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Abstract

We present new third- and fifth-order Godunov-type central schemes for ap-
proximating solutions of the Hamilton-Jacobi (HJ) equation in an arbitrary num-
ber of space dimensions These are the first central schemes for approximating
solutions of the HJ equations with an order of accuracy that is greater than two
In two space dimensions we present two versions for the third-order scheme- one
scheme that is based on a genuinely two-dimensional Central WENO reconstruc-
tion, and another scheme that is based on a simpler dimension-by-dimension re-
construction The simpler dimension-by-dimension variant is then extended to a
multi-dimensional fifth-order scheme Our numerical examples in one, two and
three space dimensions verify the expected order of accuracy of the schemes
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1 Introduction

We are interested in high-order numerical approximations for the solution of multi-
dimensional Harmlton-Jacobi (HJ) equations of the form

& + #(V^) = 0, x= ( X l , x d ) eR d ,

where H is the Hamiltoman, which we assume depends on V</> and possibly on x and t
In recent years, the H J equations attracted a lot of attention from analysts and numerical
analysts due to the important role that they play in applications such as optimal control
theory, image processing, geometric optics, differential games, calculus of variations, etc.
The mam difficulty in treating these equations is due to the discontinuous derivatives
that develop in finite time even when the initial data is smooth Vanishing viscosity
solutions provide a good tool for defining weak solutions when the Hamiltoman is convex

- [15] The celebrated .viscosity, solution provides a suitable extension of weak solutions
for more general Hamiltonians [3, 7, 8, 9, 10, 28, 29].

Given the importance of the HJ equations, there has been relatively little activity
developing numerical tools for approximating their solutions This is surprising given
that most of the numerical ideas are based in the similarity between hyperbolic conser-
vation laws and the HJ equations, and the field of numerical methods for conservation
laws has been flourishing in recent years

Converging first-order approximations were introduced by Souganidis in [38] High-
order upwind methods were introduced by Osher, Sethian and Shu in [34, 35] These
methods are based on Harten's Essentially Non-Oscillatory (ENO) reconstruction [13],
that is evolved in time with a first-order monotone flux The Weighted ENO (WENO)
interpolant of [18, 32] was used for constructing high-order upwind methods for the HJ
equations in [17], and extensions of these methods for triangular meshes were introduced
in [1, 40] We note in passing that there are other approaches for approximating solutions
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of HJ equation such as discontinuous Galerkin methods [14, 24] and relaxation schemes
[20]

A different class of Godunov-type schemes for hyperbolic conservation laws, the so-
called "central schemes", have recently been applied to the HJ equations The prototype
for these schemes is the Lax-Friednchs scheme [11]. A second-order staggered central
scheme was developed for conservation laws by Nessyahu and Tadmor in [33] The
mam advantage of central schemes is their simplicity Since they do not require any
(approximate) Riemann solvers, they are particularly suitable for approximating multi-
dimensional systems of conservation laws. Lin and Tadmor applied these ideas to the H J
equations in [31] There, first- and second-order staggered schemes versions of [2, 19, 33]
were written in one and two space dimensions An L1 convergence of order one for this
scheme was proved in [30]. After the introduction of a semi-discrete central scheme
for hyperbolic conservation laws in [23], a second-order semi-discrete scheme for HJ
equations was introduced by the same authors in [22] While less dissipative, this scheme
requires the estimation of the local speed of propagation at every grid point, a task that
is computationally intensive in particular with problems of high dimensionality By
considering more precise information about the local speed of propagation, an even less
dissipative scheme was generated in [21]

Recently we introduced in [5] new and efficient central schemes for multi-dimensional
HJ equations These non-oscillatory, non-staggered schemes were first- and second-order
accurate and were designed to scale well with an increasing dimension Efficiency was
obtained by carefully choosing the location of the evolution points and by using a one-
dimensional projection step Avoiding staggering by adding an additional projection
step is an idea which we already utilized in the framework of conservation laws [16]

In this work we introduce third- and fifth-order accurate schemes for approximating
solutions of multi-dimensional HJ equations. These are the first central schemes for such
equations of order greater than two This work is the HJ analog to the corresponding
works in conservation laws an ENO based central scheme [4], and the Central WENO
(CWENO) central schemes [25, 26, 27] We announced a preliminary version of the one
dimensional results in a recent proceedings publication [6]

The structure of this paper is as follows We start in §2 with the derivation of our
one-dimensional schemes. A third-order WENO reconstruction scheme is presented in
§2 2 This scheme required a fourth-order reconstruction of the point-values and a third-
order reconstruction of the derivatives at the evolution points Even though the optimal
location of the evolution points in one dimension is in the center of the interval, in order
to prepare the grounds for the multi-dimensional schemes we write a reconstruction for
an arbitrary location of the evolution points A fifth-order method is then presented in
§23

We turn to the multi-dimensional framework in §3 Here there is flexibility in the
reconstruction step For simplicity we carry most of the discussion in two space di-
mensions Extensions to more than two space dimensions are presented in §3 4 First,
we provide a brief outline of the general structure of two-dimensional central schemes
in §3 1 The mam remaining ingredient, the reconstruction step, is then described in
the following two sections For a two-dimensional third-order scheme we present in
§3 2 two ways to obtain a high-order reconstruction of the approximate solution at the
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evolution points The first option in §3 2 1 is based on a genuinely two-dimensional re-
construction An alternative dimension-by-dimension approach is based on a sequence
of one-dimensional reconstructions and is presented in §322 Our numerical results
show that both approaches are essentially equivalent Hence, the rest of the paper deals
with the dimension-by-dimension reconstruction A fifth-order dimension-by-dimension
extension of the one-dimensional scheme in §2.3 to two dimensions is then presented in
§3 3 Since the solution at the next time step is computed at grid points that are differ-
ent from those on which the data is given, we reproject the evolved solution back onto
the original grid points Different ways to approach this reprojection step are discussed
in §3 2 3.

We conclude in §4 with several numerical examples in one, two and three space
dimensions that confirm the expected order of accuracy and the high-resolution nature
of our scheme We compare our results with the scheme of Jiang and Peng in [17} We
also study the convergence rate after the emergence of the discontinuities in the solution.

Acknowledgment: We would like to thank Volker Elling for helpful discussions through-
out the early stages of this work The work of D. Levy was supported in part by the
National Science Foundation under Career Grant No DMS-0133511

2 One-Dimensional Schemes

2.1 One-Dimensional Central Schemes

Consider the one-dimensional Hamilton- Jacobi equation of the form

4>t(x, t) + H (<j>x) = 0, x € R (21)

We are interested in approximating solutions of (2 1) subject to the initial data <p(x,t =
0) = <f>o(x~) For simplicity we assume a uniform grid grid in space and time with mesh
spacmgs, Ax and At, respectively Denote the grid points by xl = lAx, tn = nAi, and
the fixed mesh ratio by A = Ai/Ax Let <f>™ denote the approximate value of _4> (%i, *n)j
and (<PZ)" denote the approximate value of the derivative </>x (x,,t"). We define the
forward and backward differencing as A+<^" = </?™+1 — </?" and A~</>™ =</?" — </?"_!

Assume that the approximate solution at time tn, y>™ is given A Godunov-type
scheme for approximating the solution of (21) starts with a continuous piecewise-
polynomial fi(x,tn) that is reconstructed from the data, </?",

l+1_(x,tn)Xl+i(x} (22)

Here, Xi+i/^(x) 1S tne characteristic function of the interval [xt,xt+i], and Pt+1/2(x, tn)
is a polynomial of a suitable degree that satisfies the interpolation requirements
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The reconstruction (2 2) is then evolved from time tn to time tn+l according to (2 1),
and sampled at the half-integer grid-points, {zl+i/2}, where the reconstruction is smooth
(as long as the CFL condition A \H' (<px)\ < 1/2 is satisfied)

T (23)

The point-value y"+1/2 is obtained by sampling (2.2), at xt+1/2, i e. </>"+1/2 = <p(xt+i/2, tn)
Since the evolution step (2 3) is done at points where the solution is smooth, we can ap-
proximate the time integral at the RHS of (2 3) using a sufficiently accurate quadrature
rule For example, for a third- and fourth-order method, this integral can be replaced
by a Simpson's quadrature,

A / r / \ / , _i_i\ / \ i
17 i „' n \ i A U I ,„ """2 I i U I ,*' n+1 I /o A\

Lrz I f ,i i + 4/i \ ( f> i ) ~ r - " l y , i ) (^ ^)
6 L \ "~2/ \ *+z / V t+5 /J

The derivative at time tn, f^i/i ls obtained by sampling the derivative of the recon-
struction (2 2), i e , <p(+i/2 = ¥>'(#1+1/2 > i") The intermediate values of the derivative in

time, y\+i/2 , and <f>[^^2, which are required in the quadrature (2 4), can be predicted
using a Taylor expansion or with a Runge-Kutta (RK) method Alternatively, (2 1) can
be treated as a semi-discrete equation by replacing the spatial derivatives with their
numerical approximations and integrating in time via an RK method.

The only remaining ingredient to specify is the reconstruction (2 2) Below we
present two reconstructions The first is a fourth-order reconstruction of the point-
values and the derivatives which leads to a third-order scheme, and the second is a
sixth-order reconstruction that results in a fifth-order scheme

Remarks

1. In order to return to the original grid, we project V'l+V/a back onto the integer
grid points {xl} to end up with </?"+1. This projection is accomplished with the
same reconstruction used to approximate </?™+1/2 from <p"

2 In order to maximize the size of the time-step, the evolution points should be"
taken as far as possible from the singularities in the reconstructed
piecewise-polynomial In one dimension the appropriate evolution point is
located at rct+i/2 In d-dimensions with a uniform grid with spacing Ax, the
optimal evolution points are located at xt+a = xt + aAx in each direction, where

a = I/ (d + Vdj (see [5]) One of the multi-dimensional schemes we present in

§3 is based on one-dimensional reconstructions Hence, in order to prepare the
grounds for the multi-dimensional setup, we write the one-dimensional
reconstruction m this section assuming that the evolution points are xt±a The
reader should keep in mind that in one dimension, a = 1/2.

3 We would like to point out that one does not need to fully reconstruct the
polynomials P,+1/2(x, tn) The only values that the scheme requires are the
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approximated point-values <^™+1/2 — ̂ (^1+1/2, tn) and the approximated
derivatives <f'1+1/2 = <f>'(xl+i^2) Hence, in the rest of the paper whenever we refer
to reconstruction steps we directly treat the recovery of these two quantities.

2.2 A Third-Order Scheme

A third-order scheme is generated by combining a third-order accurate ODE solver in
time for predicting the intermediate values of the derivatives in (2 4), with a sufficiently
high-order reconstruction in space

Given <£™, in order to invoke (2 3), we should compute two quantities in every time
step, the point- values at the evolution points, (pt±a,

 and the derivative <p't±a. In order to
obtain a third-order scheme, the approximations of the point- values should be fourth-
order accurate, and the approximation of the derivatives should be third-order accurate.
In this scheme, the reconstruction of the point- values is done in locations that are
staggered with respect to the location of the data The reconstruction of the derivatives,
which is required in every step of the ODE solver, is done at the same points where
the data is given Since we anyhow need two types of reconstructions and due to
symmetry considerations, we derive a fourth-order approximation of the derivatives
Obviously, this more accurate reconstruction of the derivatives does not increase the
order of accuracy of the scheme but it does reduce the error

1 The reconstruction of (pl±a from </?,

A fourth-order reconstruction of <pl+a can be obtained by considering a convex
combination of two quadratic polynomials, each of which requires the evaluation
of (f> on a three-point stencil One quadratic polynomial <p-(x) is constructed
on a stencil that is left-biased with respect to xl+a, {xt-i,xt,xr+i}, while the
other polynomial (f>+(x) is constructed on a right-biased stencil, {xl,xl+i,xl+2},
see Figure 2 1. We set

2x
1 - a2) <A + — - — U7l+1) (25)

\ z J
,0 2v , f-a + a2\(2a-a ) <pt+1 + I — — - ! <pl+2

For smooth <p} a straightforward computation shows that y>±it+a —

- (2 - a) ¥?_,,+„ + - (1 + a) yp+,l+Q = y (xl+a) + O (Ax4)

Similarly, the reconstruction of (pt~a is obtained using the quadratic polynomials
<p~(x) based on the left-biased stencil enclosing xl-a, {x^2,xt-i,x^, and <f>+(x)
based on the right biased stencil {o;t_i,Xi,xt+i},

fn 2s - ._.
(2a - a2) ^,_i + - - - p., (2.6)
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h+OC
xi+2

Figure 2 1 The two mterpolants used for the third-order reconstruction at the evolution
point at xi+a

- a
—a + a'

This time, <^±)t_a = <p (xt_a) + O (Ax3), and

-
O

a) (p_>t_a + - (2 - a) p+,,-a = ip (x^a) + O (Ax4)
O

A fourth-order WENO estimate of <p*±a is therefore given by the convex combina-
tion

where the weights satisfy w~±a + w*±a = 1, w^_a > 0, V? In smooth regions we
would like to satisfy w~+a = w^_a ~ (2 — a) /3 and w++a = w~_a PS (1 + a) /3
to attain an O (Ax4) error When the stencil supporting </?»±a contains a discon-
tinuity, the weight of the more oscillatory polynomial should vanish Following
[18, 32], these requirements are met by setting

(28)

where fc, / 6 {+, — } The constants are independent of the grid index % and are
given by c~+a = c+_a = (2 - a) /3, c+.Q = ct"_a = (1 + a) /3 We choose e as 10"6

to prevent the denominator in (2 8) from vanishing, and set p = 2 (see [18]). The
smoothness measures S* should be large when if is nearly singular Following
[18], we take St±Q to be the sum of the L2-norms of the derivatives on the stencil
supporting <p± If we approximate the first derivative at x, by A+</?t/Ax, the
second derivative by A+A~(pt±a/(Ax)2, and define the smoothness measuie

S, [r, s} = (2 9)
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then we have S-+a = £[-1,0], S++Q = 5, [0,1], S~_a = 5, [-2, -1] and S+_a =
£[-1,0]

For future reference we label the reconstruction in this section with the procedural
form

</>.±a = reconstruct_<^_!D_3 (z, ±a, tp) , (2 10)

where (f is the one-dimensional array (<pi, ,¥>N}- This notation will be used in
the dimension-by-dimension reconstructions in §3

2 The reconstruction of tp(±a from±a ,a

The values of <p we recovered in the previous step at the regularly spaced lo-
cations {xl±a} can be used to recover the derivative <p(±a

 via a (non-central)
WENO reconstruction To obtain a fourth-order WENO approximation of <p't±a,
we write a convex combination of three quadratic mterpolants </>'_it±a on the sten-
cil {xl_2±Q,x,_i±Q,a;t±Q}, <Po,t±Q on the stencil {xl-i±a,x,±a,xl+i±a} and v'+il±a

on the stencil {xt±a,xl+i^-a,xl+2±a} For smooth ip,

p' (xl±a) + O (Ax3) ,

+ 0(Ax3), (2.11)

= <P' (Z.±a) + O (AX3)

A straightforward computation yields

g V-,,±a + 3^0,^ + g^'+.^ia = V' (^±«) + ° (A^) '

The fourth-order WENO estimate of y>',±a from ^t±a is therefore

Vl±a = w7±c,V>-,^a + ^ia^O.tia + ^±aV'+^±a> (2 12)

where the weights w are of the form (2 8) with k, I 6 {+, 0, — }, c~ = c+ — 1/6, c° =
2/3, and the oscillatory indicators are S~±Q = Sl±a [—2, —1], S?±a = Sl±a [—1,0],
and 5+a = £±a [0, 1]

For future reference we label the above reconstruction of y>'l±a with the procedural
form

tp'l±a = reconstruct_</?'_lD_3 (z, ±a, (p±a) , (2-13)

where <p±a is the one-dimensional array (yi±Q, , <PN±O)-
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We would like to summarize the one-dimensional third-order algorithm in the follow-
ing, where RK (<^r±a> P't±a> At) is the third-order Runge-Kutta method which integrates
(2 1) and is used to predict the intermediate values of the derivatives Each internal
step of the RK method will require additional reconstructions of <p(±a from that step's

Algorithm 2.1 Assume that {<£>"} are given

1 Reconstruct-

v!±<* = reconstruct.^ -ID. 3 (i, ±a, </?n)

</>t±a = reconstruct.^' -ID -3 (i, ±a, </>"±Q)

2 Integrate

(f>i±a
 2 = reconstruct-^' -1D-3 (i, ±a, </?"±a

2 J

±a 1 = reconstruct.^' _W.3 ^, ±a,

5 Reproject

<p"+1 = reconstruct jp .ID .3 (i,

Remark It is possible to replace the Simpson's quadrature in the integration step with
a single RK time-step, <p"±* — RK (<£>™±Q, tp(±a, At). Our simulations show that this
choice reduces the complexity of the computation but also reduces its accuracy
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Figure 2 2: The three interpolants used for the fifth-order reconstruction tpt+Q at the
evolution point at xt+Q In this example, because of the large gradient between xl+\
and xl+i, the mterpolant </>_ will have the strongest contribution to the CWENO recon-
struction at xl+a.

2.3 A Fifth- Order Scheme

In order to obtain a fifth-order scheme, we need a sixth-order approximation of the
point-values of (p, a fifth-order approximation of the derivative <p', and a higher-order
prediction of the intermediate derivatives which appear in the quadrature formula Due
to arguments similar to those given in §2 2, we again derive a more accurate reconstruc-
tion of the derivatives, which in this case is sixth-order

We start with the reconstruction of tpl+a from </?, We write sixth-order interpolants
as a convex combination of three cubic interpolants, each of which requires the evaluation
of (f on a four-point stencil We use the polynomials <p-(x) defined on the left-biased
stencil {a; t_2,a; t_i,x l,Xi+i}, (po(x) defined on the centered stencil {x l-\,Xi,x l+\,Xi+i}
and <f>+(x) defined on the right-biased stencil {o;,,a;t+i,x,+2,xt+3}, see Figure 2 2 For
smooth (

t-2 + <W,_i + + a4<pt+i = + O (Arc4) ,

+ O (Arc4) ,

a) + O (Arc4) ,

(2 14)

where the constants are given by

1 1 , 1
2(

a3 = 2 3-a-a --a3,

2 3

a7
1 9 J. o

= a + -ar--a*
2
11

flg = 1 - -7-'o
_3

an - 2a

At rc^Q we have

1
-
D

o 3
a6 = 1 - -a - a + -a

= 3a - -a2 + -a3,

(215)
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2 = <p (X-a) + O (Ax4)

A straightforward computation yields

Ci±a¥>-,'±a + Cjia^ia + C^a^+.tia = ^ (^.±0) + O (A^6) ,

where

<&. = <t--s°'-ia+S' ("6)

0 1 2 1 3
C°- = -10^+10a+5'

, 1 2 3 1
r = c = — n -I -- rv -I --t+a l-Q 20 20 10

A sixth-order reconstruction of (p,±a is therefore given by

±a, (2 17)

where the weights wk are given by (2 8) with k,l € {+,0,—}, and the constants ch

are given by (2 16) The oscillatory indicators are given via (2 9) by S~±a = St [—2, 0],

A sixth-order approximation of <f'l±OL from <^±a is written as a convex combination
of four cubic mterpolants This reconstruction is similar to the third-order case, and is
based on a non-central WENO reconstruction We skip the details and summarize the
result.

where

Here the weights wk are given by (2 8) with GI = 04 = 1/20, c2 = 03 = 9/20,
S^±Q [-3, -1], 5,2±Q = 5t±a [-2, 0], 5f±Q = 5,±a [-1, 1] and 5*±a = 5I±Q [0, 2]

1 We label the reconstruction of the point- values (2 17) as

<£i±a = reconstruct_<£>_lD_5 (i, ±a, <p) , (2 19)

where (p is the one-dimensional array (</?i, , <
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2 We label the reconstruction of <p(±a (2 18) as

V«±a = reconstruct_<//_!D_5 (i, ±a, </?±a) , (2 20)

where y>±a is the one-dimensional array (<pi±a, , ¥>N±a)

Remarks

1 To conclude, the fifth-order method is given by Algorithm 2 1, where the
fourth-order reconstructions are replaced by the sixth-order reconstructions
(2 19)-(2.20) As is, this scheme is only fourth-order in time. A higher order
method in time can be easily obtained by replacing Simpson's quadrature with a
more accurate quadrature and computing the sixth-order approximations for the
point-values and the derivatives at the new quadrature points

2. We choose to predict the intermediate values of the derivatives in time using the
fourth-order strong stability preserving (SSP) Runge-Kutta scheme of [12]. For
s € {|, l}, the SSP-RK scheme is given by

649 10890423 . . n. 951 5000
*1600

(3) _ 53989 n 102261 4806213 (
~ 2500000̂  + 5000000s (tfx) 20000000̂

+

-Alternatively, the Natural Continuous Extension of the RK method [39] can be
used to produce the intermediate values (p'n+2 and <//n+1 with a single RK step,
though we observe that errors are somewhat larger in this case

3 Multi-Dimensional Schemes

3.1 Two-Dimensional Central Schemes

Consider the two-dimensional HJ equation of the form

0, x=(Xl,x2)£R\ (31)

subject to the initial data <j>(x,t = 0) = <po(x) Denote x%>0 = (x\ +zAxi,X2 + jAxa)
Similarly to the one-dimensional setup, <ptj will denote the approximation of $ at xtj
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We define the two sets of grid points, 1+ = {xtj, xt+i,j, xtj+1}, and /_ = {xt>J,Xt-i,j,xtj-i}}

and denote by T+, T_ the triangles with vertices I+ and /_ respectively For simplicity
we assume a uniform grid A:CI = Ax2 = Ace

Assume that the approximate solution at time tn, y?™^ is given Similarly to the one-
dimensional setup in §2.1, a Godunov-type scheme for approximating the solution of
(3.1) starts with a continuous piecewise-polynomial (p(x,tn} that is reconstructed from
the data, <p™3,

(32)

As usual, XT±(X) is the characteristic function of the triangle T±, and Plj
:(x,tn) is a

polynomial of a suitable degree that satisfies the interpolation requirements

Pl^(xi,tn) — <p(x;,£"), xi € /±

(see Figure 3 1) The reconstruction (3 2) is then evolved from time tn to time tn+1

by (3 1), and sampled at the evolution points {xt±aj±Q} In two dimensions the choice
a = I/(2 + \/2) guarantees that the solution remains smooth at the evolution point as
long as the CFL condition ^ \H' (Vy)| < a is satisfied The evolved solution now reads

!,±oj±a,T))dT. (33)

The point-values <£™±a)J±Q are obtained by sampling (3 2) at x,±aj±o, 1 e , vr±a,j±a =

¥>(£t±a,j±a, tn) Similarly to the one-dimensional case, the evolution points are in smooth
regions and therefore the integral on the RHS of (3 3) can be replaced with a sufficiently
accurate quadrature such as the Simpson rule (2 4), which leads to a scheme that is
fourth-order accurate in time The derivatives at time tn, <^±aj±Q are obtained by
sampling the derivative of the reconstruction (3 2), i e , <p(±a,j±a — ̂ '(xt±a,}±a, t

n) The
other intermediate values of the derivative in time that are required in the quadrature can
be predicted using a Taylor expansion or with a Runge-Kutta method in an analogous
way to the one-dimensional case

Remarks

1 We present two different algorithms for constructing y>,±aj±a: two-dimensional
interpolants defined on two-dimensional stencils and a dimension-by-dimension
approach We present both algorithms for the third-order scheme and extend the
simpler dimension-by-dimension approach to fifth-order Our numerical
simulations in §4 indicate that both reconstructions of <p,±a,j±a are of a
comparable quality In both approaches, the reconstruction of the derivatives

is done dimension-by-dimension

We reproject V'l+'aj+a an<^ tf-aj-a ^ac^ onto ^e integer grid-points, obtaining
y"^1 We present several ways to carry out this reprojection a genuinely
two-dimensional approach, a dimension-by-dimension strategy and a reprojection
along the diagonal line through x,_aJ_Q and xl+QtJ+a



14 S. BRYSON AND D. LEVY

Figure 3.1: The location of the evolution points ajj±Qj±Q and the domain of definition
of the interpolants <f>i±aj±a

 m two dimensions.

3.2 Two-Dimensional Third-Order Schemes

In order to obtain a third-order scheme, we need a fourth-order reconstruction of the
point-values at the evolution points Xi±aj±Q.

3.2.1 A two-dimensional reconstruction of <pi±aj±a

In this section we present a two-dimensional fourth-order reconstruction of the point-
values <pi±a,j±a- In principle, a two-dimensional cubic interpolant would provide a recon-
struction with the desired accuracy. Such an interpolant is based on a ten-point stencil.
As usual, solving such a direct interpolation problem is unsatisfactory as spurious os-
cillations might develop as a result of the lack of smoothness in the solution. Instead,
we generate a two-dimensional fourth-order reconstruction as a convex combination of
four quadratic interpolants, each which is based on a six-point stencil. We choose com-
pact quadratic interpolants such that the union of all the six-point stencils is a compact
ten-point stencil. Similarly to any WENO-type reconstruction, when singularities are
present the six-point stencils containing the singularities are suppressed. In any case,
we implicitly assume that the solution is sufficiently resolved such that the singulari-
ties in the solution are isolated in the sense that they do not occur along neighboring
parallel cell edges. Singularities will in general occur along adjacent cell edges. There
is a lot of flexibility in choosing the ten-point stencil as well as the different six-point
stencils. Here, for the evolution point xt+QJ+a we choose the ten-point stencil shown in
Figure 3.2. We choose to use the four six-point stencils that are shown in Figure 3.3.
Obviously, the union of these stencils is the ten-point stencil in Figure 3.2. Furthermore,
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o

j+2

i-l i+i i+2

Figure 3.2: The ten-point stencil for the two-dimensional reconstruction of <pi+atj+a.
The open circle shows the location of the evolution point at Xi+aj+a.

they all enclose the cell containing the evolution point and they all cross different edges
of the enclosing cell. A singularity along an edge will suppress two of these stencils,
while a singularity in a corner will suppress three of these stencils.

Remarks.

1. The stencils for the evolution point at Xi_QjJ-_a are obtained by a rotation of 180
degrees of the stencils in Figures 3.2-3.3.

2. We could use less than four stencils and still generate a scheme that will have the
desired order of accuracy.

Given the four six-point stencils in Figure 3.3, a straightforward computation shows that
third-order approximations for smooth if at the evolution points Xi±aj±a, <Pi±aj±a —
<P (Xi±a,yj±a) + O (Ax3, Ay3), V/c €{1,2,3,4}, is obtained with

rf
(Pi±a,j±a

,.3

where

di = 1 — 3a + 2a , a2 = 2o: — la. , 0,3 = a ,

_! - 2 _^ l ° l l
a4 ~2a f 2a ' °5 ~ ~ 2* -^

>., (3-4)

(3.5)



16 S. BRYSON AND D. LEVY

hi

-4J-1

h'

i-l i i+J i+2 i H-; i+2

Figure 3.3: The four six-point stencils that cover the ten-point stencil for the two-
dimensional reconstruction.

The linear combination

4

z4, Ay4) ,
fc=i

is fourth-order accurate provided that the constants c, are taken as

1 2
ci = - (5a - 1), c2 = c4 = - (-2a + 1), c3 = a. (3.6)

A two-dimensional CWENO reconstruction is a straightforward generalization of the
one-dimensional case (compare with (2.7),(2.8)),

Pi±a,j±a X ^ i±a,j±a(Pi±a,j±a-

k=\

Here

w.i±aj±a

ai±a,j±a

>l=l ai±a,j±a

a*

with the constants Cfc given by (3.6). As usual, the smoothness measure for every stencil
is taken as a normalized sum of the discrete L2-norms of the derivatives. If we define
the forward and backward differences A*tpij = fi+ij — if>ij, &~<f>ij = tptj — <pi-i,j,
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= v'ij'+i — ifij, A~<^ij = </>;j — <pi,j-i, then the smoothness measures for the
evolution point xi+aj+a are given by

The smoothness measures for the evolution point Xi_QJ_a are

+ AA^,,,.! +

+ AA-^^,, +

3.2.2 A dimension-by-dimension reconstruction of (fi±a,j±a

A different way to obtain high-order approximations for the values of y>i±a,j±a is by
carrying out a sequence of one-dimensional reconstructions from §2.2. This dimension-
by-dimension approach for the reconstruction step is similar in spirit to that of [17], but
here, in order to generate a Godunov-type scheme (unlike [17]), we are forced to use
evolution points that are not positioned in the same locations as the data x^j. An ap-
propriately chosen sequence of one-dimensional reconstructions addresses this problem.

We use the subscript '*' to denote the full range of an array, such that ipfj and
(Pit* denote the one-dimensional arrays <ptj = ( < p \ j , . . . , fNj] and (p^ = ( < / ? i , i , . . . , </?;,./v).
With the notation for the one-dimensional third-order reconstruction, (2.10), we can
express the dimension-by-dimension reconstruction at xl+aj+a as

1. For each i,j: (pi+aj = reconstruct.^_1D_3 (z, a, <£,,_,-)

2. For each i,j: tf>i+Qj+Q = reconstruct_y_lD_3 (i, a, ipi+a^).
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1+2

Figure 3.4. The dimension-by-dimension reconstruction process in two dimensions Left:
the first step where the intermediate mterpolants <£J+Q,j at xz+aij (open squares) are
computed using the data (ptj (black dots) Right the second step, where yz+a,j is
interpolated in the j direction, giving </?t+aj+a at xl+aj+a (open circle)

Here, we first interpolate along the first coordinate axis and reconstruct ip at xl+aj

The data at xl+aj is then interpolated along the second coordinate axis to the location
ZI+OJ+Q to give <pl+QJ+a (see Figure 3.4) Obviously, the order in which the steps are
performed is not important In a similar way, a dimension-by-dimension reconstruction
at Xi-aj-a is given by

1 For each z, j <pi-a,j = reconstruct.^ J.D_3 (i, —a, f*,j)

2 For each i,j <^ t_aj_a = reconstruct_</?_lD_3 (z, — a, <p,_ai»)

3.2.3 The reprojection step

After evolving the solution to the next time step at the evolution points xt±a]J±a we
would like to reproject (p™+*i+a back onto the integer grid points x^3 to end up with f/?™*1

There are several different ways to perform this task out of which we choose to present
the following a two-dimensional reprojection using the two-dimensional reconstruction
of §3 2 1 or the dimension- by-dimension reconstruction of §3 2 2, and a one-dimensional
projection along the diagonal

1 A 2D reprojection. The evolution points at x,±Q,j±a have the same geometrical
relationship to xli3 as xtj has to xz-ai3^.a. Hence, in order to reconstruct tp"*1

from ¥>t±QJ±a, we can directly utilize the projections from §3 2 1 or §3 2 2, taking
as the input data, and reversing the sign of the parameter from ±a to

The final value t^1 is then taken as the average of the projections of <pt+aj+a

and y?t_aj_a. Hence, if we denote either the two-dimensional or the dimension-
by-dimension reconstruction described in §3.2 1 or §3 2 2 as

= reconstruct_<p_2D_3 («, j, ±a, <p) , (3 7)

where tp is now the two-dimensional array {<PZJ}, then the reprojection step is
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i-l i i+1

Figure 3 5. The evolution points used for the diagonal reconstruction of </?tJ

(a) For each i, j (p*} = reconstruct_</5_2D_3 (z, —a, (pl+aj+a)

(b) For each i, j (p~} = reconstruct_<^_2D_3 (z, a, <^z_Qi:7_a)

(c) For each i, 3 <^+1 = \ (</>+ + ^)

2 A diagonal reprojection. In this case we use one-dimensional data along the di-
agonal, {^t_i+QJ_1+a,<^t_Q,J_a)^l+ct)J+a,</?t+1_ai_7+1_a}, to construct a third-order
WENO approximation of tp^1 (see Figure 3 5)

Define

a- 1
2a - !^-i+«J-i+« -r 2(2a - i)^~^-Q

1J+a = ^(x tJ) + 0(Ax3 ,Aj/3),

(38)

1 — a a — 1
*-aj~a 2(2a - 1)

Since ((/?^ + y^)/2 = tp (ztj) + O (Ax4, Ay4), we can obtain v?"^1 as

(39)

where as usual w*3 = ^/(a^+a^), and a^ = (2 (e + 5,^)p) The smoothness
measures are again taken as the sum of the discrete L2 norm of the derivatives,
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which in this case is more complicated due to the uneven spacing of the data

s" - 5

+

2 / \ 2
, I It+aj+a ~ fi-aj-

I -la I \ 2a

Ax3 V 1 - 2a 2a

0+ _ 1 f Vi+aj+a — ̂ -a,]-a\

^ Ax [\ 2a

/i
, 4

Az3 V 2a 1 - 2a

Remark Our numerical simulations in §4 3 indicate that there is little difference between
the quality of the two-dimensional reconstruction and the dimension-by-dimension re-
construction of §3 2 1 and §322 We will use this fact when extending our methods to
fifth-order and higher dimensions We note that the diagonal reprojection significantly
reduces the CFL number (see §4 4)

3.3 A Two-Dimensional Fifth-Order Scheme

Using the dimension-by-dimension approach, it is easy to extend the above scheme to
fifth-order simply replace the one-dimensional third-order interpolations by the fifth-
order interpolation in §322 Using the one-dimensional notation, (2 19), we obtain a
fifth-order reconstruction at xl+Q^+a as

1. For each z, j ¥>»+Q)J = reconstruct_</>_lD_5 (z, a, <^«j)

2. For each i, j <^+QJ+a = reconstruct_<^_lD_5 (j, a, </?t+Q,*)

Similarly, at x t_QJ_Q we have

1. For each z, j Pi-a,j = reconstruct_</?_lD-5 (i, —a, (p*j)

"2. For each z,j "^,_QJ_Qr= recbristruct"_^~rD_5 (j^ce, ip^ra~,*)

We denote this reconstruction as

<Pt±a,j±a = reconstruct_<p_2D_5 (z, j, ±a, y?) (3 10)

For the derivatives we have

1 For each z, j <p't±aj = reconstruct_</?'_lD_5 (i, ±a, <p*j)

2. For each i, j <f(±aj±a — reconstruct_(^'_lD_5 («, ±a, ^,±a,*)

which we denote as

¥4ta>J±a = reconstructV-2D-5 (i, J, ±a, ^) (3.11)

Reprojection onto the original grid points xtj is performed using the two-dimensional
dimension-by-dimension reprojection option described in §3 2 3
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Remarks

1 Due to the reduced stability resulting from the use of diagonal reprojection,
which is demonstrated in §4.4, we do not develop a fifth-order analog to the
third-order diagonal reprojection

2 It is straightforward to develop a fifth-order two-dimensional method involving
two-dimensional stencils, extending §321 Such a method would involve four
mterpolants defined on ten-point stencils that cover a twenty one point stencil.

We summarize the two-dimensional fifth-order algorithm in the following, where
RK (<p?±a, <p(±a, Ai) is now the fourth-order RK method which integrates (2 1) As in
Algorithm 2.1, each internal step of the RK method will require additional reconstruc-
tions of (p(±a from that step's (pt±a

Algorithm 3.1 Let a. — I/ (2 + \/2)- Assume that {f^} are given

1 Reconstruct

a = reconstruct^ _2D ,5 (i,j,±a, <p)

a — reconstruct.^'. SD -5 (i, j, ±a,

2 Integrate

</£i±Q = RKfr^^V&v**, At/2)

</W j±a = reconstruct.^'. SD.5 (i, ±a, v?

= ^^(vr±aJ±a,V<±aJ±«, At)

= reconstruct.^'. SD.5 (i, ±a,

. Reproved
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3.4 Multi-Dimensional Extensions

The extension of the direction-by-direction approach to more than two space dimensions
is straightforward. For example, using the notation of §3 3, a three-dimensional fifth-
order reconstruction is

1 For each i, j, k. <pl+aj,k = reconstruct_</?_lD_5 (i, a, ¥>*,j,k)

2 For each i, j, k <pl+ai}+a,k = reconstruct_</>_lD_5 (i, a, v>,+a,*,k)-

3 For each i, j, k <pi+a,j+a,k+a = reconstruct_(/?_lD_5 (i, a, (p^

The reconstruction at x,_a)J_a)/;_a is handled similarly, and the same for the reconstruc-
tion of vUaj+Q,fc+a In three dimensions a = I/ (3 + \/3~)

A d-dimensional reconstruction based on d-dimensional stencils quickly becomes very
large It is readily apparent that the dimension-by-dimension approach will scale to high
dimensions better than d-dimensional interpolants

4 Numerical Simulations

In this section we present simulations that test the schemes we developed in this paper
In §4 1 we demonstrate the third- and fifth-order method in one dimension §4 2 focuses
on the fifth-order method in two and three space dimensions In §4 3 we compare
the two-dimensional third-order method based on two-dimensional stencils with the
direction-by-direction approach In §4 4 we examine, in detail, stability issues in two
dimensions, including comparisons with [17] Some of these examples are standard test
cases that can be found, e g , in [22, 31, 35]

We do not follow the practice in [17] of masking singular regions from our error
measurements.

4.1 One-Dimensional Examples

A- convex- Hamiltonian — -—- --- — -

We start by testing the performance of our schemes on a convex Hamiltonian. We
approximate solutions of the one-dimensional equation

0t + I(<£x + l)2 = 0, (41)

subject to the initial data <f>(x, 0) = — COS(TTX) with periodic boundary conditions on
[0,2] The change of variables, u(x,t) = <f> x (x , t ) + 1, transforms the equation into
the Burgers' equation, ut + | (u2)x — 0, which can be easily solved via the method of
characteristics [35] As is well known, Burgers' equation generally develops discontinuous
solutions even with smooth initial data, and hence we expect the solutions of (4.1) to
have discontinuous derivatives In our case, the solution develops a singularity at time
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The results of our simulations axe shown in Figure 4 1 The order of accuracy of
these methods is determined from the relative L1 error (see [30]), defined as the I^-norm
of the error divided by the L^norm of the exact solution These results along with the
relative L^-norm before the singularity, at T = 0.8/Tr2, are given in Table 4 1, and after
the singularity at T = 1 5/7r2 in Table 4 2

N
100
200
400
800

N
100
200
400
800

Third-order method
relative L1 -error

9.41 x!0~5

1.13xlO"5

1.39xlO~6

1.74xlO-7

L1 -order
-

306
302
300

relative L°° -error

1 77xlO~5

1 33xlO~b

935xlO~8

594xlO~ 9

L°°-order
-

373
383
300

Fifth- order method
relative L1 -error

1 41xlO~5

421xlO~7

331xlO-8

403xlO-10

L1 -order
r~

507
500
503

relative L°° -error

261xlO-6

403xlQ-8

653xlO~10

lOOxlO-1 1

L°°-order
-

602
595
603

Table 4 1: Relative L1-errors for the one-dimensional convex HJ problem (41) before
the singularity formation T = 0 8/T2.

TV
100
200
400
800

N
100
200
400
800

Third- order method
relative L1 -error

9 lOxlO"4

216xlQ-4

...684xlOf5

275xlO-5

L1- order
-

207
. .166

1.31

relative L°° -error

277xlO~4

763xlO-5

268xlO-5_
2.08xlO~5

L°°-order
-

186
__151

0.37
Fifth-order method

relative L1 -error

785xlO-4

IGlxlO" 4

671xlQ-5

344xlQ-5

L1 -order

-
2.29
126
096

relative L°° -error

578xlO~4

829xlQ-5

509xlQ-5

344xlO-5

L°°-order
-

229
126
096

Table 4 2 Relative L1-errors for the one-dimensional convex HJ problem (4 1) after the
singularity formation T = 1 5/Tr2
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0 0.2 04 06 OJ 1 1-2 1

Figure 4 1 One-dimensional convex Hamiltoman (4.1) Left: the solution before the
singularity formation, T = 0 8/?r2 Right the solution after the singularity formation,
T = 1 5/7T2 TV = 40 Shown are the third- and fifth-order approximations, and the
exact solution.

A non-convex Hamiltonian

In this example we deal with non-convex Hamilton-Jacobi equations In one dimension
we solve

<t>t ~ cos (<t>x + 1) = 0, (4 2)

subject to the initial data <j> (x, 0) = — cos (irx) with periodic boundary conditions on
[0,2] In this case (4 2) has a smooth solution for t < 1 049/Tr2, after which a sin-
gularity forms A second singularity forms at t ~ I 29/7T2 The results are shown in
Figures 4 2 The convergence results before and after the singularity formation are given
in Tables 4 3-4 4.

A linear advection equation

In this-example ([17] with a misprint, corrected in [40]) we solve the one-dimensional
linear advection equation, i e , H (<f>x) — <j)x We assume periodic boundary conditions
on [—1,1], and take the initial data as 4> (x, 0) = g (x — 0 5) on [—1,1], where

/ r~ \

2cos(fx2)-v /3,
h( \ _ J 3/2 + 3cos (2?rx),

(X)~ ^ 15/2-3cos(27raO,
(28 cos

-1 <x < -|,
-| < x < 0,
0 < x < | ,

0) /3 + 67nr (x - 1), \ < x < l

(43)

The results of the fifth-order method are shown in Figure 4 3, where it is compared with
the fifth-order method of [17] The reduced dissipation effects of our method are visible
in the reduced round-off of the corners
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N
100
200
400
800

TV

100
200
400
800

Third-order method
relative L1- error

647xlO~5

778xlO~6

877xlO~7

987xlO~8

L1 -order
-

306
315
315

relative L°° -error

905xlQ-6

1 llxlO"6

927xlO-8

6 12xlO-9

L°°-order
-

303
358
3.92

Fifth-order method
relative L1- error

129xlO~5

652xlO~ 7

210xlO~8

596xlO~1 0

L -order
-

4.31
4.95
514

relative L°°- error

497xlO~6

238xlO~7

6 13xlO-9

103xlO~10

L°°-order
-

438
528
590

Table 4 3: Relative Z^-errors for the one-dimensional non-convex HJ problem (4 2)
before the singularity formation T = 0 8/7T2

N
100
200
400
800

N
100
200
400
800

Third- order method
relative L1 -error

281xlO-4

132xlO-4

231xlQ-5

843xlO-6

L1 -order
-

108
252
146

relative L°° -error
964xlO~5

505xlO~5

600xlO~ 6

330xlO~6

L°°-order
-

093
307
086

Fifth-order method
relative L1 -error \ L1 -order

1 57xKT4

834xHT5

122xlO-5

667xlO-5

-
0.91
278
0.87

relative L°° -error
1.12xlO~4

660xlO~ 5

864xlO~6

523xlO~6

L°°-order
-

077
293
072

Table 4 4 Relative Z^-errors for the one-dimensional non-convex HJ problem (4 2) after
the singularity formation T = 1.5/n2
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Figure 4 2 One-dimensional non-convex Hamiltonian (4 2) Left The solution before
the singularity formation, T = 0 8/?r2. Right. The solution after the singularity forma-
tion, T = 1 5/7T2. ./V = 40 Shown are the third- and fifth-order approximations, and
the exact solution

t = 2 t = 8

t=16

— exact
4 4 fifth-order
O O Jiang and Peng

05
-6

-1 -05 05

Figure 4 3 One-dimensional linear advection, (4.3) T — 2,8,16,32. N — 100 Crosses
our fifth-order method Circles the fifth-order method of [17] with a local Lax-Friednchs
flux Solid line the exact solution
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4.2 Two-Dimensional Examples

A convex Hamiltonian

In two dimensions we solve a problem similar to (41)

(44)

tion The results of the second-order calculations for

which can be reduced to a one-dimensional problem via the coordinate transforma-
1 1 W,
1 -1 )\ y

the initial data < />(x ,y ,Q) = — cos(ir(x + y)/2') = — COS(TT£) are shown in Figure 44
The convergence rates for the two-dimensional fifth-order scheme before and after the
singularity are shown in Table 4.5

Before singularity T = 0 8/?r2

N
50
100
200

relative I/1 -error
1.19xlO-4

6.80xlO-6

1.73xlO-7

Ll-order || relative L°°-error
-

413
530

778xlO~7

164xlO~8

1 12xlO-10

L°°- order
-

556
720

After singularity T = 1.5/7T2

N
50
100
200

relative Lr- error
1.32xlO-3

3.89xlO~4

4.86xlO~5

L1 -order || relative L°° -error
-

1 76
300

2.07xlO-5

360xlQ-6

169xlO~7

L°°- order
-

252
441

Table 4 5 Relative L1- and L°°-errors for the two-dimensional convex HJ problem (4 4)
before and after singularity formation, computed via the fifth-order method

A non-convex Hamiltonian

The two-dimensional non-convex problem, which is analogous to the one-dimensional
problem, (42), is ~~

<f>t - cos ((j)x + <f>y + l) = 0. (4 5)

Here we assume initial data that is given by $ (x, y, 0) = — cos (TT(X + j/)/2), and periodic
boundary conditions The results are shown in Figure 4 5 The convergence results for
the two-dimensional fifth-order scheme before and after the singularity formation are
given in Table 4 6

A fully two-dimensional example

The above two-dimensional examples are actually one-dimensional along the diagonal
To check the performance of our methods on fully two-dimensional problems we solve

<j>x<t>y = 0, (46)
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2 2 2 2

Figure 4.4 Two-dimensional convex Hamiltoman, (4 4) Left the solution before the
singularity formation, T — 0 8/7T2. Right: the solution after the singularity formation,
T = 1 5/7T2 TV = 40 x 40. The solution is computed with the fifth-order method

Before singularity T — 0 8/?r2

N
50
100
200

relative Ll -error
1 llxlO"4

691xlO-b

385xlO~7

L1- order
-

4.00
" 4.17 -

relative L°°-error
126xlO~b

242xlQ-8

"" 627xlQ-10

L°°- order

-
570

" 5 2 7 "
After singularity T = 1 5/7T2

N
50
100
200

relative L1 -error
147xlO~3

193xlQ-4

887xlO-5

L1 -order
-

2.93
1.12

relative L°°-error
858xlQ-6

927xlQ-7

309xlO-7

L°° -order
-

321
158

Table 4 6 Relative L1- and L°°-errors for the two-dimensional non-convex HJ problem
(4 5) before and after the singularity formation, computed with the fifth-order method
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2 2

Figure 4 5 Two-dimensional non-convex Hamiltoman, (4 4) Left, the solution before
the singularity formation, T = 0 8/?r2 Right the solution after the singularity for-
mation, T = 1.5/7T2 AT = 40 x 40 The solution is computed with the fifth-order
method

on [—7r,7r] x [—7r,7r], subject to the initial data (/>(x, y, 0) = sin (a:) + cos(y) with pe-
riodic boundary conditions The exact solution for this problem is given implicitly by
<f> (x,y,t) = — cos (q) sin (r) + sm (g)+cos (r) where x = q — tsm(r) and y = r + tcos (q).
This solution is smooth for t < 1, continuous for all t and has discontinuous derivatives
for t > 1 The results of our simulations at times T = 0 8,1 5, are shown in Figure 4 6
The convergence results for the first- and second-order two-dimensional schemes be-
fore the singularity formation are given in Table 4 7 and confirm the expected order of
accuracy of our methods

Before singularity T = 0 8
TV

50
100
200

relative L1 -error
- — 610x10-3-

210xlO-7

753xlO~9

Z/1 -order

--.--
486
480

relative L°°-error

815xlO~8 _
735xlO~ l u

559xlO~12

L°°-order
-

679
704

Table 4 7 Relative L1-errors for the two-dimensional HJ problem (4 6) before singularity
formation T = 0 8 The solution is computed with the fifth-order method

An eikonal equation in geometric optics

We consider a two-dimensional non-convex problem that arises in geometric optics [20]

{
+ ^2 + 1 = 0,

(f) (x, y, 0) = \ (cos (2-Kx) - 1) (cos (2-jry) - 1) - 1
(47)
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4 -4

Figure 4 6 Fully two-dimensional Hamiltonian, (4 6) Left the solution before the
singularity formation, T = 0 8 Right the solution after the singularity formation,
T = 1 5 W = 50 x 50 The solution is computed with the fifth-order method

The results of our fifth-order method at time T = 0 6 are shown in Figure 4 7, where
we see the sharp corners that develop in this problem

An optimal control problem

We solve an optimal control problem related to cost determination [35] Here the Hamil-
tonian is of the form H(x, y,

f <f>t - sin (y} (f)x + sin (x) <j>y + \(j> y \ - \ sin2 (y) - 1 + cos (x) = 0, ^ g.

The result of our fifth-order scheme is presented in Figure 4 8 and is in qualitative
agreement with [31]

4.3 A Comparison of Two-Dimensional Third-Order Interpolants

In this section we use the examples (4.4), (4 5) and (4 6) to compare the third-order
method of §3 2 1, based on interpolation via two-dimensional stencils, with that of §3 2 2,
where we used a direction-by-direction approach The results are shown in Table 4 8
The dimension-by-dimension method produces errors that are approximately twice as
large compared with the genuinely two-dimensional reconstrcution However, the con-
vergence rate is qualitatively the same in both methods These results motivated us to
base our fifth-order scheme on the much simpler dimension-by-dimension reconstruction
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I 0 1 0

Figure 4 7 Two-dimensional eikonal equation, (47) TV = 40 x 40. Left the initial
data Right: the fifth-order approximation at T = 0 6

4 •*

Figure 4 8 Two-dimensional optimal control problem, (4 8) An approximation with
the fifth-order method is shown at T = 1 N = 40 x 40
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N
2D Stencils

relative L1 -error L1 -order
Direction-by-Direction

relative L1 -error L1 -order
Convex Hamiltoman atT = 0 8/?r2

50
100
200

470xlQ-4

754xlCT5

807xlCT6

-
2.64
3.23

6 13xlO-4

943xlO~5

1 02xlO~5

-
270
321

Convex Harmltoman at T = 1 5/7T2

50
100
200

123xlO-3

456xlQ-4

370xlO~5

-
144
362

261xlO-3

8 19xlO~4

1 22xlO-4

-
1.67
2.74

Non- Convex Hamiltoman atT = 0 8/n2

50
100
200

227xlO~ 4

375xlO-5

399xlQ-6

-
260
323

392xlO~4

697xlO-5

722xlO-b

-
249
327

Non-Convex Hamiltoman at T = 1 5/n2

50
100
200

123xlO~3

250xlO-4

763xlO~5

-
230
171

1 94xlO~3

4 16xlO~4

1 20xlQ-4

-
2.22
1 79

Fully 2D Example atT = 08
50
100

_200

201xlO-4

242xl(T5

-_295xl(T 6

-
305
304 .

1 48xlO~4

1 65xlQ-5

O5xlO~l_

-
3.16
308

Table 4.8 Comparison of the third-order method of §3 2 1, with an interpolation via
two-dimensional stencils, and that of §3.2.2, with the direction-by-direction approach
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4.4 A Stability Study

In this section we present a couple of stability studies we obtained m our simulations
We start by checking the stability properties of the third-order scheme with different
reprojection steps The reconstruction step is done in all cases using the direction-by-
direction interpolant We compare the dimension-by-dimension reprojection and the
diagonal reprojection (of §3 2 3) In Figure 4 9 we plot the L1 error as a function of the
CFL number. The test problem is (4 6) with the fully two-dimensional Hamiltonian
The solution is computed at T = 0 8 We see that the use of a diagonal reprojection
significantly reduces the maximum allowed CFL number

Third order fully 2D H, T=0 8

09

08

07

5
5

i°s

L
03 -

02

01

2
CFL

Figure 4 9: Stability of the two-dimensional third-order method with a dimension-by-
dimension (crosses) vs a diagonal reprojection (diamonds) Fully two-dimensional
Hamiltonian (4.6) T = 08 (before singularity) N =400 x 100- - - -

We now turn to checking the stability properties of the two-dimensional fifth-order
method of §3 3 by computing the Ll errors for various examples while varying the CFL
number. In Figure 4 10 we compare the results obtained with our fifth-order scheme
with the fifth-order method of [17], for which we used a local Lax-Fnedrichs flux The
numerical tests indicate that larger CFL numbers can be used with our method

4.5 Three-Dimensional Examples

We proceed with a three-dimensional generalization of the convex Hamiltonian (4 4),

- 0, (49)
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x 1O~6 linear advection, T=1 fully 2D H, T=O 8

x 10 convex H, T=O 8Ai2

1 4

1 2

g 1
(V

ll, O 8
S
"ro 06

O4

O2

O 2 O 4 O 6 08

x 1o-
> non-convex H, T=O 8/rc2

-3 convex H, T=1 SAi2

O4 ' 05

x 1O.-3 non-convex H, T=1 5/it2

O 8

O 6

04

O2

O 5 1
CFL

1 5

Figure 4 10: Stability of the two-dimensional fifth-order method N — 100 x 100.
Crosses our fifth-order method Circles the fifth-order method of [17] with a local
Lax-Fnedrichs flux Upper left linear advection (H (V</?) = Vy>) with initial condition
4> (x, y, 0) = — cos (TT(X + y)/2) Upper right fully 2D Hamiltoman (4 6) Middle row
convex Harmltonian (4 4), before the singularity (right) and after the singularity (left)
Bottom row non-convex Harmltonian (4 5), before the singularity (right) and after the
singularity (left)
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subject to the initial data <fi (x, y, z, 0) = — cos (K(X + y + z)/S) The convergence results
for the three-dimensional fifth-order scheme before and after the singularity formation
are given in Table 4 9. We also approximate the solution of the non-covex problem

- cos = 0, (410)

with the same initial data The convergence rates for the three-dimensional fifth-order
schemes are given in Table 4 10

Before singularity T = 0.5/?r2

N || relative L1 -error
25
50
100

261xlO~4

640xlO~6

1 50xlO~7

L1 -order relative L°° -error
| l.OTxlO-7

535
542

\ 316xlO-10

918xlO~13

L°°- order
-

841
843

After singularity T = 1 5/7T2

AT
25
50
100

relative L1 -error
6.95xlO~3

140xlO~3

533xlO-4

L1 -order
-

231
139

relative L°° -error
ISOxlQ-5

4.15xlO-b

6.94xlO~7

L°°- order
-

212
258

Table 4 9 Relative L1- and L°°-errors for the three-dimensional convex HJ problem
(4 9) before and after the singularity formation, computed with the fifth-order method

Before singularity T = 0 5/?r2

./V || relative L1 -error
25
50
100

7.28xlQ-4

3.71xlO~5

105xlO-6

L1 -order \\ relative L°° -error
-

429
514

370xlO-7

4.06xlO~9

2 18x10-"

L°° -order
-

651
754

After singularity T — 1 5/7T2

N || relative L1 -error
25
50
100

674x lO~ 3 - -
1.26xlO-3

4.21 xlO~4

L1 -order || relative L°° -error
-~~ -------

242
1 59

-— -3.27x10-"
6.90xlO-7

6.84xlO-8

L°°- order
-

225
333

Table 4 10. Relative L1- and L°°-errors for the three-dimensional non-convex HJ problem
(4 10) before and after the singularity formation, computed with the fifth-order method
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