-order central approximations for solutions of one-dimensional

Hamilton-Jaeobi (H J) equations of the form

_-_¢(x,O t)+H(¢_,z) = O, xeR, (1)

subject to the initial data ¢(x, t=0) = 60(x). Solutions for (1) with smooth
initial data typically remain continuous but develop discontinuous derivatives

in finite time. Such solutions are not unique; the physically relevant solution

is known as the viscosity solution (see [1, 3, 4, 5, 8, 15] and the references

therein).
Various numerical methods were proposed in order to approximate the so-

lutions of (1). Examples for such methods are the high-order Godunov-type

schemes that were introduced in [20, 21], and were based on an Essentially

Non-Oscillatory (ENO) reconstruction step [7] that was evolved in time with

a first-order monotone flux. The least dissipative monotone flux, the Go-

dunov flux, requires solving Riemann problems at cell interfaces. A fifth-order

Weighted ENO (WENO) scheme, based on [10, 18], was introduced by Jiang

and Peng [9].

Recently, Lin and Tadmor introduced in [16, 171 central schemes for ap-
proximating solutions of the HJ equation. These schemes are based on the

Nessyahu-Tadmor scheme for approximating solutions of hyperbolic conser-
rl 1 If _l:,_

ration laws LI9j. _nn_,e upwind schemes, central schemes do not require Rie-
mann solvers, which makes them attractive for solving systems of equations

and for multi-dimensional problems. A second-order semi-discrete version

of these schemes was introduced by Kurganov and Tadmor in [12]. While
less dissipative, the semi-discrete scheme requires the estimation of the lo-

cal speed of propagation, which is computationally intensive in particular in

multi-dimensional problems. In a later work [11], the numerical viscosity was
further reduced by computing more precise information about local speed of

propagation. To address the problem of schemes that are too computation-

ally intensive, we introduced in I2] efficient first- and second-order central

schemes for approximating the solutions of multi-dimensional versions of (1).
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Unlikethepreviousattempts,our schemesin [2]scalewellwith increasing
dimension.

In thispaperwederivefully-discreteCentralWENO(CWENO)schemes
for approximatingsolutionsof (1), whichcombineour previousworks[2,
13,14].Weintroducethird-andfifth-orderaccurateschemes,whicharethe
first centralschemesfor the HJ equationsof orderhigherthan two.The
coreingredientin the derivationof ourschemesis a high-orderCWENO
reconstructionsin space.

Acknowledgment"Wewouldliketo thankVolkerEllingforhelpfuldiscus-
sions.

2 CWENO Schemes for HJ Equations

Weareinterestedin approximatingsolutionsof(1)subjecttotheinitial data
¢(x,t = 0) = ¢0(x). For simplicity we assume a uniform grid grid in space
and time with mesh spacings, h := Ax and At. We denote the grid points by

xi = lax, t n = nat, and the fixed mesh ratio by A = At/Ax. Let >gp denote

the approximate value of ¢ (xi, tn), and (>gx)_ denote the approximate value of

the derivative aSx(xi, t_). We define A +, _ _ _ '_>9i := >9i+1 -g°i, z2t->9n :_- >9i - >gn-1
0 rl e n

and A >9i := _i+1 - >9/-1'
We assume that the approximate solution at time t '_, >9_ is given. In

order to approximate the solution at the next time step t _+1 _,+1, _i , we start

by reconstructing a continuous piecewise-polynomial from the data, _p, and

sample it at the half-integer points, {x_+1/2), in order to obtain the point-
values of the interpolant at these points _'__i+1/2 as well as the derivative,

_'{+1/2" We then evolve >9_+,_ ½ from time t_ to time t '_+1 according to (1),

_9(X,+},t n+l) >9(Xi+j,tn) --_ t_-_= (,/
a t n

This evolution is done at the half-integer grid points where the reconstruc-

tion is smooth (as long as the CFL condition ,_ [H' (c2=)1 < 1/2 is satisfied).
Finally' in order to return to the original grid, we project ,*1>9i+1/2 back onto

the integer grid points {x,} to end up with _p+l

Since the evolution step (2) is done at points where the solution is smooth,

we can approximate the time integral at the RHS of (2) using a sufficiently

accurate quadrature rule. For example, for a third- and fourth-order method,

this integral can be replaced by a Simpson's quadrature,
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Theintermediatevaluesof thederivativein time,_z (xi+u2,tn+l/2), and

Fx (x_+1/2, t_+l), which are required in the quadrature (3), can be predicted

using a Taylor expansion or with a Runge-Kutta (RK) method. For details

we refer the reader to [13, 19] and the references therein.
The remaining ingredient is the piecewise-polynomial reconstruction in

space. A careful study of the above procedure reveals that there are actually

three different quantities that should be recovered in every time step. First,

given pi at time t _ we need to reconstruct the point-values at the half-integer

grid points, Pi+1/2, at the same time t _. This is the first term on the RHS of
(2). The second term on the RHS of (2) requires evaluating the Hamiltonian

H at the derivative P'i+l/2' Hence, the second quantity we should recover

is _i+1/2 from pi. Finally, the predictor step that provides the values at

the quadrature nodes in (3), require us to estimate _+1/2 from _i+1/2 at
every step of the RK method. :In the next two sections we will focus on the

reconstruction of these three quantities, first for a third-order method and
then for a fifth-order method.

n-bl
The projection from P_+U2 onto the original grid points to get F_+I is

accomplished using the same reconstruction used to approximate F_+1/2 from
_.

2.1 A Third-Order Scheme

Following the above procedure, a third-order scheme can be generated by

combining a third-order accurate ODE solver in time with a sufficiently

high-order reconstruction in space. Here we present fourth-order CWENO

reconstructions of the point values of _z_+l/2 and its derivative _+1/2"

The reconstruction of _i+1/2 from _Pl.

In order to obtain a fourth-order reconstruction of _i+ 1/2 we will write a con-

vex combination of two quadratic polynomials, _] constructed on a stencil

which is left-biased with respect to Xi+l/2, and the right-biased p_],

1 1 (A+A_ i)(x_xi)(x_xi+_)+O(h3),

1 1 (A+A+_) (x- x,)(x- x_+l) + 0 (h a)= + _ +

An evaluation of these approximations at {xi+ ½) reads

1 . _;[_1 1

A straightforward computation shows that



4 SteveBrysonandDoronLevy

The fourth-order WENO estimate of _2i+1/2 is therefore given by the convex
combination

+ [2] (xi+})= . _](xi+})+w_:+½_+

where the weights satisfy Wi+l/2 + w+1/2 = 1, w_1/2 > O, Yi. In smooth
1

regions we would like to satisfy w_- _ w + _ g to attain an O (h 4) error,

while when the stencil {xi-1, x i, xi+l, zi+2 } supporting _w (xi+ ½) contains

a discontinuity, the weight of the more oscillatory polynomial should vanish.

Following [10, 181, we meet these requirements by setting

a k

w_+_ - _+_ k ck (4)

where k, l E {+, -} (k and l will range over a larger space of symbols when
we use more interpolants). The constants c ± = 1/2 and are independent of

the grid-point. We choose e as 10 .6 to prevents the denominator in (4) from

vanishing, and set p = 2 (see [10]). The smoothness measures S_ should be

large when _ is nearly singular. Following the standard practice with WENO-

type schemes [10], we take S_ to be the sum of the L2-norms of the first and

second derivatives on the stencil supporting q0[_1. If we approximate the first

derivative at xi+l/2 by _A+_oi+l/2, the second derivative by _.zA+A-pi+l/2,
and define the smoothness measure

Si+½[r, sj=h_ 1 + 2 1 + _ 2, _A _+j+½ +h _A A _+j+½ , (5)
j=r j=r+l

then for the fourth-order interpolation of _=, (x_+½) we have S/Tkl/2 =

Si+1/2 I-l,0] and S+1/2 = Si+1/2 [0, 1].

The reconstruction of _o_+1/2 from _oi.

To obtain a fourth-order estimate of the derivative _'(Xi+1/2) from p(xi), we
start from the cubic interpolants

1 (A+q&) (x - xi) + 1 (a+a_ d (x - _)(x -,,+_)_1 (_) = _, + _

-b-_l (/,__a.._± g..__. 0i ) (,'r -- .T,)(X -- .T,i+I)(27 -- 2Ci_1) -}- O (h 4)

1 (A+A+c2i) (x- xi)(x )1 (A+_i) (x -- xi) + 97_ - zi+l

+gui (a+_+a+_) (x- x,)(_ - ._+_)(._:- x,+_)+ o (h_)

Differentiating _[_] at xi+½
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99,[3J 1
-,i+½ = 2-_ (_°i-2 - 3cpi-1 - 21_i + 23_i+1),

,[31 1 (--23_i + 21_+1 + 3_i+2 -- _i+a) •
P+,i+} -- 24h

1 ,13] 1 'I3] ,
__ ,+½+ 2_+,_+½= _,+½+ o (h4),

four  -o  o recon t .c ion
,[41 ,Ia] ,[a]

=w- lcZ _+ +w++½qz+,,+½

where the weights are of the form (4) with c+ = 1/2 and S(-+1/2 =

s,+,/_ [-2, o] a,d S+,,/_ : S,+,/_ [0,23.

The reconstruction of _o_+1/2 from _oi+a/2.
Repeating the above procedure, this time with three quadratic interpolants

_1 (_) = <+½ +
1

1
1

1

results with

where

1 _,[2] 2 s,[21 1 -,[2] ,
_-,i+½ + 3v0,i+½ + _o+,i+½ = Vi+½ + O (h4),

qai+½-_" =--(_i_}-4_,_2h ½ +3_,+½), _Oo,i+½-,L-, =___(_i+____½),

,_,[2] 1
v+,,+½ = 9-5-_(-3_+I + 4_+_ - _,+_).

The fourth-order WENO estimate of _#'i+_/2 is

/ = w,+½__,_+½ +,,_+[Vo,_+[ +w++½_+_+½

where the weights w are of the form (4) with e- = c+ = 1/6, co = 2/3, and

the oscillatory indicators S_+_/2 = S,-+_/z [-2, -1], S_+_/2 = S,+_/2 [-1,0],

and S+_/2 = S_+_/2 [0, 1].
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2.2 A Fifth-Order Scheme

Once again, similarly to the third-order scheme, we need to reconstruct the

point-values of _ and 4'. We start with the reconstruction of _i+1/2 and

_o_+1/2 from _i. We write sixth-order interpolants as a convex combination

of cubic interpolants, pI_3J(x) and p[_] (x) introduced above and

1 1 (a+__) (x - x,)(_ - x_+,)

+g_l (_+__a+_,) (x - z_)(x - _,+,)(x - _,+_) + o (h_)

In this case

where

_ [31 a_ I31 o (h_)3v2131 , + 8_0,i+} + = _i+½ +16 -,'+_ 16 +,i+½ '

1

-,i+_

_131 I
0,i+½ = T_( -_si-1 + 9_i + 9_i+1 - _+2),

1
_[3]+i+½ = "i_(5_i "_- J-5c_°i+l - 5or°i+2 -1- _i+3).

In a similar way,

£. ,13] Jr- 49 ,[3] 9 ,[3] , ,
so___+½ 4o*o,,+½ g6_+,_+_ "_- @i-t-1/2 -]- O (h6),

where

,[31 1
_2 i+½ -- 24h (q&-2 - 3_i-1 - 21_oi + 23_i+1),

1
1°_31+½ -- 24h (_2i-1 - 27_oi + 27_i+1 - qoi+2),

,[a] 1
_+,i+½ -- 24h (-23_* + 21_i+1 ÷ 3_i+2 - 9_i+a).

The sixth-order \VENO estimates for _i+1/2 and _'_+_/2 are

, [61 - _[3] o ,0 , [3] w + _[31= _ ._ + +,q+½ wi+_ _,,__ ,,-,+½%,_+½ ,+½v+,,+½,

116] 1- ~'[3] , t0 -_,[3] _+ ~,[3]

%+½ = %+½_-,_+½ + _+-_ _0,,+½ +w,+_, _+,,+½,

where the weights for _ are given by (4), with c_ = c+ = 3/16, co = 5/8 and

the oscillatory indicators are S_+,/2 = Si+]/2 [-2, 0], S°+_/2 = Si+_/2 [-1, 11

and S++_/= = Si+l/_ [0, 2]. The negative weights for _' require special treat-

ment (see [22] for details). Following [22] we split the positive and negative
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weightsin thefollowingway:first,weset3,- = 3,_+= 9/40,3,o= 49/40and
7+ = 3̀+= 9/80,7° = 49/20.Then,Fork,l E {- 0, +}, set 04- = Y_k 3'_ so

that similarly to (4),

and

a_,i+_ a k
¢k 0"_ --,i+½ .

,[31
Because _13+]1/2 and 9_i+1/2 are defined on the same stencils, they use the

same smoothness measures Si+1/2.

All that is left is the reconstruction of 9_ti+1/2 from _i+1/2. In this case

a sixth-order approximation to 99_+1/2 requires a weighted sum of four cubic
interpolants. This reconstruction is similar to the previous ones. W'e skip the
details and summarize the result:

-,[61 -- -'[3] O-- -,'[3} O+ -,[3] ~,13]

_,+½ = u,__ _qo_ ;___ + + + w +--_ ,--2 wl+½_°-,_+½ wi+½%+'+½ _+_+,_+½'

where

-,[31 1
9v_ i+½ = _-_(-2_i_} + 9G:_ _ - 18_i_} + 11_i+I),

-,/aJ 1
%_.+½ = _-_(_i- _ - 6'_i-½ + 3_i+½ + 2_i+a),

@qa] = _h(-2__½ - 3_,_+½ + 6_+_ - _+_),
O+,i+_

r,[3] I
+d+½ = 6-h(-119°i+½ + 18_i+_ - 99_i+} + 2_,+r).

Here, c_ = e+ = 1/20, co- = co+ = 9/20, S_+,/2 = Si+1/2 [-3,-1], S°+,/2 =

S,+1/2 [-2, 0], Si+l/2°+ = S_+1/2 [-1, 1] and S +_+_/2= S,+_/_ [0, 2].

3 Numerical Examples

In all our numerical simulations, the ODE solvers we use are the non-linear

fourth-order Strong-Stability Preserving Runge-Kutta (SSP-RK) methods of

!61.
We start by testing the accuracy of our new CWENO methods when

approximating the solution of the linear advection equation, _t + _ = 0.

The initial data is taken as _ (z, 0) = sin 4 (rrz), the mesh ratio & = 0.9 and
the time T = 4. The results obtained with the fifth-order method of §2.2 are

shown in Table 1.
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Table 1. Error and convergence rate for linear advection with initial condition

(x, 0) = sin 4 (Trx)

N L1 error L1 order

50 5.03 x 10 -2 -

100 8.36 x 10 -s 9.23

200 2.56 x 10 -6 5.03

400 8.24 x 10 -s 4.96

800 2.99 x 10 .9 4.78

Next, we test the CWENO methods with two nonlinear Hamiltonians:

1(_ + 1)2 = 0 and a non-convex Hamilto-a convex Hamiltonian _ +

nian _t - cos (_ + 1) = 0. The interval is [0, 2], the boundary conditious

are periodic and the initial conditions for both Hamiltonians are taken as

(x, 0) = -cos (Trx). The exact solution to both problems is smooth until

t _ 1/Tr _, after which a singularity forms. A second singularity forms in the

non-convex H example at t _ 1.29/_ 2.

The results of the accuracy test with the fifth-order method are shown in

Table 2, and the solution at time T -- 1.5/rr is plotted in Figure 1. Following

[9] the errors in Table 2 after the formation of the singularity are computed

at a distance of 0.1 away from any singularities.

Table 2. L1 Error and convergence rate estimates

Hamiltonians. top: T = 0.5/,'r 2, bottom: T = 1.5/_ _.

_r convex and non-convex

=0.3

N convex convex non-convex non-convex

L1 error L1 order L1 error L1 order

50 6.35 x 10 -6 - 4.17 x 10 -5 -

100 1.62 x 10 -7 5.30 1.49 x 10 -6 4.81

200 5.72 x 10 .9 4.82 4.19 x 10 -s 5.15

400 2.73 x 10 -1° 4.39 1.34 x 10 -s 4.97

800 1.45 x 10 -11 4.23 4.20 x 10 .8 4.99

N convex convex non-convex non-convex

L1 error L1 order L1 error L1 order

50 2.12 x 10 -4 - 2.56 x 10 -s -

100 1.03 x 10 -s 4.37 7.80 x 10 -r 5.03

200 9.68 x 10 -8 6.73 1.70 x 10 -8 5.52

400 6.20 x 10 -_° 7.29 5.02 × 10 -1° 5.08

800 1.90 x 10 -11 5.03 1.71 x 10 -11 4.88
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1.5
Fig. 1. left: Convex Hamiltonian right: non-convex Hamiltonian at T = _ com-

pared with the exact solution, N = 100.
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