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Abstract

We present new third- and fifth-order Godunov-type central schemes for ap-
proximating solutions of the Hamilton-Jacob1 (HJ) equation in an arbitrary num-
ber of space dimensions These are the first central schemes for approximating
solutions of the HJ equations with an order of accuracy that is greater than two
In two space dimensions we present two versions for the third-order scheme: one
scheme that 1s based on a genuinely two-dimensional Central WENO reconstruc-
tion, and another scheme that is based on a simpler dimension-by-dimension re-
construction The simpler dimension-by-dimension variant 1s then extended to a
multi-dimensional fifth-order scheme Our numerical examples in one, two and
three space dimensions verify the expected order of accuracy of the schemes
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1 Introduction

We are interested in high-order numerical approximations for the solution of multi-
dimensional Hamilton-Jacobi (HJ) equations of the form

¢+ H(V¢) =0, T=(z;, x4)€RY,

where H 1s the Hamiltonian, which we assume depends on V¢ and possibly on « and ¢
In recent years, the HJ equations attracted a lot of attention from analysts and numerical
analysts due to the important role that they play in apphcations such as optimal control
theory, image processing, geometric optics, differential games, calculus of variations, etc.
The main difficulty n treating these equations is due to the discontinuous derivatives
that develop in fimte tumne even when the 1mtial data 15 smooth Vanishing viscosity
solutions provide a good tool for defining weak solutions when the Hamiltoman 1s convex
-[15] - The celebrated viscosity. solution provides a suitable extension of weak solutions
for more general Hamiltonians [3, 7, 8, 9, 10, 28, 29]. o -
Given the importance of the HJ equations, there has been relatively httle activity
developing numerical tools for approximating their solutions This 1s surprising given
that most of the numerical 1deas are based in the similarity between hyperbolic conser-
vation laws and the HJ equations, and the field of numerical methods for conservation
laws has been flourishing 1n recent years
Converging first-order approximations were mtroduced by Souganidis mn [38] High-
order upwind methods were introduced by Osher, Sethian and Shu 1n [34, 35] These
methods are based on Harten’s Essentially Non-Oscillatory (ENO) reconstruction [13],
that 1s evolved 1n time with a first-order monotone flux The Weighted ENO (WENO)
mterpolant of [18, 32] was used for constructing high-order upwind methods for the HJ
equations n [17], and extensions of these methods for triangular meshes were mtroduced
1n [1,40] We note in passing that there are other approaches for approximating solutions
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of HJ equation such as discontinuous Galerkin methods [14, 24] and relaxation schemes
[20]

A different class of Godunov-type schemes for hyperbolic conservation laws, the so-
called “central schemes”, have recently been applied to the HJ equations The prototype
for these schemes is the Lax-Friedrichs scheme [11]. A second-order staggered central
scheme was developed for conservation laws by Nessyahu and Tadmor mn [33] The
mamn advantage of central schemes 1s their simphaty Smce they do not require any
(approximate) Riemann solvers, they are particularly suttable for approximating mult:-
dimensional systems of conservation laws. Lin and Tadmor applied these 1deas to the HJ
equations in [31] There, first- and second-order staggered schemes versions of [2, 19, 33]
were written 1n one and two space dimensions An L! convergence of order one for this
scheme was proved in [30]. After the introduction of a semu-discrete central scheme
for hyperbolic conservation laws in [23], a second-order semi-discrete scheme for HJ
equations was introduced by the same authors in [22] While less dissipative, this scheme
requires the estimation of the local speed of propagation at every grid point, a task that
1s computationally intensive in particular with problems of high dimensionality By
considering more precise information about the local speed of propagation, an even less
dissipative scheme was generated in [21]

Recently we introduced 1n [5] new and efficient central schemes for multi-dimenstonal
HJ equations These non-oscillatory, non-staggered schemes were first- and second-order
accurate and were designed to scale well with an increasing dimension Efficiency was
obtained by carefully choosing the location of the evolution points and by using a one-
dimensional projection step Avoiding staggering by adding an additional projection
step 1s an 1dea which we already utilized 1n the framework of conservation laws [16]

In this work we introduce third- and fifth-order accurate schemes for approximating
solutions of multi-dimensional HJ equations. These are the first central schemes for such
equations of order greater than two This work 1s the HJ analog to the corresponding
works 1n conservation laws an ENO based central scheme [4], and the Central WENO
(CWENO) central schemes [25, 26, 27] We announced a preliminary version of the one
dimensional results in a recent proceedings publication [6]

The structure of this paper 1s as follows We start in §2 with the derivation of our
one-dimensional schemes. A third-order WENO reconstruction scheme 1s presented in
§2 2 This scheme required a fourth-order reconstruction of the point-values and a third-
order reconstruction of the derivatives at the evolution points Even though the optimal
location of the evolution points in one dimension 1s 1n the center of the interval, 1n order
to prepare the grounds for the multi-dimensional schemes we write a reconstruction for
an arbitrary location of the evolution points A fifth-order method 1s then presented in
§23

We turn to the multi-dimensional framework 1n §3 Here there 1s flexability in the
reconstruction step For simplicity we carry most of the discussion 1n two space di-
mensions Extensions to more than two space dimensions are presented in §3 4 First,
we provide a brief outline of the general structure of two-dimensional central schemes
mm §31 The main remaining ingredient, the reconstruction step, 1s then described in
the following two sections For a two-dimensional third-order scheme we present in
§3 2 two ways to obtain a high-order reconstruction of the approximate solution at the
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evolution points The first option 1n §3 2 1 1s based on a genuinely two-dimensional re-
construction An alternative dimension-by-dimension approach 1s based on a sequence
of one-dimensional reconstructions and 1s presented in §3 22 Our numerical results
show that both approaches are essentially equivalent Hence, the rest of the paper deals
with the dimension-by-dimension reconstruction A fifth-order dimension-by-dimension
extension of the one-dimensional scheme 1n §2.3 to two dimensions 1s then presented 1n
§3 3 Since the solution at the next time step 1s computed at grid points that are differ-
ent from those on which the data i1s given, we reproject the evolved solution back onto
the original grid points Dafferent ways to approach this reprojection step are discussed
n §3 2 3.

We conclude 1n §4 with several numerical examples 1n one, two and three space
dimensions that confirm the expected order of accuracy and the high-resolution nature
of our scheme We compare our results with the scheme of Jiang and Peng 1n [17] We
also study the convergence rate after the emergence of the discontinuities in the solution.

Acknowledgment: We would like to thank Volker Elling for helpful discussions through-
out the early stages of this work The work of D. Levy was supported 1n part by the
National Science Foundation under Career Grant No DMS-0133511

2 One-Dimensional Schemes

2.1 One-Dimensional Central Schemes

Consider the one-dimensional Hamilton-Jacob equation of the form
¢z, t) + H (¢p,) =0, zeR (21)

We are 1nterested 1n approximating solutions of (2 1) subject to the imtial data ¢(z,t=
0) = ¢o(z) For simpheity we assume a uniform grid grid in space and time with mesh
spacings, Az and At, respectively Denote the grid points by z, = 1Az, t* = nAt, and
the fixed mesh ratio by A = At/Az Let ¢} denote the approximate value of ¢ (z,,t"),
and (p,)" denote the approximate value of the denvative ¢, (z,,t"). We define the
forward and backward differencing as At} = ¢\, — ¢l and A~ = ¢l — o,
Assume that the approximate solution at time t”, ¢! 1s given A Godunov-type
scheme for approximating the solution of (2 1) starts with a continuous piecewise-
polynomal ¢(z,t") that 1s reconstructed from the data, ¢7,

(ﬁ(xa tn) = sz+% ($7 tn)XH—%(Z) (2 2)

Here, X.+1/2(z) 15 the charactenstic function of the interval [z,, 2,41], and P,y /o(z,t")
1s a polynomual of a suitable degree that satisfies the interpolation requirements

Pz+%(xz+ﬁ:tn) =¢hg PF=01
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The reconstruction (2 2) 1s then evolved from time " to time ¢"*! according to (2 1),
and sampled at the half-integer grid-points, {2,+1/2}, where the reconstruction 1s smooth
(as long as the CFL condition A |H’ (¢.)| < 1/2 1s satisfied)

gntl
nt+l . n _ ~
att =i [ () =
The point-value ¢, , is obtained by sampling (2.2), at Zo41/2,1€. @)1 /0 = G(Tuyr/2, ")
Since the evolution step (2 3) is done at points where the solution is smooth, we can ap-
proximate the time integral at the RHS of (2 3) using a sufficiently accurate quadrature
rule For example, for a third- and fourth-order method, this integral can be replaced

by a Simpson’s quadrature,

m ~ At sn ’ntg /1
o A (e (megr))arm o (1 () e (L) 2 (7)) 20
The derivative at time t", ¢/ T, /218 obtained by sampling the derivative of the recon-
struction (2 2),1e, ¢/ 7 = @'(Zet1/2,t") The intermediate values of the derivative in

time, ‘P::;;::lz/ ? and cp:,:‘f’/;, which are required 1n the quadrature (2 4), can be predicted
using a Taylor expansion or with a Runge-Kutta (RK) method Alternatively, (2 1) can
be treated as a semi-discrete equation by replacing the spatial derivatives with their
numerical approximations and integrating in time via an RK method.

The only remaining ingredient to specify 1s the reconstruction (22) Below we
present two reconstructions The first is a fourth-order reconstruction of the point-
values and the derivatives which leads to a third-order scheme, and the second 1s a

sixth-order reconstruction that results in a fifth-order scheme

Remarks

1. In order to return to the original grid, we project gofjll/z back onto the integer

grid pomnts {z,} to end up with ¢7*. This projection is accomplished with the

k3

same reconstruction used to approximate ¢, , from o7

2 In order to maximize the size of the time-step, the evolution pomts should be”
taken as far as possible from the singularities in the reconstructed
precewise-polynomial In one dimension the appropriate evolution pomnt 1s
located at 2,112 In d-dimensions with a uniform gnd with spacing Az, the
optimal evolution points are located at 2,40 = 2, + aAz 1n each direction, where
a=1/ (d + \/E) (see [5]) One of the multi-dimensional schemes we present in
§3 1s based on one-dimensional reconstructions Hence, in order to prepare the
grounds for the multi-dimensional setup, we write the one-dimensional
reconstruction 1n this section assuming that the evolution points are z,., The
reader should keep in mind that in one dimension, o = 1/2.

3 We would hike to point out that one does not need to fully reconstruct the
polynomials P,1y/5(x,t") The only values that the scheme requires are the
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approximated point-values o7, » = G(Z.+1/2,¢") and the approximated
derivatives ¢, 2= @' (z.41/2) Hence, mn the rest of the paper whenever we refer
to reconstruction steps we directly treat the recovery of these two quantities.

2.2 A Third-Order Scheme

A third-order scheme 1s generated by combiming a third-order accurate ODE solver 1n
time for predicting the intermediate values of the derivatives in (2 4), with a sufficiently
high-order reconstruction 1 space

Given ¢, mn order to invoke (2 3), we should compute two quantities in every time
step. the point-values at the evolution points, ¢,+4, and the derivative ¢, ,. In order to
obtain a third-order scheme, the approximations of the pomt-values should be fourth-
order accurate, and the approximation of the derivatives should be third-order accurate.
In this scheme, the reconstruction of the point-values 1s done in locations that are
staggered with respect to the location of the data The reconstruction of the derivatives,
which 1s required mn every step of the ODE solver, 1s done at the same points where
the data 1s given Since we anyhow need two types of reconstructions and due to
symmetry considerations, we derive a fourth-order approximation of the derivatives
Obviously, this more accurate reconstruction of the derivatives does not increase the
order of accuracy of the scheme but it does reduce the error

1 The reconstruction of p,., from ¢,

A fourth-order reconstruction of ¢,,, can be obtamed by considering a convex
combination of two quadratic polynomials, each of which requires the evaluation
of ¢ on a three-point stencil One quadratic polynomial ¢_(z) 1s constructed
on a stencil that 1s left-biased with respect to Ziia, {Z._1,Z:, Z.41}, While the
other polynomial ¢, (z) 1s constructed on a right-biased stencil, {z., Z,+1, Z,42},
see Figure 2 1. We set

—o+a? a+ a?
e = (Bt 0-Bps ()
- - - . (2=30+0%\. . ) —a+a?
Ptata = <'2—> P+ (201 - 02) Pot1 + (—2—) Prt2

For smooth ¢, a straightforward computation shows that @4 .10 = @ (Zipa) +
O (Az?), and

1 1
§ 2-0a) P—rta T+ 3 (1+a) Ptote = ¥ (Tura) +O (AI’A)

Simularly, the reconstruction of ¢, , 1s obtained using the quadratic polynomials
©_(z) based on the left-biased stencil enclosing z,—q, {Z,—2, Z.-1, 2.}, and ¢4 (z)
based on the right biased stencl {z,_1,z,, .11},

—o + o? 2—-3a+a?
Ppr—a = ("_2_—) Pr—2 + (2a - a2) ©i—1 + <__§—> 2 (26)
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—= - (p+,t+a

X1 X, X+qa Xiv] Xp42

Figure 2 1 The two interpolants used for the third-order reconstruction at the evolution
pomnt at x4

o+ ao? —a+o?
Prima = ( 2 ) P+ (1-0%) o + <_—2—) o

This time, Ptarea =@ (Zima) + O (Axs), and

1 (2- @) Prpo—a = ¢ (ea) + O (A:c4)

1
~(l+a)p_ o+t 3

3
A fourth-order WENO estimate of ¢,1,, is therefore given by the convex combina-
tion

Grta = W 0P nta + WhoPt ke (27)

where the weights satisfy w, + wh, =1, wi, >0, Vz In smooth regions we
would like to satisfy w_, = w), =~ (2— a) /3 and wi, =w_,~ (1+a)/3
to attain an O (Az?) error When the stencil supporting ¢, contains a discon-
tinuity, the weight of the more oscillatory polynomial should vamish Following
[18, 32|, these requirements are met by setting

k Xyt k ta - o o - 5
_ __Gda 28
ke Zl CYﬁ:i:oz ’ ke ( Stia) P ( )

where k,|l € {+, } The constants are 1ndependent of the grid index 2 and are
given by ¢, =ct =(2—-0a)/3, ¢t =c_,=(1+0a)/3 We choose ¢ as 107°
to prevent the denominator 1n (2 8) from vanishing, and set p = 2 (see [18]). The
smoothness measures S’f should be large when ¢ 1s nearly singular Following
(18], we take S,+o to be the sum of the L?-norms of the denvatives on the stencil
supporting ¢4 If we approximate the first dervative at z, by Atyp,/Az, the
second derivative by ATA~¢,1,/(Ax)?, and define the smoothness measuie

2 s 2
Z 1 -
= Az E ( A (pH-J) + Az ('ZSFA‘*.A QOH-J) ’ (2 9)

1=r+1
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then we have S, = 5,[-1,0], St, = S5.[0,1], S{_, = S,[-2,-1] and S, =
Sl [_1: 0]

For future reference we label the reconstruction in this section with the procedural
form

Yrra = reconstruct_¢_1D .3 (z, +a, ), (2 10)

where ¢ 15 the one-dimensional array (3, ,¢n). This notation will be used 1n
the dimension-by-dimension reconstructions in §3

The reconstruction of ¢, , from ¢4,

The values of ¢ we recovered in the previous step at the regularly spaced lo-
cations {Z,1} can be used to recover the derivative ¢,,, via a (non-central)
WENO reconstruction To obtain a fourth-order WENO approximation of ¢,
we write a convex combination of three quadratic interpolants ¢’ ., on the sten-
cl {240, T 140, Tital, ©p.+o OD the stencil {%o1ta; Trita, Trg14a ) a0d @) 4 p
on the stencll {Z,1q4, Zit140, Tiroea} For smooth o,

1
(pl_’lia B %(W1—2;}:a - 4‘70z—1:i:a + 3(/71:&&) = (PI (Iti:a) +0 (Axs) )
1
(‘067110 = ‘éz_((‘pﬂ—lﬂ:a - Soz—l:ta) = <P/ (zz:i:a) +0 (A$3) 3 (211)
xr
1
(pti-,iia = E(-?"Pu}:a + 4‘101+1:i:a - ‘Pz+2ia) = 90/ (xzi:a) + O (Axs)

A straightforward computation yields

1 2 1
awl—,zia + 5906,&:1 + 6(1014—,1:&& = (pl ($1:i:a) +0 (A.’B4) .

- The fourth-order WENO estimate of ;. from ¢, 1s therefore

! - ! 0 / + !
Prka = wz:ta(p—,z:ha + wz:ta(po,zd:a + wz:i:a(p+,z:ha7 (2 12)

where the weights w are of the form (2 8) with k,1 € {+,0,-},¢c” =ct =1/6," =
2/3, and the oscillatory mdicators are S, = Siza [—2, —1], S%o = Sixa[-1,0],
and S, = S.44 [0, 1]

For future reference we label the above reconstruction of ¢;., with the procedural
form

Y1 = reconstruct_¢’ 1D 3 (3, £, p1q) , (2.13)

where @1, is the one-dimensional array (Q14a,  PNLa)-
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We would like to summarize the one-dimensional third-order algorithm in the follow-
ing, where RK (g7, ¢, At) 15 the third-order Runge-Kutta method which integrates
(21) and 1s used to predict the intermediate values of the derivatives Each internal
step of the RK method will require additional reconstructions of ¢}, , from that step’s

Prta

Algorithm 2.1 Assume that {¢'} are gien

1 Reconstruct:

Yoo = Teconstruct_p_1D_8 (Z: *o, "Dn)
1o = reconstruct.g’ 1D_3 (1, 2o, Py, )

2 Integrate

n+l n
Lpz:l:ozz = RK ((pz:l:aa (p;:Qa’ At/2)

’ 1

1 1
gol;):? = reconstruct_p’'_1D_3 (z, +a, cp?;;)

oril = RK (pla, Pil s At)

‘P:EZI = reconstruct_¢’_1D_3 (7" *a, (’OZE)

At r o2 n
Gut = e + o [H () + 48 ($527) + H (012

8 Reproject

ot = reconstruct.p_1D_3 (2, Fa, ‘P?Ici) :

Remark 1t 1s possible to replace the Simpson’s quadrature 1n the integration step with
a single RK time-step, o[l = RK (¢, @I, At). Our simulations show that this
choice reduces the complexity of the computation but also reduces 1ts accuracy
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}
X2 X1 X Xy Xi+1 X142 (p-)- X1+3

Figure 2 2: The three interpolants used for the fifth-order reconstruction ¢,., at the
evolution point at z,;, In this example, because of the large gradient between z,,;
and z,,1, the interpolant ¢_ will have the strongest contribution to the CWENO recon-

struction at z,iq.

2.3 A Fifth-Order Scheme

In order to obtain a fifth-order scheme, we need a sixth-order approximation of the
point-values of ¢, a fifth-order approximation of the derivative ¢’, and a higher-order
prediction of the intermediate derivatives which appear 1n the quadrature formula Due
to arguments similar to those given 1n §2 2, we again derive a more accurate reconstruc-
tion of the derivatives, which in this case 1s sixth-order

We start with the reconstruction of ,., from p, We wrnite sixth-order interpolants
as a convex combination of three cubic interpolants, each of which requires the evaluation
of ¢ on a four-point stencil We use the polynomials ¢_(z) defined on the left-biased
stencil {@,—2,Z,—1, T, o1}, @o(z) defined on the centered stencil {z,-1,Z,, o1, Toy2}
and ¢, (z) defined on the right-biased stencil {z,, Z.41, Ziy2, To43}, see Figure 22 For
smooth ¢

Popra = @12 + a2pim1 + 030, + @1 = @ (Tuga) + O (Az?) (2 14)
Lota = A50,-1 + agp, + Q7P + 8P = @ (-’E1+a) +0 (A:LA) )
Prata = Q9@ + 210041 + Q11042 T Q12043 = @ ($,+a) +0 (A$4) )

where the constants are given by

a; = la' 1a3, ‘ag = —a + 1a2 + la3
Y6 6 2= 20 20 T
1 1 1 1
as = 1+§a—a2— 5013, aq = ga—i—éa?-}——éas,
1 1 1 1 1
as = —§a+§a2—-6—a3, aﬁzl—ia—a2+§a3,
a a+1 2_ L a 1 + 1a3 a
P - — =« = —— - = — y
§ 2 27 *T 76 6 !
11 1 1
ag = 1-— e +a? - 6043, ayp = 3o — §a2 + 5013,
3 1 1 1 1
ay; = —ECM + 20[2 - 5(13, Q1o = ga — 5042 + -éa3

At z,_, we have

Popma = Q1203 T Q112 + Q1o0—1 + Q9P = @ (@ea) + O (AfL‘4) ) (2 15)
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Poi—a = agP-2 + a79P.—1 + agp, + asP41 = @ (mz—a) + O (A$4) )
Piica = Q41+ @30, + 2P + 0102 = @ (Tua) + O (Az?)

A straightforward computation yields

C;I:oz(p—-,u(:a + c?:{:a(PO,z;{:a + C-:';EQ(P-}—,'L:i:a =g (xz:l:a) +0 (A‘TG) )

where
1 1 3
- ot 2 2.16
C1,+C¥ c—ot 20a 4a+ 10’ ( )
2 = —-ia2 + iOz + 3
N T 10 5
3 1
v - 2,9 -
Clha C,_, 2Oa + 20a+ 10
A sixth-order reconstruction of p,4, 1s therefore given by
Orta = w;ta‘p—,r_{:a + w?ﬂ:a(po,lﬂ:a + w:}:a(p+,1:!:a7 (2 17)

where the weights w* are given by (2 8) with k,I € {+,0,—}, and the constants c*
are given by (2 16) The oscillatory indicators are given via (2 9) by S, = 5,[—2,0],
8% =5,[-1,1] and Sj;, = S. [0, 2]

A sixth-order approximation of ¢!, from ¢, 1s written as a convex combination
of four cubic interpolants This reconstruction is similar to the third-order case, and 1s
based on a non-central WENO reconstruction We skip the details and summarize the
result.

/ — ] ’ 2 ’ 3 ’ 4 !/
Prta = wz:ta(pl,z:ta + wz:*:a(ro2,z:l:a + wz:!:a<p3,z:ta + wz:}:a(P4,zia7 (218)

where

1
Plota = @(—2%-&«1 + 901—24a — 1801120 + 11¢@ira),

1
w;,z:ka = '@(‘Pz~2i—a - 6(pz——lia + 39’)&:: + 2301+1:ta)7
A A - —- EE I — - =
Sog,z:ta = 6—&(_2‘;01—1ia - 3(p1:§:a + 6‘P1,+l:ta - (Pz+2ia);
1
S0,4,zia = E(_ll(;oz:}:a + 18‘Pz+1:i:a - 9‘Pz+2:§:a + 2(P1+3:i:a)

Here the weights w* are given by (2 8) with ¢; = ¢4 = 1/20,¢co = ¢3 = 9/20, SL., =
Sz:i:a ["3a _1]) Swzzl:a = it [—Za 0]7 S?:*:a = Vita [“17 1] and Sfﬂ;a = Vika [0, 2]

Notations

1 We label the reconstruction of the point-values (2 17) as
Prra = reconstruct_p 1D .5 (1, +a, ), (219)

where ¢ 1s the one-dimensional array (1, ,¢n)



12 S BRYSON AND D LEVY

2 We label the reconstruction of ¢/, , (2 18) as
i1 = reconstruct_¢’ 1D_5 (2, £, 044) , (2 20)

where ¢4, 15 the one-dimensional array (V140, , PN+a)
Remarks

1 To conclude, the fifth-order method 1s given by Algorithm 2 1, where the
fourth-order reconstructions are replaced by the sixth-order reconstructions
(2 19)-(2.20) As is, this scheme is only fourth-order in time. A higher order
method 1n time can be easily obtained by replacing Simpson’s quadrature with a
more accurate quadrature and computing the sixth-order approximations for the
pont-values and the derivatives at the new quadrature points

2. We choose to predict the intermediate values of the derivatives in time using the
fourth-order strong stability preserving (SSP) Runge-Kutta scheme of [12]. For
s€ {%, 1}, the SSP-RK scheme 1s given by

n 1 n
‘p(l) = ¢ - §SAtH ((p:z:))

¢ = 506" * Trogsan St (65) + g — Fgrgeti (68
o = o * Saooog 24 (D) + 0006006
* 2501020103AtH (o) + %‘Om * %SA”{ (),
= é<ﬂ" - f—osAtH (3) + %w(” + %sAtH (o) + %(%% (@
+ %qo(?’) - %sAtH ()

- ~Alternatively, the Natural Continuous Extension of the RK method [39] can be

used to produce the intermediate values ¢’ n+3 and ¢’ ™1 with a single RK step,
though we observe that errors are somewhat larger 1n this case

3 Multi-Dimensional Schemes

3.1 Two-Dimensional Central Schemes
Consider the two-dimensional HJ equation of the form
¢+ H(Vg) =0, T = (z1,22) € R?, (31)

subject to the imtial data ¢(Z,t = 0) = ¢o(Z) Denote z,;, = (21 + 1Az, 22 + JAL,)
Similarly to the one-dimensional setup, ¢, , will denote the approximation of ¢ at z,,
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We define the two sets of grid pownts, I+ = {z,,, Tst1,,, Toy+1}, and I_ = {z, ,, z,1,, @, -1},
and denote by T, T_ the triangles with vertices I; and I_ respectively For simplicity
we assume a uniform grid Az, = Aze = Az

Assume that the approximate solution at time ¢", ¢’ 1s given Similarly to the one-
dimensional setup in §2.1, a Godunov-type scheme for approximating the solution of
(3.1) starts with a continuous piecewise-polynonual @(Z,t") that 1s reconstructed from
the data, @7,

B(Z,1) = ) Pir(& t")xr. (&) (32)
.3

As usual, xr,(Z) 1s the characteristic function of the triangle T, and Pz,Tf (Z,t") 15 a
polynomial of a smtable degree that satisfies the interpolation requirements

R,Tf(fht") = o(Z,t"), T €l

(see Figure 31) The reconstruction (3 2) is then evolved from time t" to time t"*!
by (3 1), and sampled at the evolution powmnts {Z,1q,+0} In two dimensions the choice
a = 1/(2 + v/2) guarantees that the solution remains smooth at the evolution pomnt as
long as the CFL condition £% |H' (V)| < ac1s satisfied The evolved solution now reads

g+l

Plta e = Piragta = H (V@ (Tito,ytar 7)) AT (33)

-
The point-values @7, ., are obtamed by sampling (3 2) at Titaysa, 1€, Pln te =
P(Tytay4a, t?) Similarly to the one-dimensional case, the evolution points are m smooth
regions and therefore the integral on the RHS of (3 3) can be replaced with a sufficiently
accurate quadrature such as the Simpson rule (2 4), which leads to a scheme that 1s
fourth-order accurate in time The denvatives at time t", ¢, ., are obtammed by
sampling the derivative of the reconstruction (3 2),1e, o1, 1, = &' (T.tayta,t™) The
other intermediate values of the derivative in time that are required in the quadrature can
be predicted using a Taylor expansion or with a Runge-Kutta method 1n an analogous

way to the one-dimensional case

Remarks -

1 We present two different algorithms for constructing .14 ;1+q: two-dimensional
interpolants defined on two-dimensional stencils and a dimension-by-dimension
approach We present both algorithms for the third-order scheme and extend the
simpler dimension-by-dimension approach to fifth-order Our numerical
simulations 1 §4 mdicate that both reconstructions of ¢,44 ;1 are of a
comparable quality In both approaches, the reconstruction of the derivatives
Vita 10 18 done dimension-by-dimension

2 We reproject (pf:;d +o and 7] back onto the integer gnd-pomts, obtaining
cp:;"l We present several ways to carry out this reprojection a genuinely
two-dimensional approach, a dimension-by-dimension strategy and a reprojection

along the diagonal hne through z,_o ;- and T,1a 40
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Jj+1

| £
i i+

Figure 3.1: The location of the evolution points ;i j+o and the domain of definition
of the interpolants ¢;14 j+o in two dimensions.

3.2 Two-Dimensional Third-Order Schemes

In order to obtain a third-order scheme, we need a fourth-order reconstruction of the
point-values at the evolution points Zii1qs jia-

3.2.1 A two-dimensional reconstruction of @14 j+a

In this section we present a two-dimensional fourth-order reconstruction of the point-
values ;44 j+o. In principle, a two-dimensional cubic interpolant would provide a recon-
struction with the desired accuracy. Such an interpolant is based on a ten-point stencil.
As usual, solving such a direct interpolation problem is unsatisfactory as spurious os-
cillations might develop as a result of the lack of smoothness in the solution. Instead,
we generate a two-dimensional fourth-order reconstruction as a convex combination of
four quadratic interpolants, each which is based on a six-point stencil. We choose com-
pact quadratic interpolants such that the union of all the six-point stencils is a compact
ten-point stencil. Similarly to any WENO-type reconstruction, when singularities are
present the six-point stencils containing the singularities are suppressed. In any case,
we implicitly assume that the solution is sufficiently resolved such that the singulari-
ties in the solution are isolated in the sense that they do not occur along neighboring
parallel cell edges. Singularities will in general occur along adjacent cell edges. There
is a lot of flexibility in choosing the ten-point stencil as well as the different six-point
stencils. Here, for the evolution point ;44 j+o We choose the ten-point stencil shown in
Figure 3.2. We choose to use the four six-point stencils that are shown in Figure 3.3.
Obviously, the union of these stencils is the ten-point stencil in Figure 3.2. Furthermore,
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L Jj+2
® * ] Jj+1
(0]
L @ @ L 4 J
? . J1
i-1 i i+ i+2

Figure 3.2: The ten-point stencil for the two-dimensional reconstruction of ¢;ia j+a-
The open circle shows the location of the evolution point at Z;tq,j+a-

they all enclose the cell containing the evolution point and they all cross different edges
of the enclosing cell. A singularity along an edge will suppress two of these stencils,
while a singularity in a corner will suppress three of these stencils.

Remarks.

1. The stencils for the evolution point at z;_, ;_o are obtained by a rotation of 180
degrees of the stencils in Figures 3.2-3.3.

2. We could use less than four stencils and still generate a scheme that will have the
desired order of accuracy.

Given the four six-point stencils in Figure 3.3, a straightforward computation shows that

third-order approximations for smooth ¢ at the evolution points Tiiae jta; Prie jia =
@ (Tita, Yjxa) + O (AZ?, Ay®), VK € {1,2,3,4}, is obtained with

SozliaJ‘:ta = @1pij + 02Pit1,; + Qi j11 + Q3Qix1j+1 + Q4Pixa; + Q4P o,  (3.4)

(p?;}:a’jj:a = Q5@ ; + aePit1,; T Q25 j+1 + A3Pi+1 541 T Q4P j+2 + Q4P 5,

Sofia’j:]:a = Q7@ + G2Pit1,j + A2@; j+1 T A8Pit1 41 T Q4Pix1 jF1 T QaPix1 j+1,

¢3ia,jia = G59i; t Q2@it1j T QWi j+1 T A3Pi+1, 541 T Q4Pix2j T A4Pi 71,

where

o = 1-3a+2d? ay = 20 — 202, as = a?, (3.5)
S & 3= S

as = —§a+§a, a5=1——§a+§a, a6=§a——2—a,

ar = 1—2a+a2, ag = —a + 202
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Jj+2

j+1

1 i

Jj+2

J+l

J-1

i-1 i i+l i+2 i-1 i i+] i+2

Figure 3.3: The four six-point stencils that cover the ten-point stencil for the two-
dimensional reconstruction.

The linear combination
4
Z ck‘pf:i:a,jia =9 (-'L'i:i:ay yj:ta) +0 (A.’LA, Ay4) )
k=1
is fourth-order accurate provided that the constants c; are taken as

1 2
'cl=§(5a——1),62=C4=§(“201+1),C3:a- (3.6)

A two-dimensional CWENO reconstruction is a straightforward generalization of the
one-dimensional case (compare with (2.7),(2.8)),

4
SR k k
Pita,jta = Witg jtaPita,jta
k=1
\
Here
ok
,wk . ita,jto ak _ Ck
ita,ja T 4 1 ’ ita,jta T k P
2 Qitg jta (5 + Sz‘ia,jta)

with the constants ci given by (3.6). As usual, the smoothness measure for every stencil
is taken as a normalized sum of the discrete L?-norms of the derivatives. If we define
the forward and backward differences A y,; = wit1; — vij, D i; = Qij — Vic1js
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AYpij = Pij+1 — Pijy, Dy pij = $ij — Pij-1, then the smoothness measures for the
evolution point Z;iq4 j+a are given by

Slajta = (AI<Pi,j)2+(A+s0i+1j)2+(A+<Pi,j+1)2+(A;L<Pi,j)2+ (Af i)’
+(AFpin1s)” + 5oz [(AF AT ou1s) + (A3 A pisn)?]

S?+a,j+a - (A:‘Pi,z) (A7 pi- 11)2+(A+‘P11+1) +(A+‘Pii)2+(A;<Pi,j+1)2
+(Af i)’ + lx [(A+A eis) +(AFA7 %J+1)2]7

Saita = (Afeis)*+ (A zsoij+1)2+(A i-1541)" + (AT 0i5)" + (AFpinr)
+ (A} eiv1i-1)” +z— [(A A i)+ (AJAJWHJV],

Shagra = (BF0is)"+ (Bfeirss)’ + (BFpisen)” + (AF0is)" + (AF 0i-1)
+ (A pins) + 5oz [(AF AT 0u1s) + (A A i)’

The smoothness measures for the evolution point ;4 j_ are

Shtgud = (AI%-ZJ)ZJF(A"L% 13)” + (A3 pio1i-1)" + (BF pig-2)" + (Af wi1)
+(Afpic1m1) + A Yo [(A A7 pio1g)’ +(A;A§<Pi,j—1)2],

S aiea = (Bfwis)’+ (A+<p,- 1)+ (AFi15-1)" + (Bf @ic1s)” + (BF @im15-1)
+ (Agig-2)’ + o5 (87 A7 00,) + (AT A 0is-)?]

5 aj-a = (A+‘Pi—13’)2+(A+‘Pii 1)’ + (A pic1m1)" + (A 0ii-1)” + (A ¢im1s)”

+(Afpic1-1)” +— [(AIA;¢i,j—1)2+(A;-Ay_‘toi—l,j)2]’

Stai-a = (Aeiag)'+ (AI%’—U)Z + (Afpi15-1)" + (Af0i) + (A @im)’

+(OF0ir151)" + 505 (AT AT0e1)" + (83 A7 015)].

3.2.2 A dimension-by-dimension reconstruction of ¢;iq jta

A different way to obtain high-order approximations for the values of @;iq j+a is by
carrying out a sequence of one-dimensional reconstructions from §2.2. This dimension-
by-dimension approach for the reconstruction step is similar in spirit to that of [17], but
here, in order to generate a Godunov-type scheme (unlike [17]), we are forced to use
evolution points that are not positioned in the same locations as the data z;;. An ap-
propriately chosen sequence of one-dimensional reconstructions addresses this problem.

We use the subscript '+’ to denote the full range of an array, such that ¢, ; and
@i « denote the one-dimensional arrays ¢, ; = (¢14,...,¢n;) and @i = (@i, ..., QiN)-
With the notation for the one-dimensional third-order reconstruction, (2.10), we can
express the dimension-by-dimension reconstruction at Zi+q j+a 8

1. For each i, j: ¢;4q,; = reconstruct_¢_1D_3 (%, a, ¢4 ;)

2. For each %, j: @itq j+o = reconstruct_p-1D_3 (7, @, Pitax)-
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Lo o o—— %2 -+ PO 42
| 2
| ; 8
—0 o J+l O b4 o g+l
: k|
| g
o | d s
<= - ) SO e
1 Interpolate in this direcuon 8
} =
] —
o o o o - Lo
| | \ 4
1-1 1 1+1 1+2 1-1 1 1+ 1+2

Figure 3.4. The dimension-by-dimension reconstruction process in two dimensions Left:
the first step where the intermediate interpolants ¢, , at z,.,, (open squares) are
computed using the data ¢,, (black dots) Rught the second step, where .44, 18
interpolated in the j direction, gIving Y.1ay+a 8t Titay+a (Open circle)

Here, we first interpolate along the first coordinate axis and reconstruct ¢ at Z.iq
The data at z,,4,, 15 then mnterpolated along the second coordinate axis to the location
Toto,y+a tO IVE Vhia;ta (see Figure 3.4) Obviously, the order in which the steps are
performed 1s not important In a similar way, a dimension-by-dimension reconstruction
at T,_q ;- 18 glven by

1 For each 1,7 ¢,—q, = reconstruct_¢.1D_3 (2, —a, ¢, ;)

2 Foreach,) ¢i-a,-a = reconstruct_p_-1D_3 (¢, —a, Q1_qas)

3.2.3 The reprojection step

After evolving the solution to the next time step at the evolution points Z,14 ,14 We
would hike to reproject };fs |, back onto the mteger grid points z,, to end up with ]}
There are several different ways to perform this task out of which we choose to present
the following a two-dimensional reprojection using the two-dimensional reconstruction

" of §3 21 or the dimension-by-dimension reconstruction of §3 2 2, and a one-dimensional

projection along the diagonal

1 A 2D reprojection. The evolution points at 2,14 ,+. have the same geometrical
relationship to z,, as z,, has to Z,_q,-.. Hence, m order to reconstruct go"“
from 0,14 ;+q, We can directly utilize the projections from §3 21 or §3 2 2, takmg
$rta, +e 8 the mput data, and reversing the sign of the parameter from +a to
Fa The final value (p““ 15 then taken as the average of the projections of ¢,14 ;44
and ¢,_o,-o- Hence, 1f we denote either the two-dimensional or the dimension-
by-dimension reconstruction described in §3.2 1 or §32 2 as

Prtayte = reconstruct_p 2D 3 (2, 7, o, @), ‘ (37)

where ¢ is now the two-dimensional array {¢,,}, then the reprojection step 1s
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j+1
xl+l-QJ+l-CL
Xiro+o
X, J
Xi a0
Xil+o-1+a .
Jj1
-1 i i+!

Figure 3 5. The evolution points used for the diagonal reconstruction of ¢,

(a) For each i, <p:' , = reconstruct_¢ 2D 3 (2, —a, Prtogta)
(b) For each 4,7 ¢, = reconstruct 9 2D3(z,®, ¢1-a,y-a)
(c) For each i, 5 97" = 3 (vl + 1))

2 A diagonal reprojection. In this case we use one-dimensional data along the di-
agonal, {Q,—11a,~140 Pr—aj—ar Prtag+ar Petl-ay+i-at, O construct a third-order
WENO approximation of @ZJH (see Figure 3 5)

Define
2
o a—1
v = 5o 7P-ltag-ita 5o Preay- 38
501,1 20 — 1(P 1+o,7-1+a + 2(2a _ 1)(P = ( )
- - T l==a T - T - T - -
2 prragra = 9 (3) + O (82, AY°),
¥ l1-a a-1
901,_-, = “2_“101—0,_7-01 + m‘pﬂ-a,ﬁ»a
052

+20t _ 1‘101,+1—a,1+1—-a =@ (Iz,]) +0 (A$3, Aya) .

Sice ((p; + <ij)/2 = p(z,,) + O (Azt, Ay*), we can obtamn (p:;-l as

‘p:JH =W, 0, T w;fz(p;fy’ (39)

-1
where as usual w, = o,/ (af,+a,), and of, = (2 (e + S£)")”" The smoothness

measures are again taken as the sum of the discrete L? norm of the derivatives,
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which 1n this case is more complicated due to the uneven spacing of the data

2 2
S_ _ _1__ Soi—a,]-—a - <Pz—1+a,_7—1+o: + (Pz+a,j+a - (Pt—a,J—a
w7 Az 1-2a 2a
2
+ 4 (pl—a,J——oz ~ Pr—l+4a,-14+a _ Prta,j4a — Pr-ay3~a
Az3 1-2« 20 ’
2 2
S+ _ _1_. W1+a,]+a - (pz—a,]—a + (;01+1—a,_7+1—a - §01+a,]+a
wI Az 20 1- 2«

2
4+ 4 (Qoz+a,]+a — $r—a,)-a _ Crtl-ayy+l—a — (Pz+a,]+a)

Ax3 Qo 1-2a

Remark Our numerical simulations 1n §4 3 indicate that there is hittle difference between
the quality of the two-dimensional reconstruction and the dimension-by-dimension re-
construction of §3 2 1 and §3 22 We will use this fact when extending our methods to
fifth-order and higher dimensions We note that the diagonal reprojection sigmficantly
reduces the CFL number (see §4 4)

3.3 A Two-Dimensional Fifth-Order Scheme

Using the dimension-by-dimension approach, 1t 1s easy to extend the above scheme to
fifth-order simply replace the one-dimensional third-order interpolations by the fifth-
order interpolation in §32 2 Using the one-dimensional notation, (2 19), we obtain a
fifth-order reconstruction at z,,q4,,+4 as

1. For each ¢, .40, = reconstruct_p_1D.5 (2, o, s ;)

2. For each 2,7 @,4q,+e = reconstruct_p_1D.5 (3, &, Prtas)
Simularly, at z,_;—o We have

1. For each 2,7 ¢,_,, = reconstruct_p_1D.5 (2, —a, ¢, ,)
"72. For each ¢, 7 P,—a -a = reconstruct_p1D.5 (3,=a, @izax)
We denote this reconstruction as

Prta +a = reconstruct-p 2D_5 (z, 7, o, ) (3 10)

For the derivatives we have

1 Foreach,j ¢, , = reconstruct_¢’ 1D.5 (4, £a, pu ;)

2. For each 1,7 ¢/, 1, = reconstruct ¢’ 1D_5 (2, £, Pria )
which we denote as
Ot yra = Teconstruct ¢’ .2D.5 (1, 7, £a, @) (3.11)

Reprojection onto the original grid points z, , 1s performed using the two-dimensional
dimension-by-dimension reprojection option described in §3 2 3
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Remarks

1 Due to the reduced stability resulting from the use of diagonal reprojection,
which 1s demonstrated 1n §4.4, we do not develop a fifth-order analog to the
third-order diagonal reprojection

2 It is straightforward to develop a fifth-order two-dimensional method mmvolving
two-dimensional stencils, extending §3 21 Such a method would involve four
interpolants defined on ten-point stencils that cover a twenty one point stencil.

We summarize the two-dimensional fifth-order algorithm in the following, where
RK (¢, ¢34, At) 15 now the fourth-order RK method which ntegrates (21) As m
Algonithm 2.1, each nternal step of the RK method will require additional reconstruc-
tions of ¢, , from that step’s ¢, 4q

Algorithm 3.1 Let @ =1/ (2 + v/2). Assume that {w7,} are grwen

1 Reconstruct

Prrara = TECONStTUCt P _2D_5(1,7, £a, )
Dyt gt = TECONStrUCt Q' 2D_5(1, 3, £ 01, )

2 Integrate

n+é

Qoz:ta,]ia = RK (W?ﬂ:a,]iav (p:;a,]:l:a’ A.15/2)

/ n+% ’ n+%
Pota,yia = TeCONSIrUCt @' 2D 5 (1, £, P1oita

n+1 _ n /n
(pzia,;]ﬂ:a = RK ((pz:i:a,]:hm (Pv.:}:a,]:bon At)

i ; 1o = Teconstructg’ 2D_5 (1, +a, go'g’lia)

n n At n 1t n
<p1:i.:+_c},_7d:a = (to'zd:a,]:i:a + F [H ((P::i:a,J:i:a) + 4H (‘pz:ha,;:!:a) +H (‘P;ﬂ:;;:{:a)]

3. Reproject

<P:"j1 = reconstruct_p_2D_5 (z, 7, Fa, 9012,1ia)



22 S BRysoON AND D. LEvy

3.4 Multi-Dimensional Extensions

The extension of the direction-by-direction approach to more than two space dimensions
1s straightforward. For example, using the notation of §3 3, a three-dimensional fifth-
order reconstruction 1s

1 For each ¢, 3, k. Puyq, ke = reconstruct_p_1D_5 (2, o, s 5 k)
2 For each 4,7,k Qiyoj+ak = reconstruct @ 1D_5 (¢, &, Pryaxk)-
3 Foreach 1,7,k @Qutrajtakta = reconstruct_p 1D_5 (2, &, Prtaytax)

The reconstruction at z,_q ;—q k-« is handled similarly, and the same for the reconstruc-
tion of ¢, 1o 1o D three dimensions a =1/ (3+ V3)

A d-dimensional reconstruction based on d-dimensional stencils quickly becomes very
large It 1s readily apparent that the dimension-by-dimension approach will scale to high
dimensions better than d-dimensional interpolants

4 Numerical Simulations

In this section we present simulations that test the schemes we developed in this paper
In §4 1 we demonstrate the third- and fifth-order method 1n one dimension §4 2 focuses
on the fifth-order method in two and three space dimensions In §4 3 we compare
the two-dimensional third-order method based on two-dimensional stencils with the
direction-by-direction approach In §4 4 we examine, in detail, stability 1ssues in two
dimensions, including comparisons with [17] Some of these examples are standard test
cases that can be found, e g, 1n [22, 31, 35]

We do not follow the practice mn [17] of masking singular regions from our error
measurements. ’

4.1 One-Dimensional Examples

A-convex--Hamiltonian - - - --- - == —--

We start by testing the performance of our schemes on a convex Hamiltoman. We
approximate solutions of the one-dimensional equation

bot 5 (17 =0, @1

subject to the mmtial data ¢(z,0) = — cos(wz) with periodic boundary conditions on
[0,2] The change of vaniables, u(z,t) = ¢, (z,t) + 1, transforms the equation into
the Burgers’ equation, u, + 3 (u?), = 0, which can be easily solved via the method of
charactenstics [35) As1s well known, Burgers’ equation generally develops discontinuous
solutions even with smooth 1nitial data, and hence we expect the solutions of (4.1) to
have discontinuous derivatives In our case, the solution develops a singularnty at time

t=7"2
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The results of our simulations are shown 1n Figure 41 The order of accuracy of
these methods 1s determined from the relative L' error (see [30]), defined as the L!-norm
of the error divided by the L!-norm of the exact solution These results along with the
relative L°-norm before the singularity, at T = 0.8/72, are given 1n Table 4 1, and after
the singularity at T = 1 5/7% 1n Table 4 2

Third-order method
N || relatwe L'-error | L'-order | relatwe L®-error | L*®-order
100 9.41x1073 - 177x107° -
200 1.13x107° 306 133x107° 373
400 1.39x10°° 302 935x107% 383
800 1.74x1077 300 594x107° 300
Fifth-order method
N || relatwe L'-error | L'-order | relatwe L®-error | L™®-order
100 141x107% ~ 261x10°° —
200 421x1077 507 4 03x1078 6 02
400 331x10°8 500 6 53x10°10 595
800 4 03x10°10 503 100x10~11 603

Table 4 1: Relative L'-errors for the one-dimensional convex HJ problem (4 1) before

the singulanty formation 7T =0 8/72.

Thard-order method
N || relatwe L' -error | L'-order | relatwe L*®-error | L®-order
100 910x1074 - 277x1074% -
200 216x1074 207 763x107° 186
. .. |400] 684x107° 166 268x10_ | 151
800 2 75x107° 1.31 2.08x107° 0.37
Fifth-order method
N || relatwe L'-error | L*-order | relatwe L*=-error | L*-order
100 785x1074 - 5781074 -
200 161x107% 2.29 829x107° 2 29
400 671x107° 126 509%x10~° 126
800 344x107° 096 344x107° 096

Table 4 2 Relative L'-errors for the one-dimensional convex HJ problem (4 1) after the
singulanty formation T =15/n?
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Figure 41 One-dimensional convex Hamiltoman (4.1) Left: the solution before the
singularity formation, T = 0 8/n% Raght the solution after the singulanty formation,
T =15/ N = 40 Shown are the third- and fifth-order approximations, and the
exact solution.

A non-convex Hamiltonian

In this example we deal with non-convex Hamilton-Jacobr equations In one dimension
we solve

¢t — cos (¢, + 1) =0, (42)

subject to the initial data ¢ (z,0) = — cos (mz) with periodic boundary conditions on
[0,2] In this case (4 2) has a smooth solution for ¢ < 1049/72, after which a sin-
gulanty forms A second singularity forms at ¢t ~ 129/7% The results are shown 1n
Figures 4 2 The convergence results before and after the singulanty formation are given
in Tables 4 3-4 4.

A linear advection equation

In this-example ([17] with a misprint, corrected in [40]) we solve the one-dimensional
linear advection equation, 1e, H (¢,) = ¢, We assume periodic boundary conditions
on [—1,1], and take the mtial data as ¢ (z,0) = g (z — 0 5) on [—1, 1], where

g(x)=—(\/7§+g+2§> (x +1) + h(z),

2cos (¥£2?%) — V3, -l<z< -3,
) 3/2+3cos(2nz), -1 <z <0,
Mz) = 15/2 — 3 cos (27z), 0<z<3, (43)

(28 + 41 + cos (3mz)) /3 + 6rz(z~1), <z <1

The results of the fifth-order method are shown in Figure 4 3, where 1t 1s compared with
the fifth-order method of [17] The reduced dissipation effects of our method are visible
m the reduced round-off of the corners



HicH ORDER SCHEMES FOR HJ EQUATIONS

25

. Thard-order method
N || relatwe L'-error | L'-order | relatwe L*®-error | L™-order
100 647x107° - 905%x107% -
200 7 78x107° 306 111x107® 303
400 8 7T7Tx10~" 315 927%x1078 3 58
800 987x1078 315 612x107° 3.92

Fifth-order method

N || relatwe L'-error | L'-order | relatwe L*®-error | L™-order
100 129%10-° - 497x10°6 -
200 6 52x10~"7 4.31 238x1077 4 38
400 210x108 4.95 613x10°% 5 28
800 596x10~10 514 103x10710 590

Table 4 3: Relative L'-errors for the one-dimensional non-convex HJ problem (4 2)
before the singulanty formation T = 0 8/7>

Thard-order method
N || relatwe L'-error | L'-order | relatwe L*®-error | L>®-order

100 281x10~4 - 964x1075 —~

200 132x1074 108 505%x10~% 093
400 231x107° 252 6 00x 10~ 307
800 8 43x10°° 1 46 330x1078 086

Fifth-order method
N || relatwe L'-error | L-order | relatwe L*-error | L*-order

100 157x10~4 - 1.12x107¢ —

200 8 3d4x10°° 0.91 6 60x107% 077
400 122x107° 278 8 64x107° 293
800 6 67x10°5 0.87 523x1078 072

Table 4 4 Relative L*-errors for the one-dimensional non-convex HJ problem (4 2) after
the singularity formation T' = 1.5/x?
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o5

05+

Figure 4 2 One-dimensional non-convex Hamiltoman (4 2) Left The solution before
the singularity formation, T = 0 8/72. Raght. The solution after the singularity forma-
tion, T = 15/7%. N = 40 Shown are the third- and fifth-order approximations, and

the exact solution

-6 6
0 05 0 05 L * 05 0 05 !
— exact
H + fifth-order
t=16 I© O Jiang and Peng t=232

Figure 4 3 One-dimensional linear advection, (4.3) T = 2,8,16,32. N =100 Crosses
our fifth-order method Curcles the fifth-order method of [17] with a local Lax-Friedrichs
flux Solid line the exact solution
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4.2 Two-Dimensional Examples
A convex Hamiltonian

In two dimensions we solve a problem similar to (4 1)

bt 5 (Bt 6, +1) =0, (@9

which can be reduced to a one-dimensional problem via the coordinate transforma-
13 1 ( 1 1 T
y

tion " =32l 1 1 . The results of the second-order calculations for

2
the mmtial data ¢ (z,y,0) = —cos(n(z + y)/2) = — cos (7€) are shown 1n Figure 4 4
The convergence rates for the two-dimensional fifth-order scheme before and after the
singularity are shown in Table 4.5

Before singularity T = 0 8/7*

N || relatwe L-error | L'-order || relatwe L>-error | L=-order
50 1.19x107¢ — 7 78%10~7 -

100 6.80x10~° 413 164x1078 5 56
200 1.73%x10~7 530 112x10~10 720

After singularity T = 1.5/7*
N | relatwe L'-error | L'-order || relatwe L*™-error | L®-order ||

50 1.32x1073 - 2.07x107° -
100 3.89x1071 176 360x10°° 252
200 4.86x107° 300 169x1077 441

Table 4 5 Relative L!- and L*-errors for the two-dimensional convex HJ problem (4 4)
before and after singularity formation, computed via the fifth-order method

A non-convex Hamiltonian

¢y —cos(¢z + ¢y + 1) = 0. (45)

Here we assume mitial data that 1s given by ¢ (z, y, 0) = — cos (7 (z + y)/2), and periodic
boundary conditions The results are shown i Figure 4 5 The convergence results for
the two-dimensional fifth-order scheme before and after the singularity formation are
given 1n Table 4 6

A fully two-dimensional example

The above two-dimensional examples are actually one-dimensional along the diagonal
To check the performance of our methods on fully two-dimensional problems we solve

$e + oy = 0, (46)
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Figure 4.4 Two-dimensional convex Hamiltoman, (44) Left the solution before the
singularity formation, T = 0 8/72. Raight: the solution after the singularity formation,
T =15/n% N =40 x 40. The solution is computed with the fifth-order method

Before singularity T = 0 8/7°
N | relatwe L' -error | L'-order || relatwe L™-error | L™-order |

50 111x1074 - 126x107° -
100 691x10~° 4.00 242x1078 570
1200 | 385x1077 | 417 || 627x1071° T 527 T

After singularity T =1 5/7*
N | relatwe L'-error | L'-order || relatwe L*®-error | L®-order |

50 147x1073 - 8 58x1078 -
100 193x1074 2.93 927x10~7 321
200 8 87x107° 1.12 309%x10~7 158

Table 4 6 Relative L'- and L*-errors for the two-dimensional non-convex HJ problem
(4 5) before and after the singularity formation, computed with the fifth-order method
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Figure 4 5 Two-dimensional non-convex Hamiltonian, (4 4) Left. the solution before

Right the solution after the singulanty for-
N = 40 x 40 The solution is computed with the fifth-order
method

the singulanty formation, 7' = 0 8/n?
mation, T = 1.5/72

on [—m, 7] x [—m, 7], subject to the imitial data ¢ (z,y,0) = s (z) + cos(y) with pe-
riodic boundary conditions The exact solution for this problem is given implicitly by

¢ (z,y,t) = —cos (g)sin (r)+sm (q) +cos (r) where z = g—tsmn (r) and y = r+tcos(q).
This solution 1s smooth for ¢ < 1, continuous for all ¢ and has discontinuous derivatives
for t > 1 The results of our simulations at times T'=0 8,1 5, are shown in Figure 4 6
The convergence results for the first- and second-order two-dimensional schemes be-

fore the singularity formation are given in Table 4 7 and confirm the expected order of
accuracy of our methods

Before singularity T =08

Table 4 7 Relative L!-errors for the two-dimensional HJ problem (4 6) before singulanty
formation 7 =08 The solution 1s computed with the fifth-order method

An eikonal equation in geometric optics

We consider a two-dimensional non-convex problem that arises in geometric optics [20]

{¢t+\/¢2+¢3+1=0: (47)
¢ (x,y,0) = 1 (cos (2mz) — 1) (cos (2my) — 1) — 1

N [ relatwe L' -error | L -order || relatwe L®-error | L®-order

50 [ --610x107% - - 815x107¢% -
100 210x10~7 4 86 7 35x10~1° 679

200 753x107° 4 80 559x10~1° 704

29
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Figure 4 6 Fully two-dimensional Hamiltoman, (4 6) Left the solution before the
singularity formation, 7' = 08 Right the solution after the singularity formation,
T=15 N =>50x50 The solution is computed with the fifth-order method

The results of our fifth-order method at time 7" = 0 6 are shown in Figure 4 7, where
we see the sharp corners that develop in this problem

An optimal control problem

We solve an optimal control problem related to cost determination [35] Here the Hamil-
tonian 1s of the form H(z,y, V¢)

¢e — s (y) ¢z + s () ¢y + @] — 2 510 (y) — 1 + cos (z) = 0, (48)

| ¢(z,y,0)=0 _ | . _ _ _ —

The result of our fifth-order scheme 1s presented in Figure 4 8 and is in qualitative
agreement with [31]

4.3 A Comparison of Two-Dimensional Third-Order Interpolants

In this section we use the examples (4.4), (4 5) and (4 6) to compare the third-order
method of §3 2 1, based on interpolation via two-dimensional stencils, with that of §3 2 2,
where we used a direction-by-direction approach The results are shown in Table 4 8
The dimension-by-dimension method produces errors that are approximately twice as
large compared with the genuinely two-dimensional reconstrcution However, the con-
vergence rate 1s qualitatively the same 1n both methods These results motivated us to
base our fifth-order scheme on the much simpler dimension-by-dimension reconstruction
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Figure 4 7 Two-dimensional eikonal equation, (47) N
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Figure 4 8 Two-dimensional optimal control problem, (4 8) An approximation with
the fifth-order method 1s shown at T =1 N =40 x40
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2D Stenculs Darection-by-Direction
N | relatwe L*-error | L!-order | relatwe L'-error | L'-order
Conver Hamaltonaan at T = 0 8/m?
50 470x107¢ - 6 13x1074 -
100 754x107° 2.64 943x107° 2170
200 807x10°° 3.23 102x107° 321
Convez Hamiltonsan at T = 1 5/m*
50 123x1073 - 2 61x1073 -
100 4 56x1074 144 819x104 1.67
200 370x107° 3 62 122x1074 2.74
Non-Conver Hamaltorwan at T = 0 8/7*
50 227x1074 - 392x1074 -
100 3 75x107° 2 60 6 97x107° 2 49
200 399%x107° 323 722x107° 327
Non-Conver Hamaltonsan at T =1 5/7°
50 123x1073 - 194x1073 —
100 250x10~* 230 416x107* 2.22
200 763x107° 171 120x1074 179
Fully 2D Ezample at T =08
50 201x1074 - 148%x10~4 -
100 242x107° 305 165%x107° 3.16
1200 _295%x107® | 304 195x10~% | 308 | ]

Table 4.8 Comparison of the third-order method of §3 2 1, with an interpolation via
two-dimensional stencils, and that of §3.2.2, with the direction-by-direction approach
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4.4 A Stability Study

In this section we present a couple of stability studies we obtained in our simulations
We start by checking the stability properties of the third-order scheme with different
reprojection steps The reconstruction step 1s done 1n all cases using the direction-by-
direction interpolant We compare the dimension-by-dimension reprojection and the
diagonal reprojection (of §3 2 3) In Figure 4 9 we plot the L! error as a function of the
CFL number. The test problem 1s (4 6) with the fully two-dimensional Hamiltonian
The solution is computed at 7= 08 We see that the use of a diagonal reprojection
significantly reduces the maximum allowed CFL number

X 10% Third order fully 2D H, T=08
T T

1 T T T Y T T T

09

o8

071

retative L'-error
o o
v N

o
S

) L L 1 ) 2 ' s L
15 16 17 18 19 2 21 22 23 24 25
CFL

Figure 4 9: Stability of the two-dimensional third-order method with a dimension-by-
dimension (crosses) vs a diagonal reprojection (diamonds) Fully two-dimensional
Hamiltoman (4.6)- - T = 0 8 (before singularity) N =-100 x 100~ - -

We now turn to checking the stability properties of the two-dimensional fifth-order
method of §3 3 by computing the L! errors for various examples while varying the CFL
number. In Figure 4 10 we compare the results obtained with our fifth-order scheme
with the fifth-order method of [17], for which we used a local Lax-Friedrichs flux The
numerical tests indicate that larger CFL numbers can be used with our method

4.5 Three-Dimensional Examples

We proceed with a three-dimensional generalization of the convex Hamiltoman (4 4),

Bt 5 (et 9y + 6+ 1P =0, «9)
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Figure 4 10: Stability of the two-dimensional fifth-order method N = 100 x 100.
Crosses our fifth-order method Curcles the fifth-order method of [17] with a local
Lax-Friedrichs flux Upper left linear advection (H (V) = V) with mitial condition
#(z,y,0) = —cos(w(z +y)/2) Upper right fully 2D Hamltoman (4 6) Middle row
convex Hamultonian (4 4), before the singularity (right) and after the singulanty (left)
Bottom row- non-convex Hamiltonian (4 5), before the singularity (right) and after the
singularity (left)
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subject to the initial data ¢ (z,y, 2,0) = — cos (7(z + y + 2)/3) The convergence results
for the three-dimensional fifth-order scheme before and after the singularity formation
are given 1n Table 4 9. We also approximate the solution of the non-covex problem

$: —cos(pz+ ¢y +¢:+1) =0, (4 10)

with the same 1mtial data The convergence rates for the three-dimensional fifth-order
schemes are given 1n Table 4 10

Before singularity T = 0.5/
N T relatwe L'-error | L'-order || relatwe L>-error | L®-order

25 261x1074 - 1.07x10~7 -
50 6 40x10~° 535 316x10°1° 841
100 150x10~7 542 918%x10°13 8 43

After singularty T =1 5/7*
N | relatwe L'-error | L' -order || relatwe L>-error ] L®-order

25 6.95%x10~3 - 180x10~° -
50 140x103 231 4.15x107° 212
100 533x1074 139 6.94x10~7 258

Table 49 Relative L!- and L*-errors for the three-dimensional convex HJ problem
(4 9) before and after the singulanty formation, computed with the fifth-order method

Before singularity T = 0 5/m°
N | relatwe LY-error | L -order || relatwve L>-error | L®-order

25 7.28x1074 - 370x10~7 -
50 3.71x107° 429 4.06x107° 651
100 105%x10-° 514 218x10~H 7 54

After singularity T =15/
N | relatwe L -error [ L'-order || relatwe L®-error [ L*®-order

25 |- 674x1073 - [ —=—] —3.27x10°® -
50 1.26x1073 242 6.90x10~7 225
100 4.21x1074 159 6.84x1078 333

Table 4 10. Relative L'- and L*-errors for the three-dimensional non-convex HJ problem
(4 10) before and after the singulanty formation, computed with the fifth-order method
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