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1 Introduction

We consider high-order central approximations for solutions of one-dimensional
Hamilton-Jacobi (HJ) equations of the form

—g—tqﬁ(r,t)+H(¢x,z):0, z € R, (1)

subject to the initial data ¢(x,t=0) = do(x). Solutions for (1) with smooth
initial data typically remain continuous but develop discontinuous derivatives
in finite time. Such solutions are not unique; the physically relevant solution
is known as the wviscosity solution (see [1, 3, 4, 5, 8, 15] and the references
therein).

Various numerical methods were proposed in order to approximate the so-
lutions of (1). Examples for such methods are the high-order Godunov-type
schemes that were introduced in'[20, 21), and were based on an Essentially
Non-Oscillatory (ENO) reconstruction step [7] that was evolved in time with
a first-order monotone flux. The least dissipative monotone flux, the Go-
dunov flux, requires solving Riemann problems at cell interfaces. A fifth-order
Weighted ENO (WENO) scheme, based on [10, 18], was introduced by Jiang
and Peng [9].

Recently, Lin and Tadmor introduced in [16, 17] central schemes for ap-
proximating solutions of the HJ equation. These schemes are based on the
Nessyahu-Tadmor scheme for approximating solutions of hyperbolic conser-
vation laws [19]. Unlike upwind schemes, central schemes do not require Rie-
mann solvers, which makes them attractive for solving systems of equations
and for multi-dimensional problems. A second-order semi-discrete version
of these schemes was introduced by Kurganov and Tadmor in [12]. While
less dissipative, the semi-discrete scheme requires the estimation of the lo-
cal speed of propagation, which is computationally intensive in particular in
multi-dimensional problems. In a later work [11], the numerical viscosity was
further reduced by computing more precise information about local speed of
propagation. To address the problem of schemes that are too computation-
ally intensive, we introduced in [2] efficient first- and second-order central
schemes for approximating the solutions of multi-dimensional versions of (1).
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Unlike the previous attempts, our schemes in [2] scale well with increasing
dimension.

In this paper we derive fully-discrete Central WENO (CWENO) schemes
for approximating solutions of (1), which combine our previous works (2,
13, 14]. We introduce third- and fifth-order accurate schemes, which are the
first central schemes for the HJ equations of order higher than two. The
core ingredient in the derivation of our schemes is a high-order CWENO
reconstructions in space.

Acknowledgment: We would like to thank Volker Elling for helpful discus-
sions.

2 CWENO Schemes for HJ Equations

We are interested in approximating solutions of (1) subject to the initial data
#(z,t =0) = do(z). For simplicity we assume a uniform grid grid in space
and time with mesh spacings, h := Az and At. We denote the grid points by
x; = iAz, t"* = nAt, and the fixed mesh ratio by A = At/Az. Let ¢ denote
the approximate value of ¢ (z;,1"), and (ip,); denote the approximate value of
the derivative ¢z (z;,t"). We define A* o7 = ¢, — o, ATl =T — i
and A%} 1= ¢y — @iy

We assume that the approximate solution at time t", 7 is given. In
order to approximate the solution at the next time step t"+}, @?“, we start
by reconstructing a continuous piecewise-polynomial from the data, ©7, and
sample it at the half-integer points, {z;11/2}, in order to obtain the point-
values of the interpolant at these points ¢7., ;5 as well as the derivative,

Cit1/2° We then evolve go:‘+% from time t" to time t"*! according to (1),

99(1“1‘+%,t”+1> :@(zi+%,t"> _/ti"“ H(gaI (xl-+%, ))dt. (2)

This evolution is done at the half-integer grid points where the reconstruc-
tion is smooth (as long as the CFL condition MH ()] £1/21s satisfied).
Finaily, in order to return to the original grid, we project np:'fll/z back onto
the integer grid points {z;} to end up with cp?“.

Since the evolution step (2) is done at points where the solution is smooth,
we can approximate the time integral at the RHS of (2) using a sufficiently
accurate quadrature rule. For example, for a third- and fourth-order method,

this integral can be replaced by a Simpson's quadrature,

[T a2 ) @

| +4H (’a@r (’IH%’tM%)) +H (%’ (m"r%’tnﬂ))] '
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The intermediate values of the derivative in time, ¢ ($i+1/2,t"+1/2), and
v (Tiv1/2 t"+1}, which are required in the quadrature (3), can be predicted
using a Taylor expansion or with a Runge-Kutta (RK) method. For details
we refer the reader to [13, 19] and the references therein.

The remaining ingredient is the piecewise-polynomial reconstruction in
space. A careful study of the above procedure reveals that there are actually
three different quantities that should be recovered in every time step. First,
given ; at time t™ we need to reconstruct the point-values at the half-integer
grid points, ®;41/2, at the same time . This is the first term on the RHS of
(2). The second term on the RHS of (2) requires evaluating the Hamiltonian
H at the derivative ¢} ‘12 Hence, the second quantity we should recover
is ¢}, /2 from ;. Finally, the predictor step that provides the values at
the quadrature nodes in (3), require us to estimate cp;+1/2 from @;41/2 at
every step of the RK method. In the next two sections we will focus on the
reconstruction of these three quantities, first for a third-order method and
then for a fifth-order method.

The projection from 4,9?:11/2 onto the original grid points to get 99?“ is
accomplished using the same reconstruction used to approximate @, ; from
o7

2.1 A Third-Order Scheme

Following the above procedure, a third-order scheme can be generated by
combining a third-order accurate ODE solver in time with a sufficiently
high-order reconstruction in space. Here we present fourth-order CWENO
reconstructions of the point values of ¢;+1/2 and its derivative ¢;+1/2.

The reconstruction of ;41,2 from ;.
In order to obtain a fourth-order reconstruction of ¢;.1/2 we will write a con-

vex combination of two quadratic polynomials, (P[_Ql constructed on a stencil

which is left-biased with respect to T;41,2, and the right-biased gp[f],

1 1 _
o () = @i + 7 (AT:) (x —7i) + 2 (AT A @) (z —z:) (x — zis1) + O (h*),
1 1
\’,&‘E] (x) =i + 5 (A*) (z —zi) + Y (AT AT ) (z — ) (T — Tir1) + O (r%).
An evaluation of these approximations at {z;,1} reads
1 1
<p[_2] ($1+%) = g(——%—1+6%+3%+1), @E’ (IH%) = g(3¢‘i+ﬁﬂpi+l_¢i+2)'

A straightforward computation shows that

1 2 1 2
599[_](1?1-%) + 599[4.](1'1‘4-%) = ¥Yirl +0 (h4) :
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The fourth-order WENO estimate of ¢;.1/2 is therefore given by the convex
combination

— 2 2
,‘q[f)] (Ii+%) —_—wi+%(p[_] (L‘—y%) +’LU1:%@[+] (:l'iJr%),

where the weights satisfy Wt wi&—lm =1, w;ﬁ_lﬂ > 0, Vi. In smooth
regions we would like to satisfy w; = wl =~ % to attain an O (h4) error,
while when the stencil {zi_l,xi,miﬂ,xi“} supporting ¢ (3:i+%> contains
a discontinuity, the weight of the more oscillatory polynomial should vanish.
Following [10, 18], we meet these requirements by setting

x

ak | k
koo it3 ko c
Wiyl = S, Gyl = . \? (4)
RSN (6+Si+1)
2

where k,1 € {+,—} (k and ! will range over a larger space of symbols when
we use more interpolants). The constants ¢t = 1/2 and are independent of
the grid-point. We choose € as 106 to prevents the denominator in (4) from
vanishing, and set p = 2 (see [10]). The smoothness measures Sf should be
large when ¢ is nearly singular. Following the standard practice with WENO-
type schemes [10}, we take S;t to be the sum of the L?-norms of the first and
second derivatives on the stencil supporting cpg}. If we approximate the first
derivative at z;11/2 by L A%, 172, the second derivative by AT AT i1y,
and define the smoothness measure

s 2 s 2
1 1 -
Syl =03 (e ) +h 3 (a7 A70n) - O
j=r j=r+1
then for the fourth-order interpolation of ¢y (zH_%) we have 5;1/2 =
Si+1/2 [—1,0} and S:—l/? = Si+l/2 [0, 1]
The reconstruction of ¢}, ,, from ;.

To obtain a fourth-order estimate of the derivative ¢’ (z;y1/2) from (z;), we
start from the cubic interpolants

1 1 _
A (@) = i+ 3 (A7) (2~ 20) + 55 (AT A7) (2= 2) (£ = i)
1

o (A_A+A“<,oi) (x — ;) (z — zim1) (T — zi—1)+0 (h4) .

1 1
S (@) = e+ 3 (A0 (= 70) + gy (AYAT9) (2 —m) (2= i)

+

1
+gh_§ (A+A+A+Lp1) (.’IT — I-L‘) (I — II?,'+1) (.'IT - ,T,_r,.g) —+ O (h4> .

Differentiating apgl at T, 1
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B L 85— 970 + 230
P ir1 T gy (Pim2 T 3P 21p; + 23pit1),
1
3
9‘91!]”% = 5ih (—23¢; + 21@is1 + 3pir2 — Pita)-
Again,

L 3] Lo 4
591 T3y = Py 7O ()

and a fourth-order WENO reconstruction of ¢’ (xi+%) is

N P!
Pire = Wi 1% ipr TWi ¥y

where the weights are of the form (4) with ¢t = 1/2 and S,
Si+1/2 [—2,0] and S::—l/? = Si+1/2 [0,2]

The reconstruction of ‘P2+1/2 from @iy1/2-
Repeating the above procedure, this time with three quadratic interpolants

95[—2} (x) = Pirl T % (A-‘PH-%) (T - IH—%)
+5}1—15 (A*’A'(,;*H_%) (x—zﬁ%) (x—:ci+%) +0(h?),
955)2] (z) = Pitl + 21—h (Aoipi+%> (.’E —$i+%)

1 /oo
i (47470

results with

%5512,11‘+% 295:)[,22‘]% * %(’5/4[—2,]14% =¥y + O ().
where
=2 1 ~[2] 1 \
‘P_Jq,,% = ﬂ(%"% _4%‘—% +3%+%), ¢o,i+% = ﬁ(‘fDH% - 991’—%)’

1
1= Q_h(_&'o”% + 4‘{/‘i+% - “PH»g)-
The fourth-order WENO estimate of '\02+1/2 is

Sy 512

o 2 + 3
. -+
Pivrz = Wip 1Py 7 H +w

190,01 T Wik 1Py}
where the weights w are of the form (4) with ¢™ = ¢t =1/6,c° = 2/3, and
the oscillatory indicators S, , = Sivi2[=2,-1L S0 = Siv1/2[-1,0],

and S;:Ll/Q = Siy172(0,1).
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2.2 A Fifth-Order Scheme

Once again, similarly to the third-order scheme, we need to reconstruct the
point-values of » and ¢'. We start with the reconstruction of ¢;41/2 and
i /2 from ;. We write sixth-order interpolants as a convex combination
of cubic interpolants, ga[f] (r) and ",a[f] (x) introduced above and
B () = o0 + L (A% (z — 2 L At A o) (-2 (z —
A (@) = o+ (800 (7 - 21) + 33 (ATAT6) (2 -2 (0 = )

—1—-1— (ATA A ) (2 — i) (x — Tir1) (T — Tir2) + O (BY).

6h3
In this case
3 1l 5 13 3. B _ 6
T6P it T g%0u41 T Tg¥+iry ~ Fits +0 (1),
where
o= i(99- 2 — 5pi1 + 159 + 59it1)
—it3 T 167 " : i
B L 400+ 9pu — pir)
SOO,i-I»% = 16 Pi—1 ©4 it Pi+2)s
3] __1_(5.,+_15. — 5wiro + @is3)
‘r+‘l-+% =16 Pi Pi+1 Yit+2 T Pi4+3)-
In a similar way,
9 3 49 ) 9 B _ 6
~ 5% ey T 35 P0urs T 0¥ty ~ P TO (r%).,
where
B L =30 — 21 + 23
AT 24}1(%-2 Pi-1 @i + 23piv1),
S8 L 970+ 2T — pina)
\OD,H_% = 94h Pi—1 i Pi+1 Pi+2)s
3 1
cp’i“h% = m(—%% +21pip1 + 3pire — Pizs)

The sixth-order WENO estimates for @;,1/2 and ¢}, are

6 _ = LB o 3 + 8l
Pir1 T Wig %l iy T Wit Pouey TPy

e - BB 10 /3] + 518
Yird = Wir1¥®_ vl + Wir1¥oitl + Wir1¥Privd

where the weights for ¢ are given by (4), with c_ = ¢4 = 3/16,c0 = 5/8 and
the oscillatory indicators are 5;1/2 = Si+1/2[—2,0}, S?+1/2 = Sip172 [-1,1]
and S:q/z = Si+12 [0,2]. The negative weights for ¢’ require special treat-
ment (see [22] for details). Following [22] we split the positive and negative
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weights in the following way: first, we set y_ = v =9/40,v° = 49/40 and
7y = ’yi’ = 9/80, v = 49/20. Then, For kle{—,0,+}, setor =73, vk so
that similarly to (4),

k
k T+

(81 ] = 3 p
+.i+3 P
ot (5‘*’5::,1)
2

and .
ik Ay i —i+}

i )

i+l =0+= 7 T g
e Zl a+,i+§ Zl a—.z‘+%

Because ‘fggl/Q and 4,9;[3]1/2 are defined on the same stencils, they use the
same smoothness measures S;y1/2-

All that is left is the reconstruction of <,9£+1/2 from @;41/2. In this case
a sixth-order approximation to ¢/ +1/2 requires a weighted sum of four cubic
interpolants. This reconstruction is similar to the previous ones. We skip the
details and summarize the result:

b

w

6l - ) o- 5/ 0 3] B
Pird = Wi 1P i1 T Wi 3P0 it tw 1Py g T WPy

where

ous) I l(_Q +9p. 3 — 18 +11 )
Y_irl = Bh Pi-g Pi- 3 Pi-l Pitih
70 = Ly — 60y + 300y T 200)
Po—i+d ~ R Ti~3 Pi-j Fiti Pirg)
~1[3 1
B o1 = g (C2pimy — 3Py F 00y — Pug):
~113] _ 1 !

1= g1y + 1800y — 90ug + 200 ).

Here, c_ = ¢4 = 1/20,c0— = co+ = 9/20, 5;1/2 = Siy1/2[-3, -1, 53;1/2 =

Sit1/2-2,0], 5?:1/2 =S;+172[-1,1] and 5{:1/2 = S;41,210,2].

3 Numerical Examples

In all our numerical simulations, the ODE solvers we use are the non-linear
fourth-order Strong-Stability Preserving Runge-Kutta (SSP-RK) methods of
[6].
We start by testing the accuracy of our new CWENO methods when
approximating the solution of the linear advection equation, ¢; + ¢z = 0.
The initial data is taken as ¢ (z,0) = sin* (), the mesh ratio A = 0.9 and
the time T = 4. The results obtained with the fifth-order method of §2.2 are

shown in Table 1.
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Table 1. Error and convergence rate for linear advection with initial condition

¢ (z,0) = sin? (7x)

N L, error L; order

50 5.03 x 1072 -

100 8.36 x 107°  9.23
200 2.56 x 107%  5.03
400 8.24 x 1078  4.96
800 2.99 x 10~° 78

Next, we test the CWENO methods with two nonlinear Hamiltonians:
a convex Hamiltonian ¢ + 3 (¢x + 1) = 0 and a non-convex Hamilto-
nian ¢; — cos(pz +1) = 0. The interval is [0,2], the boundary conditions
are periodic and the initial conditions for both Hamiltonians are taken as
¢ (z,0) = —cos(nz). The exact solution to both problems is smooth until
t ~ 1/n2, after which a singularity forms. A second singularity forms in the
non-convex H example at t ~ 1.29/7>.

The results of the accuracy test with the fifth-order method are shown in
Table 2, and the solution at time T' = 1.5/7 is plotted in Figure 1. Following
(9] the errors in Table 2 after the formation of the singularity are computed
at a distance of 0.1 away from any singularities.

Table 2. L, Error and convergence rate estimates for convex and non-convex
Hamiltonians. top: T' = 0.5/x7%, bottom: T = 1.5/ A =03

N convex convex non-convex non-convex
L error Ly order Ly error L, order

50 6.35 x 107° - 417x107% -

100 1.62 x 10~7  5.30 1.49 x 107° 4.81
200 572 x 107°  4.82 4.19x107° 5.15
400 273 x 10710 439 134 x 107° 4.97
800 1.45 x 10~'1 423 4.20x 107° 4.99

N convex convex non-convex non-convex
L, error L; order Ly error L, order
50 2.12 x 1074 - 2.56 x 107° -

100 1.03 x 10~ 437 7.80x 1077 5.03
200 9.68 x 1078 6.73  1.70 x 107° 5.52
400 6.20 x 10-°  7.29 502 x 107'° 5.08
800 1.00 x 10~11  5.03 171 x 107" 4.88
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Fig. 1. left: Convex Hamiltonian right: non-convex Hamiltonian at T = 1;;5- com-
pared with the exact solution, N = 100.
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