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Abstract.

Systems modeled as partially observable Markov decision

processes (POMDPs) can be tracked quickly with three re-

strictions: all actions are grouped together, the out-degree of

each system state is bounded by a constant, and the num-

ber of non-zero elements in the belief state is bounded by a

(different) constant. With these restrictions, the tracking al-

gorithm operates in constant time and linear space. The first
restriction assumes that the action itself is unobservable. The

second restriction defines a subclass of POMDPs that covers

however a wide range of problems. The third restriction is an

approximation technique that can lead to a potentially vexing

problem: an observation may be received that has probabil-

ity 0 according to the restricted belief state. This problem of

impossibility will cause the belief state to collapse.

In this paper we discuss the tradeoffs between the constant

bound on the belief state and the quality of the solution.

We concentrate on strategies for overcoming the impossibil-

ity problem and demonstrate initial experimental results that

indicate promising directions.

1 Introduction

Systems operating in dynamic, uncertain environments are
difficult to monitor and control. The changing world may

make action effects difficult to predict, and the uncertainty

complicates this by obscuring the current state of the system.

Stochastic representations of systems operating in such envi-

ronments allow these systems to be monitored and controlled

robustly despite the uncertainty and uncontrollable effects.

The ability to monitor a system state under uncertainty is

useful for control. But it is also useful for diagnosis, where tra-

ditionally a fault-diagnosis system uses the fault information

to deduce the possible states of the system [3]. By intelligently

tracking the state of the system, more accurate fault diagnosis

is possible, and thus more appropriate corrective action.

Markov models [1] have been a popular representation for

capturing the dynamics of the environment [14, 4, 7, 9]. A

Markov decision process (MDP) describes a system as a dis-

crete set of states. The effect of an action is represented as

a probability distribution over the states, reflecting both the

range of possible outcomes and their likelihoods. A system's

behavior is a sequence of states and actions. The usual way

to plan a behavior in an MDP is to construct a policy: a map-

ping from states to actions, indicating for each state which

action will be executed when the system is in that state (note

that a policy allows multiple behaviors, since there are mul-

tiple possible outcomes of actions). Rewards associated with

states and actions specify the local utility of a policy; the to-

tal reward of a state for a given policy is simply the sum of

the rewards of all the possible behaviors allowed by the pol-

icy (weighted by the probabilities). An optimal policy can be

computed for an MDP, specifying for each state the optimal

action to take to maximize the total utility of the plan.

The classic MDP, however, does not account for uncertainty

in the system's state. Often this state is known only indirectly

through observations. If there is inaccuracy or uncertainty in

the observation, this indirect information reflects only impre-

cisely the actual process state. To account for the state un-

certainty, MDPs have been extended to partially observable

MDPs (POMDPs) [8]. In this model, the underlying system is

an MDP, but the state is only indirectly known; an observa-

tion is produced on each state transition. The model specifies

the probability of seeing an observation in a state (this can

be produced in practice by experimental study). Instead of an

exact state, the knowledge of the process can be represented

as a probability distribution over states, called the belief state.

A policy in a POMDP is a mapping from belief states to ac-

tions. An optimal POMDP policy is thus a mapping from

belief states to actions, indicating the optimal action to take

in each belief state. This can be useful when the system state

is only incompletely known.

The control problem for POMDPs is computationally in-

tractable for large problems [7], even with approximation al-

gorithms [14, 9, 11, 12, 5]. The monitoring problem is much

simpler: here the goal is to follow the state of the underlying

system. Nonetheless, for a problem with N states, the time

and space complexity is O(N2), which for large problems may

still be too high for fast calculations. By restricting the class

of POMDPs to a subclass called sequential POMDPs, by ag-

glomerating action effects, and by restricting the belief state

to a constant number of non-zero entries, we can achieve con-

stant time complexity and space complexity that scales lin-

early with the size of the state space [13].

This constant-time performance comes at a price, however.

The restrictions allow only a subclass of POMDPs, albeit an

interesting one. More troubling is the problem of impossibility,

where an observation may be received that has probability 0

according to the reduced belief state.

In this paper, we discuss the restrictions on POMDP mon-

itoring that allow constant time and linear space algorithms.

We begin with a discussion of Sequential POMDPs, followed



bya reviewof On-LineMarkovTracking. We then discuss

new work on finding strategies to overcome the impossibility

problem, which include strategies that recover and strategies

to avoid the problem altogether. We illustrate the relative per-

formance of the strategies with a set of initial experiments,

which indicate some promising paths of future exploration.

2 Sequential POMDPs

In this section we briefly review Markov processes, and in

particular POMDPs. Then we discuss Sequential POMDPs

[131.

We assume that the underlying process, the core process,

is described by a finite-state, stationary Markov chain. The

core process is captured by the following information:

• a finite set Af - {1,..., N}, representing the possible states

of the process.

• a variable Xt E Af representing the state of the core process

at time t.

• a finite set .4 of actions available.

• a matrix P = [pij],i,j E ./kf specifying transition proba-

bilities of the core process: P(a) = _ij(a)] specifies the

transition probabilities when action a E .4 is chosen.

• a reward matrix R = [rij], i, j EAf specifying the immedi-

ate rewards of the core process: R(a) = [ri_ (a)] specifies the

reward received when the action a E .4 is executed, moving

the process from state i to state j.

So at time t, the core process is in state Xt = i, and if an

action a E .4 is taken, the core process transitions to state

Xt+_ = j with probability pi3 (a), receiving immediate reward

ru(a).
However, in a partially observable MDP, the progress of the

core process is not known, but can only be inferred through a

finite set of observations. The observations are captured with

the following information:

• a finite set f14 -- {1,..., M} representing the possible ob-
servations.

• a variable Yt E A4 representing the observation at time t.

• a matrix Q = [qij],i E N',j E A4 specifying the probabil-

ity of seeing observations in given states: Q(a) = [q_j(a)],

where qlj(a) denotes the probability of observing j from
state i when action a E .4 has been taken.

• a state distribution 7r(t) = {Trl(t),..., 7rN(t)}, where rci(t)

is the probability of Xt = i given the information about
actions and observations.

• an initial state distribution 7r(0).

At time t, the observation of the core process will be Yr. If

action a E .4 is taken, we can define a function to determine

Yt+I. In particular, we define

7(jlTr(t),a) = Eqlj(a) Epki(a)Trk(t) (1)

iE.M kEAf

as the probability that Yt+l = j given that action a E .4 is

taken at time t and the state distribution at that time is 7r(t).

To determine the state distribution variable rr(t + 1), we

define the transformation T as follows:

7r(t + 1) = T(_r(t)lj, a) = {Tl(_r(t)lj, a),... ,TN(rr(t)lj, a)}

where

q,j (a) _:k_ P_(a)_k (t)

Ti(Tr(t)lj, a ) = _exqtj(a) _eNpkt(a)Trk(t), (2)

for i E iV', and where 7r(t) is the state distribution at time t,

a E .4 is the action taken at that time, resulting in observation

jeA4,
A sequential POMDP is a restricted POMDP in which the

state transitions in the underlying MDP are constrained to

the same state or the "following" state:

Vi,jE._VaEAPij(a) > 0 --+ i <_ j < i + 1

Graphically such a model looks like Figure 1. In fact, this can

be generalized a bit: if the number of nonzero transitions from

any state is less than a constant bound, the results in this pa-

per will hold. However, in the remainder of the paper, we will

hold to the more restrictive definition for ease of explanation

and understanding.

Given the restriction on the model, the state distribution

update given in Equation 2 can be computed in O(N), since

the denominator cart be computed once for all Ti at a cost

of O(N) and the numerator is computed separately for each

T_ at constant cost for each (thus O(N) total). In addition,

the memory required for the transition and reward matrices

is O(N. 1-41) and the memory for the observation matrix re-

mains O(N. 13,t] • IAI). Note that this is for the general case;

in the next section we present a restriction on the general

POMDP model that makes these updates more efficient.

2.1 On-Line Markov Tracking

Suppose that instead of wanting to find a plan to control

a system, we wanted to track the system's state. The belief

state is know to be a sufficient statistic for choosing optimal

actions [10]. Thus an optimal approach in general for tracking

POMDPs is to track the belief state, i.e., to update the state

distribution over actions and observations.

Since we are assuming tracking by an external entity, we as-

sume that the individual actions are themselves unobservable.

Instead, the external tracking agent will see just the results

of the actions, that is, the transitions from state to state. Be-

cause of this we use an agglomerated action model. In this

model, there is just one set of transition probabilities from

a state, representing the possible effects of the actions from

that state. This effectively reduces the number of actions, 1.41,
to 1.

One thing that is lost in this representation of the problem

is the dependency between the agent's internal actions and its

behaviors. When the system follows a policy internally, rea-

soning about that policy could allow a more accurate tracking

of its behavior.

In POMDPs, the state of knowledge of the current state

of the process is represented by the belief state, which is a

probability distribution over the set of states. Over time, this

distribution may have many non-zero but vanishingly small

elements, each of which must be taken into account when



Figure 1. Sequential POMDP. All transitions are to the same or following state.

updating the belief state. Thus much of the computation in-

volved in belief state updates is due to low and vanishing

probability elements of the state distribution.

In On-Line Markov Tracking, we limit the distribution to

the k most probable states, for some constant k, by zeroing

the rest and renormalizing the distribution. The goal of doing

this is to restrict attention and computation to the most likely

part of the probability distribution. The risks inherent in trun-

cating the distribution are the subject of the remainder of the

paper. However, this improves the efficiency of tracking. The

computational complexity of tracking in the general POMDP

case reduces from O(N 2) for N states to O(N), based on the

cost of the belief state update in Equation 2.

For sequential POMDPs, given a distribution of k possible

states, there are at most 2k states that could have a non-

zero probability in the following time step (of which k will

be retained). This means that the belief state update can be

limited to those states, and in fact that makes the belief state

update 0(1) (constant). The space required is O(N. 1._[).

This scales linearly with the state space size. Obviously this

grows also with the number of observations, but for a given

problem class, we assume that the number of observations re-

mains fixed regardless of the number of states (consider robot

navigation, where the sensors remain fixed whatever the size

of the world explored).

3 Strategies for Handling Impossibility

We have shown that sequential POMDPs with constant-size

belief state truncation can be tracked in constant time. How-

ever, restricting the distribution to a constant size is not with-

out risks: the part of the belief state that is truncated is still

possible with some small but non-zero probability. So in some

small percentage of cases, a valid transition will be lost. This

in turn may lead to an observation that is impossible with

respect to the remaining, truncated belief state. If we were

to push through the state update formula, the resulting be-

lief state would be ill-defined, with zero probability for each

of the states. In the remainder of the paper, we discuss the

possible strategies for handling this impossibility problem.

Strategies for handling the impossibility problem can vary

from reactive strategies, which try to recover from the incon-

sistent observation, to proactive strategies, which modify the

update formula to avoid the impossibility problem altogether.

We consider the following strategies:

Blind: When a 0-probability observation is encountered, the

belief state update is performed ignoring the observation

(just using the underlying state transition probabilities)

[13]. This corresponds to believing the truncated model and

not believing the observation, in some sense "flying blind"

until the observations once again correspond to a possible

observation according to the model. The potential problem

is that if the model is really off track, it may never get back

on.

The update formula is as in Equation 2, except when a

0-probability observation is encountered; in that case, the

update formula is:

Ti (r(t)I J, a) = E pn (a) 7rl(t) (3)
zE_

which is simply ignoring the observations.

Observatlon-based: When a 0-probability observation is

encountered, the belief state is reconstructed from the ob-

servation (i.e., computing the probability of each state given

the observation) [6]. This corresponds to believing the ob-

servation and not believing the model. The potential prob-

lem here is that the observation may skew the belief state

to states that are in fact very unlikely or impossible in the

full (untruncated) belief state.

The update formula is as in Equation 2, except when a

0-probability observation is encountered; in that case, the

update formula is:

qlj (a) (4)
Ti (Tr(t)[j, a) - _,EN qtj (a)'

which is simply ignoring the previous state information and

calculating the belief state from the observation received.

This is equivalent to assuming a uniform prior belief state.

Average: This approach (and the following ones) tries to

avoid the 0-probability observations altogether by taking

into account the observations at each state without waiting

for the problem to occur. Here the approach is to average

the belief states using the formulas from the Blind and

the Observation-based approaches (Equations 3 and 4), but

using them all the time, proactively, rather than simply
when there is an inconsistent observation.

The average of the belief states from the two formulas is

weighted according to the amount of accumulated trunca-

tion that has been performed, i.e., the accumulated loss

of information caused by truncating the belief state to k

elements at each step. The accumulated truncation is a

number in the range [0, 1] representing the portion of the
belief state truncated. The confidence in the belief state is

inversely related to the accumulated truncation: the more

truncation, the less confidence in its value.

However, the confidence is somewhat increased by the be-

lief in the observation. This is represented by updating the

accumulated truncation after each step: if the accumulated

truncation is pt,_c, the updated truncation is pt,_,c • (I -



pt_,¢) (before the current belief state is truncated).

[Zri@(t)lj, a) = (1-p_,_._) p.(a)rr_(t)

LiEN

[ qij(a) ]

The problem here is that you may have two inaccurate

models mixed together, which may produce a distribution

that looks nothing like the real distribution.

Mix: This approach also performs a weighted average, but in

this case the average is done within the belief state formula,

weighting the individual elements. The update formula is:

f(i,j,a) (5)
Ti(Tr(t)lj, a) = _-,zeN f(l,j,a)

where

1

/(i, j,a) = -if(l-p, .... )q,:(a)

+q,j(a) y_ p_,(al_k(t)
kEN

1

+-_pt .... E pki(a)rrk(t)
kEN

where ptrunc is again the accumulated truncation. Note that

the middle term is the same as the original update equation

(Equation 2), but the end terms are weighted to believe
1

the observation or the state-based model. The _ terms

reflect the uniform distribution over states (observations)

when the observation (state) is believed exclusively. The

accumulated truncation is updated as with the Average

strategy.

Fixmlx: This approach is like Mix, except that the sensors

have a prior confidence pob,, and this is used along with

the accumulated truncation to weight the state-based and
observation-based elements. In this case the accumulated

truncation update is pt .... • (1 -pob_). The update formula

is Equation 5, but where

1

f(i, j, a) = -Kp_,,,_q,j (a)

+qlj (a) __j pki(a)_rk (t)

kEN

+1(1 - PI,_c) E pki(alTrk(t),
kEN

where

P]rac
1 - ptvunc

1 - pt,-u._ + Pob_

4 Experiments

The On-Line Markov Tracking approach can be applied to a

number of problem domains. Sequential POMDPs are appro-

priate for domains that follow a trajectory over time. For ex-

ample, the computer could have the job of following a spoken

text and producing a subtitled text to accompany it. Or the

computer could have the job of following a musical score and

playing an accompaniment. The generalization of sequential

POMDPs to POMDPs with a constant bound on the num-

ber of transitions per state leads to application domains that

include telerobotics and space vehicle status tracking.

We are investigating these and other "real" applications,

but for initial results, we constructed a number of randomly-

generated scenarios to illustrate our ideas.

We chose a sequential POMDP of length 200 plus a dis-

tinguished start and end state. The system state at all but

the start and end was chosen from a set of 10 states. Possible

observations corresponded to the states, with the most prob-

able being the correct state, with decreasing probabilities for

surrounding states: for state $3, the probabilities of the ob-

servations were: SO = 0.02, S1 = 0.1, $2 = 0.2, $3 = 0.345,

$4 = 0.2, $5 = 0.1, $6 = 0.02, $7 = 0.01, $8 = 0.005, $9 = 0.

The underlying model was executed by stochastically tran-

sitioning from state to state, producing an observation, and

updating each of the models corresponding to the strategies.

The truncation was relatively severe - 2 states were preserved

at each step. This was so that 0-probability states would

be observed. The model was executed repeatedly until a 0-

probability state was observed by the Blind strategy, then

the output of that run was stored. In all, 50 runs were stored.

A few measures were collected for evaluation. They were

collected per state and per iteration (since the underlying

model sometimes stays at a single state for multiple itera-

tions). The two are similar, but with tighter error bounds on

the per-state measures, so they will be shown here.

• The percent error compared to the actual underlying state.

This is 1 - belief in the real state, thus giving a range of

[0,1]. In the figures this is referred to as "percent error."

• The 1/0 measure of whether the actual underlying state is

the most likely state. Averaged over multiple trials gives

a range of values [0,1]. In the figures this is referred to as

"percent of time state ID correct."

* The difference between the full belief state and the trun-

cated belief state (this is the sum of the absolute value of

the difference for each state). The range of possible values

is [0,2]. This we deemed less interesting, since the full belief

state itself has a fair amount of error with respect to the

actual underlying state.

The results can be seen in Figures 2-3, where for reference

purposes the performance of the complete belief state is shown

as well. In Figure 2 the mean and standard deviation are

shown for each strategy; in Figure 3 the means are shown su-

perimposed for comparison. All the strategies start to diverge

from the correct track over time, but at a particular point in

the sequence, the Mix and Fixmix strategies are brought back

on track by a sequence of identifiable states. Note that neither

the Observation-based nor the Average strategy recovers very
well.

The experimental data are noisy, and the standard de-

viations large. The large differences between either Mix or

Fixmix and any other strategy are significant after Mix and

Fixmix recover; otherwise the differences are statistically in-

significant.

The sudden change in the graphs raises some concern, since

this indicates that something in the problem structure makes

it particularly identifiable for the Mix/Fixmix strategies at
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a specific area of the problem. In fact, a second randomly-

generated sequence of states exhibited a similar behavior, al-

beit at a different area of the problem. In general, the behavior

appears to be linked to a sequence of states which collectively

provide a landmark for the tracking procedure. The combina-

tion of prediction and observation focuses on the particular

part of the problem space in which this landmark must fall.

Further tests are needed on other problems to understand

better the behavior.

5 Time/Accuracy Tradeoff

To explore the tradeoff between computation time and accu-

racy, we re-ran the experiment with belief states of size 1-4.

A belief state of size 1 corresponds to the extreme case of

keeping only the most probable state at each step. A belief
state of size 4 in this case corresponds to a relatively large

percentage of the maximum possible size (10), and as such,

would be expected to be relatively accurate.

The comparison of the Mix strategy over these belief state

sizes can be seen in Figure 4. The accuracy can be seen to

increase over this small range of test sizes. It is interesting to

note that even in the extreme case of a belief state of size 1,

the strategy pulls itself back on track after drifting away.

A confounding factor in the experiments is the experimen-

tal noise based on the randomness of the observations and

transitions. At belief state size 4, the accuracy advantage of

the Mix and Fixmix strategies over the other strategies begins

to be lost in the not inconsequential experimental noise.

This result is a confirmation of what we would expect: the

more severely restricted the belief state, the greater the error

in the resulting tracking procedure. More complex domains

and problems should help shed light on when each strategy is

appropriate and how constrained the belief state can be.

6 Discussion

In this paper we have presented preliminary results evaluating

and illustrating methods that allow fast tracking of systems

represented as POMDPs. The tracking method runs in con-

stant time and linear space with respect to the state space

size. We have shown that in preliminary cases, a mixture of

state-based and observation-based tracking shows the most

promise for recovery from tracking errors.

The ultimate goal is to understand the limitations and uses

of this tracking method and of the strategies for recovering

from and avoiding impossible observations. More experimen-

tal and theoretical work is needed to move towards that goal.

Compact representations, such as in [2], help reduce the

state-space size needed for updates. To get constant-time al-

gorithms, the transitions still need to be restricted to a con-

stant size, but this would allow a larger constant bound to be

used for the same performance.

The relation between the problem structure and the track-

ing strategy is intriguing. For example, a complete explana-

tion of the effectiveness of the Mix and Fixmix strategies on

the example problem likely hinges on characteristics of the

problem formulation; a better understanding of that depen-

dence will allow a better understanding of the fundamental

properties of the strategies.

The averaging strategies (Average, Mix, Fixmix) bear a re-

semblance to the Kalman filter updates with confidence-based

weighting of state-based and observation-based updates. The

theoretical basis of the Kalman filtering approach is lacking in

the strategies for Markov Tracking. This connection deserves
further examination to find whether that relationship could

be exploited.
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