Synthesizing Monitors for Safety Properties

Klaus Havelund' and Grigore Rogu®

! Kestrel Technology
2 Research Institute for Advanced Computer Science
http://ase.arc.nasa. gov/{havelund, grosu}
Automated Software Engineering Group
NASA Ames Research Center
Moffett Field, California, 94035, USA

Abstract. The problem of testing a linear temporal logic (LTL) formula
on a finite execution trace of events, generated by an executing program,
occurs naturally in runtime analysis of software. An algorithm which
takes a past time LTL formula and generates an efficient dynamic pro-
gramming algorithm is presented. The generated algorithm tests whether
the formula is satisfied by a finite trace of events given as input and runs
in linear time, its constant depending on the size of the LTL formula.
The memory needed is constant, also depending on the size of the for-
mula. Further optimizations of the algorithm are suggested. Past time
operators suitable for writing succinct specifications are introduced and
shown definitionally equivalent to the standard operators. This work is
part of the PathExplorer project, the objective of which it is to construct
a flexible framework for monitoring and analyzing program executions.

1 Introduction

The work presented in this paper is part of a project at NASA Ames Research
Center, called PathExplorer [10,9,5,8,19], that aims at developing a practical
testing environment for NASA software developers. The basic idea of the project
is to extract an execution trace of an executing program and then analyze it to

rors such as deadlocks and data races, and non-conformance with linear temporal
logic specifications. Only the latter issue is addressed in this paper.

Linear Temporal Logic (LTL) [18,16] is a logic for specifying properties of re-
active and concurrent systems. The models of LTL are infinite execution traces,
reflecting the behavior of such systems as ideally always being ready to respond
to requests, operating systems being a typical example. LTL has been mainly
used to specify properties of concurrent and interactive down-scaled models of
real systems, so that fully formal correctness proofs could subsequently be car-
ried out, for example using theorem provers or model checkers (see for example
[11,6]). However, such formal proof techniques are usually not scalable to real
sized systems without a substantial effort to abstract the system more or less
manually to a model which can be analyzed. Model checking of programs has

2 The PathExplorer Architecture

PathExplorer, PAX, is a flexible environment for monitoring and analyzing pro-
gram executions. A program (or a set of programs) to be monitored, is supposed
to be instrumented to emit execution events to an observer, which then examines
the events and checks that they satisfy certain user-given constraints. The con-
straints can be of different kinds and defined in different languages. Each kind of
constraint is represented by a rule. Such a rule in principle implements a partic-
ular logic or program analysis algorithm. Currently there are rules for checking
deadlock potentials, datarace potentials, and for checking temporal logic formu-
lae in different logics. Amongst the latter, several rules have been implemented
for checking future time temporal logic, and the work presented in this paper is
the basis for a rule for checking past time logic formulae. In general, the user
can program new rules and in this way extend PAX in an easy way.

The system is defined in a component-based way, based on a dataflow view,
where components are put together using a “pipeline” operator. The dataflow
between any two components is a stream of events in simple text format, without
any apriori assumnptions about the format of the events; the receiving component
just ignores events it cannot recognize. This simplifies composition and allows
for components to be written in different languages and in particular to define
observers of arbitrary systems, programmed in a variety of programming lan-
guages. This latter fact is important at NASA since several systems are written
in a mixture of C, C++ and Java.

The central component of the PAX system is a so-called dispatcher. The
dispatcher receives events from the executing program or system and then re-
transmits the event stream to each of the rules. Each rule is running in its own
process with one input pipe, only dealing with events that are relevant to the
rule. For this purpose each rule is equipped with an event parser. The dispatcher
takes as input a configuration script, which specifies from where to read the pro-
gram execution events, and then a list of commands - a command for each rule
that starts the rule in a process.

The program or system to be observed must be instrumented to emit exe-
cution events to the dispatcher. We have currently implemented an automated
instrumentation module for Java bytecode using the Java bytecode engineering
tool JTrek [14]. Given information about what kind of events to be emitted, this
module instruments the bytecode by inserting extra code for emitting events.
Typically, for temporal logic monitoring, one specifies what variables to be ob-
served and in particular what predicates over these variables. The code will then
be instrumented to emit changes in these predicates, more specifically toggles
in atomic propositions corresponding to these predicates. The instrumentation
module together with PathExplorer is called Java PathExplorer (JPAX).

3 Finite Trace Linear Temporal Logic

We briefly remind the reader the basic notions of finite trace linear past time
temporal logic, and also establish some conventions and introduce some opera-

never true since the last time F; was observed to be true, including the state
when F; was true; the interval operator, like the “since” operator, has both
a strong and a weak version. For example, if STarT and Down are predicates
on the state of a web server to be monitored, say for the last 24 hours, then
[STarT, DowN); is a property stating that the server was rebooted recently and
since then it was not down, while [START, DowN),, says that the server was not
unexpectedly down recently, meaning that it was either not down at all recently
or it was rebooted and since then it was not down.

What makes past time temporal logic such a good candidate for dynamic
programming is its recursive nature: the satisfaction relation for a formula can
be calculated along the execution trace looking only one step backwards:

tEoF ifft = For (n>1and th-1 EoF),

t =QF iff t = F and (n > 1 implies t,—1 |F GOF),

tf:Fl S Fy iﬁt}:Fz or (n>1andt}=F1 and tn_1 t:FI S Fz),

tEF Sy Frifft = Fyor (t = Fi and (n > 1 implies tn—) = F1 S5 F2)),

t F [Fl, Fz)s iff t bé Fy and (t }: Fi or (71 > 1 and th-) }: {Fl,Fz)s)),

tE [y, F2)o Ufft = F> and (& = F) or (n > 1 implies ta_1 = [F, F2)w)).

We call the past time temporal logic presented above ptLTL. There is a ten-
dency among logicians to minimize the number of operators in a given logic. For
example, it is known that two operators are sufficient in propositional calculus,
and two more (“next” and “until”) are needed for future time temporal logics.
There are also various ways to minimize ptLTL. Let ptLTL[ops be the restriction
of ptLTL to propositional operators plus the operations in Ops. Then

Proposition 1. The 12 logics® ptLTL (o 5,3, ptLTL (s 5,3, ptLTL (o), and
ptLTL f{oy{)w}, ptLTL I{T,SJ}! ptLTL [{T,Sw}) ptLTL [{T:Ds}’ ptLTL [{T,[)w}, and
PtLTLr{i,S,}; ptLTLf{iysw}, ptLTLr{i’D’}, ptLTL{{L,Dw}’ are all equivalent.
Proof. The equivalences follow by the following easy to check properties:

oF = true Ss F

OF = —¢ —F

F Sw = (EIFl) \ (Fl Ss Fg)
OF = F Sy, false

oF = - F

Fl SS Fg = (@Fz) A (F1 Sw F_;)
+F=FA-oF
JEF=-FAoF

([, B2)s = ~Fy A{(eFy) Ss F1)
[Fl,Fg)w = A ((G-ﬁFQ) Sw Fl)
[F=1-F
{F=|~F
(F1, F2)w = (B-F2) V [F1, F2)s
[FI,FQ)S = (@Fl) A [Fl,Fg)w
oF=(F =2 -1F)A(-F | F)
Fy S Fo = Fo Vv [eFy,~F1)s

2 The first two are known in the literature [16].

problem. An important observation is, however, that, like in many other dynamic
programming algorithms, one doesn’t have to store all the table s{1..n,0. 8],
which would be quite large in practice; in this case, one needs only s[¢, 0. 8] and

s[i — 1,0..8], which we'll write now[0..8] and pre[0. 8] from now on, respectively.
It is now only a relatively simple exercise to write up the following algorithm for

checking the above formula on a finite trace:

State state « {};
bit pre[0..8}:
bit nouw{0..8];
INPUT: trace t = ejes...€n;
/* Initialization of state and pre */
state +— update(state, e1);
pre[8] + s(state);
pre[7] « r(state);
pre[6] + pre[7] or pre[8];
pre[5] « false;
pre[d] « q(state);
pre[3] « preid] and not pre[3];
pre[2] + p(state);
pre[l] « false;
pre[0] < not pre(l] or pre[3];
/* Event interpretation loop */
for i =2 to n do {
state «+ update(state, e;);
nou[8] «— s(state);
now[7) - r(state);
(6] <= now(7] or now(8];
now(3] +- not now(6] and pre[6];
nowl(d] <~ q(state);
now(3] +- (pre[3] or nowl[4]) and not now[5];
now(2] «- p{state);
now(l] ¢~ now(2] and not pre[2];
now[0] - not now(1] or now(3);
if now[0; = 0 then output(‘ ‘property violated’’});
pre & now;
b
In the following we explain the generated program.

Declarations Initially a state is declared. This will be updated as the input
event list is processed. Next, the two arrays pre and now are declared. The
pre array will contain values of all subformulae in the previous state, while
now will contain the value of all subformulae in the current state. The trace
of events is then input. Such an event list can be read from a file generated
from a program execution, or alternatively the events can be input on-the-fly
one by one when generated, without storing them in a file first. The latter
solution is in fact the one implemented in PAX, where the observer runs in

parallel with the executing program.

INPUT: past time LTL formula ¢
let wo, 1, m be the subformulae of ¢;
output(“State state « {};”);
output(“bit pre[0..m];”);
output(“bit now[0..m};”);
output(“INPUT: trace ¢t = e1€z...€n;");
output(“/* Initialization of state and pre */7);
output(“state « update(state, e1);”);
for j = m downto 0 do {
output(“ pre[”, 7,] < 7);
if p, is a variable then output(¢;, “(state);”);
if p; is true then output(“true;”);
if ¢, is false then output(“false;”);
if p; = ~pj then output(“not pre[”.3', “I;7);
if p; = v, op pj, then output(“pre[” ji, “] op pre[” g2, “1;");
if 2, =[5, 9),)s then output(“pre[’,j1,] and not pre[”, jz, “|;");
if p; =1 ¢, then output(“false;”);
if ; =, ; then output(“false;”);
&
output(“/* Event interpretation loop */”);
output(“for i = 2 to n do {");
for j = m downto 0 do {
output(“ now(”, 7, “] + 7
if ©; is a variable then output(go], “(state);”);
if ¢} is true then output(“true;”);
if ¢, is false then output(“false;”);
if ; = ~¢; then output(“not now(”,j’, “;");
if o; = @5, op g;, then output(“now(”,j1, “] op nou(”, 72, “1");
if Yi = [90]'1’99]'2)5 then
output(“(pre[”, 4,] or now(”,j1, “]) and not now[”, 2, “Ii);
if s :T Yy then
output(“now(”, j', “] and not pre[”, §', “};");
if ﬂ»’] :L Wi then
output(“not now(”, j', “] and pre[”, §', “l;");

};

output(“ if now[0] = 0 then output(‘ ‘property violated’ Y7,
output(“ pre + now;”);
output(“}”);

where op is any propositional connective. Since we have already given a detailed
explanation of the example in the previous section, we shall only give a very
brief description of the algorithm.

The formula should be first visited top down to assign increasing numbers to
subformulae as they are visited. Let g, @1, ..., ¥m be the list of all subformulae.
Because of the recursive nature of ptLTL, this step insures us that the truth value
oft; E t,p] can be completely determined from the truth values of t: E oy
for all j < j/ < m and the truth values of t; 1 |= ¢y forall 7 < i< m.

class constructor takes as parameter a reference to the object that represents
the state such that any updates to the states by the monitor based on received
events can be seen by the evaluate() method. The generated Formulae class

for the above specification looks as follows:

class Formulae{
abstract class Formula{
protected String name; protected State state;
protected boolean[] pre; protected boolean[] now;

public Formula(String name,State state){

this.name = name; this.state = state;
}
public String getName(){return name;}
public abstract boolean evaluate();
}
private List formulae = new Arraylist();
public void evaluate(){
Iterator it = formulae.iterator(});
while(it.hasNext()){
Formula formula = (Formula)it.next();
if (formula.evaluate()){
System.out.println("Property " + formula.getName() + " violated");
113
class Formula_P extends Formula{
public boolean evaluate(){
now[8] = state.holds("s");
now[7] = state.holds("r");

now(6] = now(7] | now(8];
now[5) = 'now[6] &k pre(6];
now[4] = state.holds("q");
now[3] = (pre[3} Il now[4]) && !'now[5];

now[2] = state.holds('"p");
now[1] = now([2) k& !prel[2];
now[0] = !now(1] i} now[3];
System.arraycopy(now,0,pre,0,9);
return now[0];

}

public Formula_P(State state){

super ("P",state);
pre = new boolean[8]; now = new boolean[9];

pre(8] = state.holds("s");
pre(7] = state.holds("r'");
pre(6] = pre(7] || pre(8];
pre(5] = false;
pre(4] = state.holds("q");
pre{3] = pre[4) && !pre{5];
pre[2] = state.holds("p");
prell] = false;
prel0) = !'prel1] || pref3];
}
}

public Formulae(State state){
formulae.add{new Formula_P(state));

}
}
The class contains an inner abstract® class Formula and, in the general case, an
inner class Formula X extending the Formula class for each formula in the spec-
ification, where X is the formula’s name. In our case there is one such Formula P
class. The abstract Formula class declares the pre and now arrays, without giving

3 An abstract class is a class where some methods are abstract, by having no body.
Implementations for these methods will be provided in extending subclasses.

A first observation is that not all the bits in pre are needed, but only those
which are used at the next iteration, namely 2, 3, and 6. Therefore, only a bit per
temporal operator is needed, thereby reducing significantly the memory required
by the generated algorithm. Then the body of the generated “for” loop becomes
after (blind) substitution (we don’t consider the initialization code here):

state + update(state, e;)
now[3] ¢ r(state) or s(state)
now(2] « (pre[2] or q(state)) and not (not now(3] and pre[3])
now(l] + p(state)
if ((not (now[1] and not pre[l]) or now2]) = 0)
then output(‘ ‘property violated’’);

which can be further optimized by boolean simplifications:

state + update(state, €;)
now(3] + r(state) or s(state)
now(2] « (pre[2] or q(state)) and (now[3] or not pre[3])
now{1] <~ p(state)
if (now(1] and not pre[l] and not now(2)
then output(‘ ‘property violated’’);

The most expensive part of the code above is clearly the function calls, namely
p(state), g(state), r(state), and s(state). Depending upon the runtime require-
ments, the execution time of these functions may vary significantly. However,
since one of the major concerns of monitoring is to affect the normal execution
of the monitored program as little as possible, especially in the inline monitor-
ing approach, one would of course want to evaluate the atomic predicates on
states only if really needed, or rather to evaluate only those that, probabilis-
tically, add a minimum cost. Since we don’t want to count on an optimizing
compiler, we prefer to store the boolean formula as some kind of binary deci-
sion diagram, more precisely, as a term over the operation 7. : _ for example,
pre[3] 7 pre[2] ? now[3] : q(state) : pre[2] 71 : g(state) (see [9] for a formal
definition). Therefore, one is faced with the following optimum problem:

Given a boolean formula ¢ using propositions a1, @z, ..., @n of costs ¢, ca,
cn, respectively, find a (_?_: _)-expression that optimally implements (.

We have implemented a procedure in Maude [1], on top of a propositional cal-
culus module, which generates all correct (_?- : _)-expressions for ¢, admittedly
a potentially exponential number in the number of distinct atomic propositions
in ¢, and then chooses the shortest in size, ignoring the costs. Applied on the

code above, it yields:
state < update(state, e;)

now(3] +- rstate) 7 1 : s(state)
now[2] + pre[3] 7 pre[2] ? now(3] : g(state) : pre[2] 71 : q(state)

now[1] + p(state)

10.

11.

12.

13.
14.
15.

16.

17.

18.

19.

20.

21.

Klaus Havelund, Scott Johnson, and Grigore Rogu. Specification and Error Pattern
Based Program Monitoring. In Buropean Space Agency Workshop on On-Board
Autonomy, Noordwijk, The Netherlands, 2001.

Klaus Havelund, Michael Lowry, and John Penix. Formal Analysis of a Space Craft
Controller using SPIN. IEEE Transactions on Software Engineering, 27(8):749-
765, August 2001.

Klaus Havelund and Thomas Pressburger. Model Checking Java Programs using
Java PathFinder. International Journal on Software Tools for Technology Transfer,
2(4):366-381, April 2000. Special issue of STTT containing selected submissions
to the 4th SPIN workshop, Paris, France, 1998.

Klaus Havelund and Grigore Rosu. Java PathExplorer — A Runtime Verification
Tool. In The 6th International Symposiumn on Artificial Intelligence, Robotics and
Automation in Space: A New Space Odyssey, Montreal, Canada, June 18 - 21, 2001.
Klaus Havelund and Grigore Rogu. Monitoring Java Programs with Java PathEx-
plorer. In Klaus Havelund and Grigore Rogu, editors, Proceedings of Runtime Ver-
ification (RV'01), volume 55 of Electronic Notes in Theoretical Computer Sctence.
Elsevier Science, 2001.

Klaus Havelund and Grigore Rosu. Monitoring Programs using Rewriting. In Pro-
ceedings, International Conference on Automated Software Engineering (ASE’01),
pages 135-143. Institute of Electrical and Electronics Engineers, 2001. San Diego,
California.

Klaus Havelund and Natarajan Shankar. Experiments in Theorem Proving and
Model Checking for Protocol Verification. In Marie Claude Gaudel and Jim Wood-
cock, editors, FME’96: Industrial Benefit and Advances in Formal Methods, volume
1051 of Lecture Notes in Computer Science, pages 662-681. Springer, 1996.
Gerard J. Holzmann and Margaret H. Smith. A Practical Method for Verifying
Event-Driven Software. In Proceedings of ICSE'99, International Conference on
Software Engineering, Los Angeles, California, USA, May 1999. IEEE/ACM.
JavaCC. Web page. http://wuv.webgain.com/products/java_cc.

JTrek. Web page. http://wwu.compaq.com/java/download.
Insup Lee, Sampath Kannan, Moonjoo Kim, Oleg Sokolsky, and Mahesh

Viswanathan. Runtime Assurance Based on Formal Specifications. In Proceedings
of the International Conference on Parallel and Distributed Processing Techntques

and Applications, 1999.
Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent

Systems. Springer, New York, 1992.

David Y.W. Park, Ulrich Stern, and David L. Dill. Java Model Checking. In
Proceedings of the First International Workshop on Autornated Program Analysis,
Testing and Verification, Limerick, Ireland, June 2000.

Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, pages 46-77, 1977.

Grigore Rosu and Klaus Havelund. Synthesizing Dynamic Programming Algo-
rithms from Linear Temporal Logic Formulae. Technical Report TR 01-08, NASA
- RIACS, May 2001.

Scott D. Stoller. Model-Checking Multi-threaded Distributed Java Programs. In
Klaus Havelund, John Penix, and Willem Visser, editors, SPIN Model Checking
and Software Verification, volume 1885 of Lecture Notes in Computer Science,
pages 224-244. Springer, 2000.

Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model
Checking Programs. In Proceedings of ASE’2000: The 15th IEEE International
Conference on Automated Software Engineering. IEEE CS Press, September 2000.

