
NASA/TM--2001-209992

Software Engineering Support of the Third Round of

Scientific Grand Challenge Investigations

Earth System Modeling Software Framework Survey

Task 4 Report

Prepared by

B. Talbot, S. Zhou and G. Higgins*

Northrup-Grumman Information Technology/TASC

4801 Stonecroft Blvd.

Chantilly, VA 20151-3822

G. Higgins, Program Manager

*Corresponding author G. Higgins: (703) 633-8300 x4049; ghiggins@northropgrumman.com

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

May 2002

Thc NASA STI Program Office ... in Profile

Since its Ik_unding, NASA has been dedicated to

the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this important
FOIC.

The NASA STI Program OMcc is opcratcd by
Langley Research Center, the lead center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to

the NASA STI Database, the largest collection of
aeronautical and space science STI in the world.

The Program Office is also NASA's institutional

mechanism for disseminating the results of its
research and development activities. These

results are published by NASA in the NASA STi
Report Series, which includes the following

report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of
NASA programs and include extensive data or

theoretical analysis. Includes compilations of
significant scientific and technical data and

information deemed to be of continuing

reference value. NASA's counterpart of
peer-reviewed formal professional papers but

has less stringent limitations on manuscript

length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release

reports, working papers, and bibliographies
that contain minimal annotation. Does not

contain extensive analysis.

• CONTRACTOR REPORT, Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific, techni-

cal, or historical information from NASA

programs, projects, and mission, often con-

cerned with subjects having substantial public
interest.

• TECHNICAL TRANSLATION.

English-language translations of foreign scien-

tific and technical material pertinent to NASA's
mission.

Specialized services that complement the STI
Program Office's diverse offerings include creat-

ing custom thesauri, building customized data-

bases, organizing and publishing research results...
even providing videos.

For more information about the NASA STI Pro-

gram Office, see the following:

• Access the NASA STI Program Home Page at

http://www.sti.nasa.gov/STl-homepage.html

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA Access Help
Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

• Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

NASA/TMm2001-209992

Software Engineering Support of the Third Round of

Scientific Grand Challenge Investigations

Earth System Modeling Software Framework Survey

Task 4 Report

Prepared by

B. Talbot, S. Zhou and G. Higgins*

Northrup-Grumman Information Technology/TASC

4801 Stonecroft Blvd.

Chantilly VA 20151-3822

G. Higgins, Program Manager

*Corresponding author G. Higgins: (703)633-8300 x4049; ghiggins@northropgrumman.com

National Aeronautics and

Space Administration

Goddard Space Flight Center

Greenbelt, Maryland 20771

May 2002

Available from:

NASA Center for AeroSpace Inlormation
7121 Standard Drive

Hanover, MD 21076-1320
Price Codc: A 17

National Technical Information Service

5285 Port Royal Road
Springfield, VA 22161

Pricc Codc: A 10

ABSTRACT

One of the most significant challenges in large-scale climate modeling, as well as in high-performance

computing in other scientific fields, is that of effectively integrating many software models from multiple
contributors. A software framework facilitates the integration task, both in the development and runtime

stages of the simulation. Effective software frameworks reduce the programming burden for the investigators,

freeing them to focus more on the science and less on the parallel communication implementation, while

maintaining high performance across numerous supercomputer and workstation architectures.

This documcnt surveys numerous software framcworks for potcntial use in Earth scicnce modeling. Sevcral
framew'orks are evaluated in depth, including Parallel Object-Oriented Methods and Applications (POOMA),

Cactus (from the relativistic physics community), Overture, G_ldard Earth Modeling System (GEMS), the

National Center for Atmospheric Research Flux Coupler, and UCLA/UCB Distributed Data Broker (DDBt.
Frameworks evaluated in less detail include ROOT, Parallel Application Workspace (PAWS), and Advanced

Large-Scale Integrated Computational Environment (ALICE). A host of other frameworks and related tools
are referenced in this context. The frameworks are evaluated individually and also compared with each other.

Earth Modeling System Software Framework Survey i

TABLE OF CONTENTS

1.0 Introduction ... I

1. I References ... 2

2.0 Framework Survey .. 3

2.1 Information Collection .. 3

2.2 POOMA ... 4

2.2. I Introduction ... 4

2.2.2 Synopsis .. 4

2.2.3 Description : 5

2.2.4 Evaluation 7

2.2.5 Refcrenccs 7

2.3 Cactus 8

2.3. I Introduction 8

2.3.2 Synopsis 8

2.3.3 Description .. 12

2.3.4 Evaluation ... 16

2.3.5 References ... 18

2.4 Overture ... 23

2.4.1 Introduction ... 23

2.4.2 Synopsis .. 23

2.4.3 Description .. 24

2.4.4 Evaluation ... 28

" "_92.4.5 Relerences ..

2.5 GEMS .. 30

2.5. I Introduction ... 30

"9 '9,,.5._ Synopsis .. 30

2.5.3 Description .. 31

2.5.4 Evaluation 32

2.5.5 References ... 33

2.6 Flux Coupler .. 34

2.6.1 Introduction 34

2.6.2 Synopsis .. 34

2.6.3 Description .. 35

2.6.4 Evaluation ... 37

2.6.5 Rcferences ... 37

2.7 Dislribuled Data Bi'oker ... 40

2.7.1 Introduction ... 40

Earth Modeling System Software Framework Survey iii

2.7.2Synopsis..41
2.7.3Description..42
2.7.4Evaluation...46
2.7.5References...47

2.8OtherFrameworks...50
2.8.1ROOT..50

2.8.1.1Introduction..50
2.8.1.2Synopsis..50
2.8.1.3Description...52
2.8.1.4Evaluation...56
2.8.1.5References..55

2.8.2PAWS...57
2.8.2.1Introduction..57
2.8.2.2Synopsis..57
2.8.2.3Description...58
2.8.2.4Evaluation...59
2.8.2.5References..59

2.9.3ALICE...60
2.8.3.I Introduction..60
2.8.3.2Synopsis..60
2.8.3.3Description...62
2.8.3.4Evaluation...64
2.8.3.5References..64

3.0DiscussionandRecommendations...65

3.1MotivationforEarthScienceModelingFramework(ESMF)..65

3.2CurrentStatusofExistingSurveyedFrameworks..65
3.2.I CouplersI'orEarthScienceApplicationComponents..66
3.2.2CommunityLevelApplicationFrameworks...68
3.2.3Object-OrientedFrameworks/Toolkits...69
3.2.4EarthScienceFrameworks..70

3.3Summary..70

3.4References...7I

Acronyms..73

iv EarthModelingSystemSoftwareFrameworkSurvey

LIST OF FIGURES

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1. The POOMA Framework Design ... 6

2. Organization of the Overture Framework .. 26

3. Comparison of Execution Models .. 27

4. The Relationship of Optimizing Preprocessor With Application, Framework,

Programming Languages, anti Hardware .. 2:";

5. Relationship between Application and Framework in Aries/NSIPP ... 3 I

6. High Level Design at the Flux Coupler ... 36

7. DDB as Part of the ESM .. 43

8. DDB Registration ... 44

9. Inter-Model Communication .. 45

10. Comparison of Centralized Coupling versus DDB Coupling
as a Function of Number of T3E Nodes .. 46

11. The Primary Specialty of the ROOT Framework is Event Reconstruction,

Data Acquisition, and Analysis ... 52

12. ROOT Schema .. 53

13. Basic ROOT Classes in an Inheritance Hierarchy ... 54

14. ROOT Environment and Tools ... 55

15. Breakdown of PAWS Programming Interface and Controller .. 58

16. The PAWS Controller Interacting with Several Applications .. 58

17. ALICE Infrastructure Concept ... 62

18. ALICE Concept of Computational Components ... 62

19. ALICE Component Implementations ... 63

20. ALICE Vision of Next Generation Applications .. 63

LIST OF TABLES

Table 1. POC's for the Six Surveyed Frameworks .. 3

Table 2. Mapping Utilities .. 38-39

Table 3. Control utilities ... 40

Earth Modeling System Software Framework Survey v

1.0 INTRODUCTION

This report surveys existing modeling frameworks to provide insight into available software that could

potentially support the development of a community Earth System Modeling Framework (ESMF). The

survey li_cused on the six frameworks listed below; however, many more were examined in less detail.

• Parallel Object-Oriented Methods and Applications (POOMA)

• Cactus

• Overture (Object-Oriented Tools IksrSolving CFD and Combustion Problems in Complex Moving

Geometry)

• Goddard Earth Modeling System (GEMS)

• National Center for Atmospheric Research (NCAR) Flux Coupler

• University of California, Los Angeles, (UCLA) Distributed Data Broker (DDB)

A Web site has been developed [1] to provide reference to the investigated frameworks, as well as others that

arc not mentioned in this report. In addition, an interim briefing of the survey results is provided at that site.

This report is a focused rather than a general survey in that it reviews the frameworks in the context (51ESMF
necds rather than in the context (5t"the specific problem the framework was originally designed to solve. The

ESMF necds arc expressed in both thc Cooperative Agreement Notice (CAN) [2] and in documents arising

from meetings of the Common Modeling Infrastructure working group (CMIWG) [31. Thesc needs arc

informally documented here. Framework deficiencies relative to ESMF needs should not be considered

general weaknesses, since none of the frameworks were specifically developed to address those needs.

Thc report is divided into three maior sections: Introduction, Framework Survey, and Discussions and

Recommendations.

Section 2, Framework Survey, which follows this Introduction, is divided into eight major subsections.
Subsection 2.1 provides the information collection approach and the major points-of-contact (POC's) within

the organizations that developed the framework. Subsections 2.2 through 2.7 provide survey results for the

six primary frameworks (listed above). Each subsection is further divided into five sections: introduction,

synopsis, description, evaluation, and references. Separate references lists are provided for each framework to
simplify the search for the reader and because there is little overlap. This approach is used throughout the

document. Subsection 2.8 provides less detailed information on three other frameworks--ROOT, Parallel

Application Workspacc (PAWS), and Advanced Large-Scale Integrated Computational Environment
(ALICE), that may be of interest to the climate community but which were not reviewed at the same level of
detail as the others. As indicated earlier, an extensive set of links to these and other frameworks identified in

the survey may bc found at the survey web site [1].

Section 3, Discussion and Recommendations, is divided in four subsections. Subsection 3.1 is entitled

"Motivation for ESMF." This subsection presents results of reviewing the CAN and findings of CMIWG to

identify the underlying requirements of a community ESMF. Subsection 3.2 looks at the relative capabilities
of lhe surveyed frameworks relative to ESMF requirements. Section 3.3 provides recommendations on the

types of framework solutions that may bc possible to satisfy ESMF needs. Finally, Section 3.4 provides the
references lbr all of Section 3.

Earth Modeling System Software Framework Survey 1

1.1 References

Survey results. URL: hltp://esdcd.gsfc.nasa.gov/ESS/esmf tasc/index.html

-_ Staff, National Aeronaulics and Spacc Administration (NASA), 2000: NASA High Performance

Computing and Communications (HPCC)/Earth and Space Sciences (ESS) Cooperative Agreement Noticc
(CAN1 for Solicitation of Round-3 Grand Challenge Investigations: Increasing lnteroperability and

Pcrlk_rmance of Grand Challenge Applications in the Earth, Space, Life, and Microgravity Sciences.

URL: http://carth.nasa.gov/nra/current/can00ocs01 /

CMIWG. htlp:lljanus.gsfc.nosa,govl~mkistlerlinfr'almaster.html

2 Earth Modeling System Software Framework Survey

2.0 FRAMEWORK SURVEY

2.1 Information Collection

A variety of sources was used to obtain information about each framework. These sources included Web

information, technical documentation (e.g., technical reports, software documents), software source code

review, and personal communication with the framework developers. The personal communications were

particularly useful and most organizations were gracious enough to provide more than one telephone

interview to clarify findings. In the early stages of the survey, a list of basic inquiry areas was formulated to

focus the information search. This was done to ensure that similar infl)rmation was collected from each

organization, although it did not nccessarily limit the framework review. These inquiry areas included the

lollowing:

• Requirements/capabilities--Major goals of the framework, current capabilities, parallel

implementation, unique capabilities, future capabilities (i.e., are important new features planned'?).

• Language--Implementation language of the framework and language requirements of applications

using the framework.

• High-level design--Highest level design in terms of a hierarchical structure diagram or functional

diagram.

• Tools and utilities included--Libraries, key Fortran subroutines, etc., that might be of interest to the

climate community (e.g., grid utilities, parallel communications utilities).

• Application interface--How would an application interface with the framework?

• Other issues--Maturity of framework (number of users, number of versions issued, number of

developers on team), performance optimization (optimization efforts by developers to improve

perlbrmance), etc.

The points-of-contact (POC's) for the six frameworks are shown in table I.

Table 1. POC's for the Six Surveyed Frameworks

Framework

POOMA

Cactus

Overture

GEMS

Flux Coupler

Distributed Data Broke

Organization

Los Alamos National Laboratory

Collaborative effort within the

relativistic physics community

Lawrence Livermore National

Laboratory

NASA NSIPP and DAO

NCAR

UCLA Atmospheric Sciences Department

Primary POC's

Julian Cummings

Ed Siedel

David Brown, Bill Henshaw, Dan Quinlan

Max Suarez

Brian Kauffman and Tom Bettge

Tony Drummond

The results of the survey are provided in the remaining subsections. Subsection 2.2 describes POOMA, 2.3

describes Cactus, 2.4 describes Overture, 2.5 describes GEMS, 2.6 describes NCAR Flux Coupler, 2.7

dcscribes the UCLA Distributed Data Broker, and 2.8 describes ROOT, PAWS and ALICE.

Earth Modeling System Software Framework Survey 3

2.2 POOMA

2.2.1 Introduction

Parallel Object-Oriented Methods and Applications (POOMA) originates in the Los Alamos National

Laboratory (LANL_. It is an object-oriented framework lk_r applications in computational science requiring

high-performance parallel computers [I]. This description is based upon POOMA documentation [1, 2],

teleconferences with POOMA developers, and the assessment of POOMA by the National Energy Research

Scientific Computing Center (NERSC) [3].

2.2.2 Synopsis

Prominent information about POOMA includes the following:

I. Community oforigin--POOMA originates in the LANL.

2. Description--POOMA is a library of C++ classes designed to represent common abstractions in

high-perlormance computing applications.

3.

4.

Team--The POC is Julian Cummings, who is now at the Calilornia Institute of Technology. Most of
the POOMA developers have recently left.

MaturitymThe POOMA project started around 1994. (POOMA 2.x is currently under

development.) POOMA has achieved one of its requirements (i.e., code portability across serial,

distributed, and parallel architectures with no change to source code).

5. Users---Most users are within the LANL.

6, Language---The tools in POOMA are implemented as a C++ class library. Application development

in C++ using POOMA can be done efficiently by using and/or deriving from those classes with the

C++ features of inheritance and polymorphism. However, legacy codes in Fortran cannot be

supported easily in POOMA without major code changes.

7. Tools/utilities included--POOMA tools and utilities support data types such as field (i.e., array)

and particle. With those basic data types, application codes can use the tools and utilities such as
meshes and differential operators.

• Fields----Fields are multidimensional arrays representing grids with definable centering. They

may be fully contained within a processing node, or spread across nodes, according to user

directives. POOMA predefines field types lbr the most common element types: scalars (double,

integer, etc.), vectors, tensors, and symmetric tensors. POOMA users may specify other arbitrary

element types, although this is not completely straightforward.

• Particles--An instance of the particle class actually stands for a set of particles, with user-

definable characteristics. Particle sets may also be distributed across nodes, and operations on

them are expressed in a data-parallel style.

8. Application interface---Based on utilities provided by POOMA, application codes in C++ can be

developed quickly through thc features of C++ inheritance and polymorphism.

9. Documentation_Most information on POOMA can be found at [!].

4 Earth Modeling System Software Framework Survey

10. Associated software---Currently POOMA uses the software package "Cheetah" to wrap Message

Passing Interface (MPI) and/or Shared Memory (SHMEM) for message-passing operations and uses

the software package "SMART" to pcrfiwm multithreaded operations. Multithrcaded POOMA 2.x

programs can be profiled using the Tuning and Analysis Utilities (TAU) libra,'y. TAU is a set of tools

that allows developers to analyze the performance of distributed and multithreaded programs. It is

especially useful in tracking C++ classes that are created and destroyed dynamically. "Cheetah" and

"SMART" wcrc developed at LANL.

11. Special features--True portability across serial, parallcl, and distributed architecturcs.

2.2.3. Description

POOMA is used to write high-performance Partial Differential Equations (PDE) solvers using finite-

difference methods on structured, unstructured, or adaptive grids, particle methods, or hybrid methods which

cornbinc the abovc. An earlier version of POOMA, generally referred to as POOMA R l, has enioycd

considerable success meeting thcse goals in real applications, which include gyrokinetie particlc-in-cell

plasma simulation, multimaterial compressible hydrodynamics, accelerator modeling, and Monte Carlo

transport. POOMA 2.x is the next generation of the POOMA software, designed to take advantage of

advances in C++ compiler technology, multithreaded operation, and a new, highly extensible design.

As indicated at the POOMA Web site, "POOMA has a flexible array class that supports a plug-in 'Engine'

architecture to achieve representation independence. It includes a powerful system for specifying and

combining domains to construct views of arrays. These views are arrays, so they can be used anywhcrc an

array is expected. Using a novel ExprcssionEnginc abstraction, array expressions in POOMA are also first-
class arrays. POOMA supports multithreaded execution on shared-memory multiprocessors using the

SMARTS runtimc system. An experimental asynchronous scheduler is available that uses data-flow analysis

to perlorm out-of-order execution in order to improve cache coherency. POOMA hidcs the details of parallel

computation in a flexible Evaluator architecture. For the user, this means that a program can bc written in a

highly abstract data-parallel form, tested and debugged in serial mode, and then run in parallel with very little
eflbrt. With POOMA version 2.1, physics abstractions like fields, coordinate systems, meshes, efficient

differential operators, and particles have been introduced." [11

POOMA programs are written at a high level, using data-parallel array expression in the style of High
Pertbrmance Fortran (HPF) or at a serial level using iterators on each CPU. They can achieve high

performance (comparable to Fortran) thanks to a clever compilation technique called expression templates
[4]. Moreover, POOMA programs achievc truc portability across serial, parallel, and distributed

architectures.

One of the principal motivations behind POOMA is to provide C++ classes that directly address numerical

science problems using the methodology of numerical scientists. By managing boundary conditions, and

supporting efficient evaluation of differential operators, these classes provide the functionality that modern

numerical algorithms require, and allow numerical scientists to concentrate on what they want to calculate,
rather than on how it is to be calculated.

Thc main goals of the POOMA framework include the following:

• Code portability across serial, distributed, and parallel architectures with no change to source code;

• Development of reusable, cross-problem-domain components to enable rapid application

development;

• Code efficiency for kernels and components relevant to scientific simulation;

Earth Modeling System Software Framework Survey 5

• Frameworkdesignanddevelopmentdrivenbyapplicationsfromadiversesetof scientific problem
domains;

• Shorter time from problem inception to a functional parallel simulation.

POOMA is an object-oriented design framework with a layered structure. Figure I below shows the basic

strt, cture of the POOMA framework. Application programmers can use and/or derive from these C++ classes,

which present a data-parallel programming interface at the highest abstraction layer. Lower implementation
layers encapsulate distribution and communication of data among processors.

NPACI Parallel Computing Instilute August 11-21, 199_

The POOMA Framework

Application [LINAG 8 NTTP

Algorithm [FFT .d Dlfhlfentjalopemtom

Global Fields

Load
Parallel

Balancing

Local STL

MC++

The POOMA Fm_

Interpolators

Meshes Parbcles

dl

Domain Message

DecomposlUon Palling

i "Expression Compile-time

Templates Polymorphism

Juflan C. Cummings, LANL

NPACI: Natiof_a[Partnerstllp for Advanced ComputattonaK Infrastructure

Figure 1.The POOMA Framework Design [1]

As mentioned above, POOMA has used expression templates to optimize performance. By using expression

templates, it has attempted to solve the problem of poor performance that is inherent in the C++ language.
The following example shows one of problem origins:

class Matrix {/*...*/ };
Matrix A, B, C, D;
I* ... */

A=B+C+D;

Suppose that class matrix overloads the operators "+" and "=" to perform element-wise addition and

assignment. The final line will be evaluated in a series of binary operations. These will involve temporary

matrix objects that store intermediate results: tmpl = B + C; trap2 = tmpl + D; A = trap2. Creating and
destroying temporary objects can severely degrade performance, especially if each object contains a

significant amount of data. This problem has been recognized for some time, and various attempts have been
made to solve it. The best solution to date is expression templates [4], a flexible and general device that

avoids the creation of temporary objects. POOMA relies heavily on expression templates to optimize data-

parallel expressions involving particles and fields. POOMA applications thereby retain the benefits of
overloaded operators with no loss in perlormance. Since the ROSE preprocessor used in Overture is not

ready lor public release, it is difficult to compare the technique of expression template with the ROSE
preprocessor at this time.

6 Earth Modeling System Software Framework Survey

Thusfar,therearealimitednumberofscientificdemonstrationsofPOOMAinsidetheLANLandinsome
universities.Thoseapplicationsarcmultimatcrialhydrodynamics,particle-in-cellplasmasimulation,Monlc
Carloneutronics,acceleratorphysics,volumefractionandprogrammedburn,andnumericaltokamak.All
theseapplicationshavebeendevelopedinclosecollaborationwiththePOOMAdevelopmentteam.

2.2.4 Evaluation

Strengths

POOMA application programs are written at a high level, using data-parallel array expressions in HPF style

or at a serial level using iterators on each CPU. Those programs can achieve high performance (comparable

to Fortran) by using a compilation technique called expression templates. Moreover, they achieve true

portability across serial, parallel and distributed architectures. The syntax is similar to that of Fortran 90: a

single assignment fills an entire array with a scalar value, subscripts express ranges as well as .single points,

etc. Since the expression template is a feature of C++, the technique of expression templates can bc

supported by a standard C++ compiler.

Weaknesses

The learning curve for POOMA may bc steep because of its extensive use of C++ template features. POOMA

intends to be used for writing a new code in C++ not for adopting a legacy code written in Fortran. The

biggest problem with POOMA is that the compiling time can be extraordinarily long (hours). Most compilers

produce long and cryptic error messages if they encounter an error while expanding template functions and

classes, particularly if those functions and classes are nested. As POOMA uses templates extensively, it is not
uncommon lot a single error to result in several pages of error messages from a compiler. Finally, some

debuggers still provide only limited support for inspecting template functions and classes. All of these

problems are actively being addressed by vendors, primarily in response to the growing popularity of the

Standard Template Library (STL).

Summary

The POOMA framework has successfully achieved portability across serial, parallel, and distributed

architectures. However, the extraordinarily long compiling time due to the use of expression templates

technique makes POOMA difficult to use for practical applications. But its object-oriented design and the

methodology used in achieving portability across platforms can be useful for developing an ESMF.

2.2.5. References

URL: http://www.acl.lanl.gov/pooma/

2 URL: http://www.physics.ucla.edu/icnsp/Html/mark.htm

URL: http://acts.nersc.gov/pooma/main.html

4 Veldhuizen, Todd, 1995. "Expression Templates." C++ Report 7:5 (June, 1995), 26-31. Reprinted in C++

Gems, Stanley B. Lippman, ed., 1996. Sigs Books, NY.

Earth Modeling System Software Framework Survey 7

2.3 Cactus

2.3.1 Introduction

Cactus [1] is a software framework resulting from the collaboration of numerous institutions including the

Albert Einstein Institute (AEI) I21, Washington University Gravity (WUGRAV) group I3], National Center

for Supercomputing Applications (NCSA) [41, Konrad-Zuse-Zentrum fuer Informationstcchnik Bcrlin 15 l,

International Numerical Relativity Group (INRG) 161, Rcchenzentrum Garching (RZG) der Max-Planck-

Gcsellschaf1171, Argonne National Laboratory (ANL/181, and Universilat dcles illcs Balears (UIB) 191.

As described on the Cactus Web pagc,

"Cactus is an open source problem-solving environment designed lor scientists and

engineers. Its modular structure easily enables parallel computation across different

architectures and collaborative code development between different groups. Cactus

originated in the academic research community, where it was developed and used over many
years by a large international collaboration of physicists and computational scientists.

"The name Cactus comes from the dcsign of a central core (or flesh) which connects to

application modules (or thorns) through an extensible interface. Thorns can implement
custom-developed scientific or engineering applications, such as computational fluid

dynamics. Other thorns from a standard computational toolkit provide a range of

computational capabilities, such as parallel input/output (I/O), data distribution, or

checkpointing.

"Cactus runs on many architectures. Applications, developed on standard workstations or

laptops, can be seamlessly run on clusters or supercomputers. Cactus provides easy access to

many cutting-edge software technologies being developed in the academic research

community, including the Globus Metacomputing Toolkit, HDF5 parallel file I/O, the PETSc
scientific library, adaptive mesh refinement, Web interlaces, and advanced visualization

tools." 111

2.3.2 Synopsis

Prominent information about Cactus includes the fi)llowing:

Community of origin--The Cactus framework originates in the relativistic physics community.

1. Description--Cactus is a component-oriented application development environment for scientific

computing which employs a common interlace to components written in multiple languages.

2. Team--The Cactus team includes at least 25 individuals, a partial list of which includes Gabrielle

Allen I 10l, Tom G_dale l 11], Ed Seidel l 12 I, Thomas Radke I 13], Gerd Lanfermann I14], and

others [15[. The team is actively functioning and is anxious to work with users from other
communities to further enhance the code infrastructure.

3. Maturity_As of August 2000, the Cactus team is shipping version 4.0, beta 8.0. Version 1.0 was
rclcased on April 24, 1997. Cactus spans at least 3 years and four major releases. The predecessors

of Cactus go back to the early 1990's. Cactus benefitted from the NSF Black Hole Grand Challenge

project and several other attempts to develop a framework for research groups. Cactus has a long

heritage in community framework development.

8 Earth Modeling System Software Framework Survey

, Users---Cactus has approximately 100 users, mostly within the relativistic physics community, but

recently expanding into other disciplines, such as aerodynamics, condensed matter, chemical

engineering, geophysics, and climate modeling. Some of the users, as noted on the Cactus home

page, are listed below:

• Within the relativistic physics community, application groups actively using Cactus include the

following:

• The AEI 121 has developed a Cactus Relativity Toolkit.

• The WUGRAV I31 has developed sevcral Cactus modules.

• University of Pittsburgh

• The Pennsylvania State University numerical relativity group is using Cactus for its Agave

[161 code in performing 3D evolutions of spacetimc.

• University of Texas

• University of Timisoara (Romanial

• University of Wicn

• University of Washington, Seattle

• Several groups in Italy

• Physical Research Lab and Raman Research Institute (India)

• University of California, Santa Barbara

• University of Southampton

• University of Portsmouth

• Astrophysics users include the following:

• The cosmology group at NCSA [4], including Michael Norman 1171, are porting the
successful Zeus code to Cactus. Zeus has several hundred users worldwide.

• The European Union Network Project 1181, a project simulating collisions of neutron stars
and black holes, which is closely related to the NASA Neutron Star Grand Challenge project

[191.

• Max-Plank-lnstitut for Astrophysics

• The Astrophysics Simulation Collaboratory (ASC) I201 is a project sponsored by National
Science Foundation (NSF) grant PHY 99-79985 to Rutgers University, University of

Chicago, University of lllinois, and Washington University, that enables large-scale
simulations in astrophysics. The ctxle is based on Cactus. A progress report [21] provides

insight into how Cactus can be modified to support new simulation applications.

• Aerospace users include the following:

• Deutsche Lufl und Raumfahrtzentrum [22], the German Aerospace Center, is working with

an industrial partner to plug an aerospace application into Cactus.

• Condensed matter physics users include James Sethna [23] and his condensed matter

physics group at Cornell University.

• Chemical engineering groups include Ken Bishop 124] and his chemical engineering group

at the University of Kansas.

Earth Modeling System Software Framework Survey 9

2.

.

4,

Geophysics groups using Cactus include Bosl 125] and thc geophysics group at Stanford

University arc planning to use Cactus. Bosl is also associated with the Digital Earth project

126 I, a project to dcvelop object-oriented coupled m_u.lels for geophysical mcnleling.

Computational science groups that are actively using and/or developing Cactus include

• NERSC 1271 at Lawrcncc Bcrkley Laboratories (LBL)

• NCSA 141

• The University of Chicago

• Clemson University

• GMD-First in Berlin is working to incorporate Janus, an unstructured mesh code, as a driver
layer.

• Mikc Hoist's [281 group at University of California, San Diego (UCSD)

• Charlie Crabb's [29] group at Lawrence Livermorc National Laboratory (LLNL) [301

• Imperial College, London, plans to develop an expert system to aid in connecting thorns to
build an appropriate application.

• Most recently, Cactus was ported [31] to the NT Cluster at the Corncll Theory Center (CTC)
1321.

• Cactus, having a long history of grid computing experiments, is becoming more extensively
used in grid communities such as the following:

• European Grid Project {EGRID) [331

• U.S. Grid Forum I341

• The Grid Application Development Software Project (GRADS) [351, a project sponsorcd by
the NSF Next Generation Software programs to simplify distributed heterogeneous

computing, directed by Ken Kennedy [36], uses Cactus as a test grid application.

• Globus [371 developers

• The German Gigabit Testbed Project (TIKSL) [381 uses Cactus lor their simulation
environment.

Language---The core of Cactus is written in ANSI C, with PERL heavily used during the

configuration process. There is no Fortran or C++ in the core code. Cactus currently accepts thorn
modules in Fortran 77, Fortran 90, C, and C++. Support for other languages such as Java, Practical

Extraction and Report Language (PERL), and Python is planned in the next version release (4. I I.

Tools/utilities included--Cactus comes with several toolkits, mostly oriented toward relativistic
physics. It also has a runtimc system with a scheduler.

Application interface---Cactus employs a custom common interlace to thorns (component
modulest which is language independent and provides some object-oriented capabilities.

Documentation--The Cactus team actively maintains a Web site [1], which provides links to a host

of information. Printed documentation includes a user's guide [39], quick start guide, and a set of

dcvcloper tutorials [401, [41]. Additionally, the Web site provides access to numerous presentations
[421, 1431, 1441, 1451, [461, 1471, [481, [491, [501, [511, I521, I531, [541, publications about Cactus

[551, 1561, 1571, 1581, 1591, and application publications and posters 1601, [61], I621, 1631, 1641, [651,

10 Earth Modeling System Software Framework Survey

1661,1671,[68].Cactushasalsobeenthefocusofaworkshop1691,1701heldatNCSA141.Thus,
Cactushasasignificantamountofassociateddocumentationinitsusercommunity.

5. Associatedsoftware---CactusrequiresPERL[711,GnuMake[72]andaC/C++compiler.Italso
interfaceswiththefollowingsoftware:
• ConcurrentVersionSystems(CVS)1731--Sourcccodeconfigurationmanagcmcnt

• Cygwin[741--UnixutilitiesforWindowsplatlorms
• MP1andMP1CH[751--Messagc-passinginterfaceslotparallelism
• Globus[76]--Toolkitsforcomputationalgrids
• FlexlO[771--Applicationprograminterface(API)forstoringmultidimensionalscientificdata

• HDF5I781
--Fileformatforstoringscientificdata

• IEEEIO[791--libraryforstoringmultidimensionaldatainbinaryformal
• LCAVsion[80J--scientificvisualizationtool
• Amira1811
--Scientificvisualizationtool

• PortableExtensibleToolkitforScientificComputing(PETSC)1821--suitcofdatastructuresand
routinesforscalable(parallel)solutionofPDEproblems.

• GridAdaptiveComputationalEnginc(GRACE)[831

• Autopilot1841
--Real-timeadaptiveresourcecontrol
• OpenDX1851--visualization
• Perlk)rmanceDataStandardandAPI(PAPI)[861--perlk)rmancemonitoringlibrary

• Panda[871

--ParallelI/Olibrary

1. Performance---Solongasmostoftheexecutiontimeisspentinsideamodule/thorn,performance
ofaclimateapplicationusingCactusshouldbeaboutthesameasbefore.TheCactusschedulerdoes
notplayalargeroleintheexecutiontime.Cactusachieved142Gflopsona1024CrayT3E-1200
withafullthornsetsolvingthecoupledEinstein-Hydroequations.

2. SpecialFeatures:
• UniquecomponentinterfacespansFortranandCandsuppliesinheritancecapabilityfordata

declaredusingtheinterface.
• CactusapplicationscanincludecomponentmodulesthatallowthemtofunctionasWebservers

[88].TherunningapplicationcanbcinspectedviaaWebbrowserthroughwhichtheusercan
seetheconfigurationoftheapplication,thecurrentlyrunningmodules,thevaluesofthe
parameters,andgraphicsshowingintermediateresults.Applicationparameterscanbe
configuredassteerable,enablingthemtobechangedviatheWebbrowserduringtheapplication
run.TheCactushomepageII IprovidesalinktoaperpetualCactusrun.

EarthModelingSystemSoftwareFrameworkSurvey I1

Cactusisespeciallystronginremotevisualization,steering,andgridcomputing and is used
heavily in development of these new technologies worldwide.

• The Web server m_w allows fine control of the simulation, such as pausing, terminating, and
checkpointing.

The Web server interface is being currently developed and will increase in features and
functionality.

Applications developed with Cactus arc automatically grid-enabled and can make use of
advances in grid computing.

There arc several pr_iects and modules lor remote access to visualization and control.

An advanced portal for Cactus is being developed at ANL, in collaboration with researchers

at LBL, NCSA, Washington University, and AEI, to facilitate all aspects of Cactus

configuration, parameter input, .job management, remote submission on resources, and job

monitoring and steering. This capability will be demonstrated at the Supercomputing 2000
Conference.

With respect to rewriting codes to use Cactus, there are several levels of integration. On the

low end, there is little work and virtually no code intrusion. An entire code may be plugged

in but may only use parallelism. At the high end, with more work, an existing code makes

intense use of the Cactus architecture. In this respect, the rewrite effort scales the same way.
The code can be shifted from the low end to the high end, as the programmer wishes.

2.3.3 Description

High-Level Design

Because of the high complexity of solving relativistic equations [58], described as "among the most

complicated seen in mathematical physics," members of the relativistic physics community created Cactus as
a common development tool which allowed multiple components, known as thorns, to be assembled and run

in the same environment. The need for a modular system is driven by the desire to have members of the

community work relatively independently on various software components. The need for multiple language

support is derived from the fact that community members arc developing components in various languages,
including Fortran 77, Fortran 90, and C. Thus, these needs, in conjunction with other needs, translate into a

need for a single development environment with a common interface that can span multiple language
modules. The Cactus high-level design is governed by the following major ideas:

I. "A framework is a reusable semi-complete application that can be specialized to produce
custom applications." 1891

Cactus is not just a toolkit, a library, or a module that performs a particular function. It is a complete

framework that meets the definition criteria, oriented towards the production of complete
applications consisting of interacting objects.

2 Fortran is a crucial scientific language that must be supported because speed is important.

John Backus, a Fortran designer, was quoted in The Grid [901, [911 (p. 184) as saying the following
with respect to the Fortran language:

"'It was our belief that if Fortran, during its first months, were to translate any reasonable

'scientific' source program into an object program only halt" as fast as its hand-coded

counterpart, then acceptance of our system would be in serious danger... To this day I

believe that our emphasis on object program efficiency rather than on language design was

12 Earth Modeling System Software Framework Survey

basicallycorrect.1believethathadwefailedtoproducecfficicntprograms,thewidespread
useof languagcslikcFortranwouldhavebccnseriouslydelayed."[92]

Forsimilarrcasons,rathcrthanabandoningFortranandchoosinganobject-orientedlanguagethatis
muchmorcsuitabletothcdesignoftheirsystem,theCactusteamhasputagreatdealofeffortinto
accommodatingcxistingFortrancode.

3. Modules should be self-contained with small interfaces where all communication takes place

through the argument list.

James Hack [93[, in a discussion on modularization and coupling of climatc models said thc

following:

"Historically, scientific progress in atmc, spheric modeling has been slowed by technical

difficulties of incorporating and testing physical parameterizations in diffcrcnt largc-scalc

numerical models. Such problems arc fundamentally linked to the fact that most codes arc

not modular in their design and often make use of very different data structures.

Rccognizing this problcm, a number of scientists from major atmospheric modeling

institutions have adoptcd a set of coding rulcs to make physics packages more plug-

compatible in order to facilitate their easy exchange 1941. Although this sct of rules is

specifically intended for physics packages that do not have a large number of thcir own
prognostic variables, the conceptual approach is appropriate, and will ultimately prove

necessary, for coupling complex climate system components (ocean circulation models,

chcmical modcls, biosphere models, etc.). Some of the more important concepts containcd

in this coding standard are

• Each componcnt should refcr only to its own subprograms and a limited sct of
standard intrinsic functions.

• Each component should provide lk)r its own initialization of static infi:,rmation and
initial data through a single initialization entry point.

• All communication between packages shall take place though thc argument list

associated with a single unique cntry point into each package.

This approach to coupling major model components is quite reasonable?' (195], p. 317).

Cactus works best with modules written in this style, where all communication with a

module takes place through a single entry point using only parameters in the argument list.

Modules using other means of communication or with multiple entry points will have more

difficulty working with the Cactus system.

Cactus effectively integrates these three ideas at a high level.

Use of the System

The enabling technology in Cactus is associated with the need for language-independent parameter and data

passing. In Cactus, this is accomplished by having thc user

I. Crcate special files in the mc_lule directory, independent from the source code, to declare and

specify dominant parameters and data. These files provided a means to create data "objects" using
inheritance and with public, private, and protected variables. Thorns may be scheduled in groups,

with other routines/groups being scheduled before or after. A "schedule while (condition)" construct
is also allowed to allow for some dynamic control and for loops. This is more primitivc than a

Earth Modeling System Software Framework Survey 13

2.

scripting language, except for dynamic change at runtime, but a scripting language is planned for the
4. I release.

Insert special Cactus keywords in the source code subroutine calling parameter lists instead of
variable names.

3. Compile the application using the Cactus system.

Cactus,

I.

2.

3.

in turn, builds the application by

scanning the special files to learn about the variables;

inserting variable names automatically in the calling lists for each subroutine:

compiling the final application using standard compilers.

When the application runs, Cactus performs the following functions:

I. loads thorns/modules;

2. schedules functions from thorns (note that there is more than one entry point to a thorn. They are not
treated as monoliths.);

3. transfers data between thorns;

4. provides interfaces to visualization tools;

5. provides interfaces to external Web browsers;

6. writes data.

The enabling technology, then, is the Cactus source code, PERL [71] scripts, and interface conventions which

enable it to accomplish these tasks. PERL is a language that is traditionally used for text processing because

of its powerful pattern recognition capabilities. With Cactus, PERL and the C-preprocessor (CPP) are used as
part of the build process but are not part of the runtime. Cactus provides easy parallelization for modules.

Views of the System

Cactus is a comprehensive system that can be described from several perspectives, each providing insight
into what Cactus can do:

• As a language extension to C and Fortran.

• As an object-oriented language.

• As a compiler.

• As a development environment.

• As a runtime environment.

• As a language extension.

As Cactus requires the user to insert special keywords in the source code, Cactus is a type of language
extension. From this perspective, Cactus is similar in approach to High Performance Fortran ([96] and 1911,
p. 188), an extension to Fortran in which areas of data parallelism can be denoted in the code via comments

or several new keywords. Cactus is different from HPF in that the new keywords do not denote regions of

parallelism but instead denote regions of the code where Cactus needs to substitute variable names at compile
time. In a similar vein, whereas the principal focus of NPF is the layout of arrays ([91], p. 188), one of the

main focuses of Cactus is storing array inlbrmation in objects through an inheritance mechanism. However,

Cactus is not an extension to a single language (such as Fortran), but is instead an extension to multiple

14 Earth Modeling System Software Framework Survey

languages(FortranandC)usingthcsamekeywords.Because multiple languages are involved, Cactus also

specifics unique names for types such as CCTK REAL which corresponds to arcal in Forlran or a double in C.

An Object-Oriented Language

As it provides the means for users to build data structures in terms of other data structures using an
inheritance mechanism, Cactus is a type of object-oriented language. Inheritance is a powerful fcaturc of

object-oriented languages and a key part of object-oriented frameworks (1891, p. 5). Inheritance is missing

from both Fortran and C. Cactus currently provides this inheritance for data structures but not for method/

function names, thus allowing "subclasses" to bc derived from previously defined data structures. Inheritance
for function names will be availablc in the final release via function aliasing.

In addition to having inheritance, Cactus is like object-oriented languages in that thorns are similar to classes

both in the manner of specification and in operation. For example, for a hypothetical MyClass class definition

in the C++ language, the class variables are traditionally specified in iwo files: (I) MyCiass.h, containing
declarations, and (2) MyClass.C, containing member functions. Each member function of MyClass

automatically has access to all data elements declared as part of the class in MyClass.h without passing in the

function argument list. If the programmer decides that MyClass requires an additional data member, such as

a gridded three-dimensional array, Z, then Z is added to MyClass.h and becomes automatically available to
all member functions of MyClass. Thus the language provides the means to "pass" class variables to member

functions without changing the function prototypes. In a similar fashion Cactus provides a means to declare

"member data" in files separate from the thorn source code and automatically "pass" these to the thorn

functions without requiring the user to change the function prototype.

Though Cactus is similar to object-oriented languages in form and function it is unlike them in elegance.
Cactus is awkward in both form and function. Instead of a single declaration file (MyClass.h), three are

required (interface.ccl, param.ccl, and schedulc.ccl). Instead of meaningful type names like real or double,
awkward names such as CCTK_REAL are used for Cactus-owned variables. Some of this awkwardness is

unavoidable, a direct byproduct of trying to make something that interoperates between two dissimilar

products. In thc same way that a stereo system designed to operate in either a bus or a motorcycle, with two
different mounting environments and two difl'erent acoustical environments would be awkward, the Cactus

design is awkward because it straddles two different languages, thus requiring awkward conventions.
Nevertheless, even the awkwardness can be a benefit in some cases, as CCTK_REAL can be defined as

doublc or float, enabling users to easily configure the degree of precision in a computation.

A Compiler

In the sense that Cactus scans source code and looks ff)r keywords, it is a type of compiler. Cactus uses GNU

make and PERL scripts to scan the source codc, perform substitutions and arrange lor the overall build of the

application. It also rclies on the CPP to perform macro substitutions. Because it calls the other compilers, the

CPP is a type of super-compiler that spans the multiple languages.

A Development Environment

As it manages the production of the final application, Cactus is a type of development environment. The user

specifies code in thorns and Cactus provides assistance in assembling the components.

Earth Modeling System Software Framework Survey 15

A Runtime Environment

As it provides scheduling of the various modules during program execution, Cactus is a type of runtime

environment. Cactus does not just compile source code written by somebody else, it also inserts specific

code of its own to provide runtime scheduling between the different thorns. At a high level this is similar to
the Parallel Application Workspace (PAWS) environment [97] where a central controller coordinates the

running of different components. At a low level this is similar to a language like Java which generally runs on
a virtual machine which creates, schedules, and controls the objects. This does not mean that there are two

levels of control. It means that Cactus can be viewed in these two ways.

2.3.4 Evaluation

Cactus is unique among the frameworks we examined because of its comprehensive modeling approach. It is
worthy of close consideration by the climate community, not only for its implementation, but more

importantly for its method. In many respects, the needs of the climate community are not significantly
different than the needs of the relativistic physics community or of any other community that develops and

uses complex software and computer systems. The comprehensive manner in which Cactus addresses these
universal needs provides valuable insights into what a framework should be and can become.

Cactus addresses the issue of how to promote the development of interchangeable software within a

community by providing a tool with a comprehensive focus. The genius of the Cactus framework is not so

much in the individual software elements as in the comprehensive nature of the solution, which enables the

business of assembling and running an application to be effectively conducted. Individually, the elements

may be either highly desirable to the climate community or, alternately, distasteful and awkward. But even

some of the awkward elements, as part of a larger system, have a strength that other frameworks do not
provide.

Strengths

These are the issues that the Cactus framework addresses:

I. Cactus is a framework in the true sense. It addresses the need for a community software focal point

by defining the nature of the software components and the relationships ([89] p.4) between them and

by providing a common tool to assist with assembly and scheduling.

2. According to the pattern of true frameworks, Cactus provides a mechanism for inversion of control

(I891 p.5), a supervisory process (llesh) which schedules the interacting objects (thorns), thus
relieving the mcxlule developer of that responsibility.

. Cactus addresses thc reality of researchers working independently by developing the thorn/
arrangement concept ([39], Chapter B I j which spans ccx.te, interface, and documentation. These

concepts provide a common format to use that makes code more interchangeable and understandable

among members of the community.

4. Cactus addresses the reality of researchers working on a range of platlorms because it is relatively

platform independent, running on plattbrms ranging from laptops to supercomputers.

5. Cactus simultaneously addresses two of the most difficult realities lacing scientific computing
t(vday:

• There is a large body of working, debugged, eMcient legacy Fortran code with which

researchers are intimately familiar.

16 Earth McvJeling System Software Framework Survey

6.

7.

• The majority of training and new developments in computer science are taking place in newer

languages such as C, or objcct-oricnted languages such as C++.

Cactus addresses these issues by defining a single interface that can bc used with either language.

The interface includes definitions of data type and array structures, and provides rudimentary

inheritance capabilities that can be used with Fortran 77, Fortran 90, or C code. Thus, Cactus

provides access to some object-oriented features without forcing users to migrate all of their code to

an objcct-oriented language. This is a much better solution than defining an interlace at the lowest

level, corresponding to the intersection of languages.

Cactus addresses the need for researchers to inspect a running process via the Web [88]. Cactus

provides utilities that allow Web browsers to connect to a running process for inspection. The Cactus

home page [11 provides a sample connection. It is important to note that it is not only possible to

inspect via a browser, but that it is also possible to retrieve any data from the memory of a running
simulation and have it streamed in HDF5 format to a local host, lk)r more in-depth visualization and

analysis.

Cactus has a strong role in the emerging area of Grid computing because it enables applications,
which arc not Grid aware, to run in a Grid cnvironment, thus saving the researchers the effort of

building in this ability.

Weaknesses

Cactus has the following weaknesscs:

1. The standard Cactus arrangements 1981 include little code that is directly applicablc to thc climate

community because they are oriented towards Cartesian grids instead of geographical grids. Current

arrangements include

• Base--boundary conditions, Cartesian coordinates, symmetry conditions, general I/O, scalar

and screen output, time step

• Elliptic--solvers for elliptic equations

• PUGH--parallel driver layer based on MPI, three-dimensional parallel interpolator

• PUGHIO

• CactusWaveToy--Wave Evolver used as a demo

• Net

• External

Therefore, the climate community would have to develop/adapt their own code and modules.

Nevertheless, as demonstrated by the spectrum of users, the Cactus team is anxious to work with

communities like the climate community to extend Cactus functionality in specific ways.

2.

.

The scheduler may not be as flexible as desired for some climate simulations. Some climate
simulations run models sequentially with different numbers of iterations for each model with

intermediate coupling exchanges. This can be accommodated to some degree using the WHILE
functionality in Cactus. Nevertheless, having a real scripting language would provide more powerful

capabilities.

The common interface between Fortran/C is awkward. By moving the subroutine variables out of

the subroutine into separate files it becomes harder to see What is being passed in and out.

Earth Modeling System Software Framework Survey 17

Neverthclcss,hiddenargumentsareonlythoseassociatedwiththeschcduler.All otherarguments
canbe declared in the ctnle as belore.

4. Saying that Cactus works with Fortran, C, etc., is slightly misleading. Once a code is converted to

Cactus style it is committed and can be used on no other platlorm. If the Cactus-modilied intcrfacc

subroutine is small, then all of the lower-level subroutines can bc pure Fortran or C so this isn't a

problem. At the same time, however, this limits the benefits of data "objects" because they have to
bc immediately decomposed into variables and passed around. On the other hand, if the choice is

made to pass around data as Cactus "objects" at all levels, then the code is fully Cactus-ized and will
not compile or work on any other platform. Thus, when a community chooses Cactus, it must do so

with a full commitment. This is a weakness only in cases where interchanging code with non-Cactus

communities is important or whcre Cactus cannot bca complete solution Ik_rthe climate community.

Where such an exchange is necessary, one way to get around this problem is to define a macro to

refer to CCTK_ARGUMENTS when using Cactus and to refer to the actual list of parameters when
not using Cactus.

5. Cactus does not have a scripting language, as does ROOT 1991, a capability that could bc helpful.
This capability is planned for release 4.1

6. The type of inheritance supplied by Cactus is not the same type of inheritance that is integrated into

objecl-orientcd programming languages. Therelorc, it has a limited ability to solve the types of
problems that inheritance is typically used for.

Summary

Cactus is a complete framework solution to scientific modeling. It addresses the issue of difl'erences between

Fortran and C with a common interlace and provides a development environment and a runtime environment,

including a scheduler, for the modules. It also provides a means to inspect running code. It has a large

amount of documentation, is used by many organizations and is stable, and has a supportive development

team. The main disadvantage with Cactus is that it may require some adaptation belbre it can be used by the

climate community. Nevertheless, the Cactus team is highly motivated to work with the climate community
and other communities to extend Cactus capabilities.

2.3.5 References

t Cactus. URL: http://www.cactuscode.org

2 Albert Einstein Institute (AEI). URL: http://www.aei-potsdam.mpg.de

Washington University Gravity Group (WUGRAV). URL: http://wugrav.wustl.edu/

National Center lor Supercomputing Applications (NCSA).
URL: http://www.ncsa.uiuc.edu/newtest/NCSA/whatisncsa.html

Konrad-Zusc-Zentrum fur Informationstechnik Berlin (ZIB). URL: http://www.zib.de

" International Numerical Relativity Group (INRG). URL: http://jean-luc.ncsa.uiuc.edu

7 Rechenzentrum Garching der Max-Pianck-Gesellschafi (RZG). URL: http://www.rzg.mpg.de

Argonne National Laboratory (ANL). URL: http://www.ani.gov

o Universitat de les llles Balears (UIB). URL: http://www.uib.es

"' Gabricllc Allen, allen@aei-potsdam.mpg.de.

_ Tom Goodale, goodale@aei-polsdam.mpg.de.

18 Earth Modeling System Software Framework Survey

_'-EdSeidel,eseidel@aei-potsdam.mpg.de. URL: http://jcan-luc.ncsa.uiuc.edu/People/Ed

_ Thomas Radke, tradkc@aei.mpg.dc.

_4Gerd Lanfcrmann, lanfer@aci.mpg.dc.

_s Masso, Joan, 1999: Cactus Philosophy, Cactus Workshop. NCSA, Sep.

URL: http://www.cactuscodc.org/Workshops/NCSA99/talk2/index.htm

"' AGAVE Code Projcct (AGAVE1. URL: http://www.astro.psu.edu/users/nr/Agavc

t7 Michacl L. Norman, norman_ncsa.uiuc.edu.

URL: http://www.astro.uiuc.edu/department/faculty/norman.html

_ EU Network Projcct. URL: http://www.aei-potsdam.mpg.de/research/astro/eu network/description.html }

t_ NASA Neutron Star Grand Challenge Project. URL: http://wugrav.wustl.edu/Relativ/nsgc.html

z, Astrophysics Simulation Collaboratory (ASC). URL: http://wugrav.wustl.edu/ASC/mainFrame.html

2_Sial'f, ASC, 2000: NSF Progress Report, Astrophysics Simulation Collaboratory.

URL: http://wugrav.wustl.edu/ASC/report I .htmi

22 Deutsche Lull- und Raumfahrtzentmm (DLR). URL: http://www.dlr.de

23James Sethna, 607-255-5132, sethna@lassp.cornell.edu.

URL: http://www.lassp.cornell.edulsethnalsethna.html

24Kenneth Bishop, 785-864-2918, kbishop@ukans.edu.

URL: http://www.engr.ukans.edu/cpe-grad/bishop.html

2s William Bosl, 650-725-5835, bosl@pangea.stanford.edu. URL: http://pangea.stanford.edu/-bosl

2_,Digital Earth Project (Digital Earth).
URL: http://pangea.stan ford.edu/-bosl/EarthObjectsPage/EarthObsPage.htm

27National Energy Research Scientific Computing Center (NERSC). URL: http://hpcf.nersc.gov/

2_Michael Hoist, 858-534-4899, mholst@math.ucsd.edu. URL: http://www.scicomp.ucsd.edu/-mholst

-_'_Charlie Crabb, 925-424-3265, ccrabb@llnl.gov.

3oLawrencc Livcrmorc National Laboratory (LLNL). URL: http://www.llnl.gov

3t Benger, Werner, 20(10: Porting CCTK to NT at the Cornell Velocity NT Cluster.
URL: http://www.cactuscode.org/Presentations/Cornell2 August00.ppt

_-_Cornell Theory Center (CTC). URL: http://www.tc.cornell.edu/ctc.htmi

33European Grid Prqiect (EGR1D). URL: http://www.egrid.org

34US Grid Project (GridForuml. URL: hltp://www.gridlbrum.or_

_ Grid Application Development Software Projcct (GRADS). URL: http://hipersoft.cs.rice.edu/grads

_ Ken Kennedy. URL: http://www.cs.ricc.edu/~ken

_7GLOBUS (GLOBUS). URL: http://www.globus.org

38Gcrman Gigabit Testbed Project (ZIB_TIKSL). URL: http://www.zib.de./Visual/projects/TIKSL/

_ Staff, Cactus, 2000: Cactus 4.0 Users' Guide.

URL: ht(p;//www.¢actuscode.org/Documentation/UsersGuide html/UsersGuide.html

4oTeam, The Cactus, 2(100: Cactus 4.0 A First Tutorial: The 3D Scalar Wave Equation.

URL: http://www.cactuscode.orgFFutorial/sld001 .htm

Earth Modeling System Software Framework Survey 19

4_Allen,Gabricllc,1999:A FirstTutorialofCactus 4.0 -Thc 3D Scalar Wave Equation.

URL: ht!tp://www.cactuscode.orgs/Tutorial/index.html

42AIIcn, Gabricllc, 2000: Thc Cactus Codc: A Parallel Collaborativc Framework for La_e Scale Computing.

URL: hUp://www.cactuscode.c_rg/P,'csentations/SciComp August00.sdd

4_ AIIcn, Gabrielle, 2000: The Cactus Code: a Problem Solving Environment for the Grid, HPDC 9,

Pittsbttrgh, Aug. URL: http://www.cactuscodc.org/Prcscntations/HPDC9 August(X).ppt

44Dramlitsch, Thomas, 2(X10: Exploring Distributed Compuling Techniques with Cactus and Globus, Globus

Retreat, Aug. URL: http://www.cactuscode.orglPrescntationslGIobusRetreat August00.ppt

4_Scidcl, Ed, 2(J(X): Cactus/TIKSL/KDl/Portal Synch Day, Cactus Discussion Day NCSA, July 28.

URL: http://www.cactuscode.org/Presentations/NCSA July00.ppt

_" Seidel, Ed, 2000: Cactus in GrADs. URL: http://www.ca_tuscode.org/Presentations/GrADs July00.ppt

_7 Lanfermann, Gerd, 2000: Cactus in a Nutshell, Sun HPC Consortium, Manheim, Jun.

URL: http://www.cactuscode.org/Presenta_ionslSUNHPC June2000.ppt

_ Goodale, Tom, 2000: Cactus - The Future, Super_'omputing 2000.

URL: http://www.cactuscode.org/Prcsentations/Mannh¢im June2000.sdd

4_ Allen, Gabrielle, 2000: The Cactus Code: A Framework for Parallel Computing, Conundrum Series,

l_zawrence Berkeley l_zzborato_,, May. URL: http:Hwww.ca_:Ausco_,org/Presentations/LBL MavOO.ppt

5_Goodale, Tom, 2000: The Cactus Code for Numerical Relativity:
URL: http://www.cactuscode.org/Presentations/Garching March00.sdd

5_ Goodale, Tom, 2000: Cactus Computational Toolkit.
URL: http:/lwww.cactuscode.org/Prescntal_ions/Southampton February2000.sdd

_z Got'a.tale, Tom, 1999: The Cactus Computational Toolkit.

URL: http://www.cactuscode.org/Presentations/FB September99.sdd

_3Allen, Gabrielle, 1999: Cactus 4.0, HPDC8, Redondo Beach, Aug.

URL: hq[p;//www.cactuscode.orglPresentationslHPDC8 August99.ppt

s_ Allen, Gabrielle, 1999: MetaComputing Within the Cactus Framework, Globus Retreat, Rodondo Beach,

Aug. URL: http://www.cactuscod¢.org/Pr_sent_ltions/GlobusRetreat August99.ppt

_5Allen, Gabricllc, Thomas Dramlitsch, Ian Foster, Tom Goodale, Nick Karonis, Matei Ripeanu, Ed Seidel

and Brian Toonen, 2000: Cactus-G Toolkit: Supporting Efficient Execution in Heterogeneous Distributed

Computing Environments. URL: http:/Iwww.cactuscode.org/CacPapers/GordonBell 2000.ps.gz

5¢,Allen, Gabrieile, Werner Benger, Tom Goodale, Hans-Christian Hege, Gerd Lanfermann, Andre Merzky,
Thomas Radke and Edward Seidel, 2000: The Cactus Code: A Problem Solving Environment for the Grid,

Proceedings of HPDC 9, Pittsburg, Jun. URL: http:llwww.cactuscode.orglCacPaperslHPDC9 2000.ps.gz

_ AIIcn, Gabrielle, Tom Goodale, Gerd Lanfermann, Thomas Radke and Edward Seidel, 2000: The Cactus

Code: A Problem Solving Environment for the Grid, Proceedings of First Egrid Meeting, Poznan, Mar.

URL: http://www.cactuscod¢.org/CacPapers/Egrid 2000.ps.gz

_ Allen, Gabrielle, Tom Goodale, Gerd Lanfermann, Thomas Radke, Edward Seidel, Werner Benger, Hans-

Christian Hege, Andre Merzky, Johan Masso and John Shall', 1999: Solving Einstein's Equations on

Supcrcomputers, IEEE Computer, 32, 52-59.

URL: http://www.computer.org/computer/articles/einstein 1299 l.htm

_ Allen, GabrielLe, Tom Goodale, Joan Masso and Edward Seidel, 1999: The Cactus Computational Toolkit

and Using Distributed Computing to Collide Neutron Stars, Proceedings of the Eighth IEEE International

20 Earth Modeling System Software Framework Survey

Symposium on High Pe_'ormance Distributed Computing, Aug, 57-61.

URE: htlp://www.cactuscode.org/CacPapers/HPDC8 1999.ps.gz

_" Seide[, Edward and Wai-Mo Such, 1999: Numerical Relativity as a Tool for Computational Aslrophysics,

JCAM. URL: http://xxx.lanl.gov/abs/gr-qc19904014 ps.ps

_'_Alcubierre, Miguel, Gabrielle Allen, Bernd Bruegmann, Gerd Lanfermann, Edward Seidel, Wai-Mo Suen
and Malcolm Tobias, 2000: Gravitational Collapse of Gravitational Waves in 3D Numerical Relativity. Pits.

Rev., D61. URL: hltp://xxx.lanl.gov/abslgr-qc19904013

'-.Arbona, A., C. Bona, J. Masso and J. Stela, 1999: Robust Evolulion System for Numerical Relativity. Phs.

Rev., D60. URL: http://xxx.lanl.gov/abs/gr-qc/9902053

_'_Alcubierre, M., S. Brandt, B. Bruegmann, C. Gundlach, J. Masso, E. Seidel and P. Walker, 2000: Test-beds

and Applications for Apparent Horizon Finders in Numerical Relativity. Class. Quant. Gray., 17, 2159-

2190. URL: http://xxx.lanl,gov/abs/gr-qc/9809004/

_ Font, J.A., M. Miller, W. Suen and M. Tobias, 2000: Three Dimensional Numerical General Relativistic5

Hydrodynamics: I Formulalions. Phs. Rev., D61. URL: http:xxx.lanl.gov/abs/gr-qc/9811015

_,5Bona, Carlos, Joan Masso, Edward Seidel and Paul Walker, 1998: Three Dimensional Numerical Relativity

with a Hyperbolic Formulation. URL: http://xxx.lan[.gov/abs/gr-oc/9804052/

_' Walker, Paul, 1997: Three Dimensional Numerical Relativity with a Hyperbolic Formulation.

URL: http:l/www.cactuscode.org/CacPapers/cactus l.ps.gz

_7Alcubierre, Miguel, Carsten Gundlach and Florian Siebel, ! 996: Using Geodesics to Compare Exact and

Numerical Spacetimes. URL: http://www.cactuscode,rog/CacPapers/MA GR15.ps.gz

_'_Alcubierre, Miguel, 1997: Evolution of Brill Waves in 3D Progress Report, GRI5 Meeting. Puna/lndia.

URL: http://www.cactuscode.org/CacPaperslBRILL GR15.ps.gz

_ High Performance Computing and Cactus Computational Toolkit: A Framework for Solving PDEs in

Computational Science with Special Advanced Topics in Astrophysics and Relativio', 1999, NCSA, Sep.

URL: htlp://www.ncsa.uiuc.edu//SCD/Training/CactusAgenda.html

7, Cactus Day at NCSA, 1999: NCSA, Sep.

URL: http://www.cactuscode.org/Workshops/NCSA991index.html

7_PERL (PERL). URL: htlp://www.perl.org

v2 GNU (GNUS. URL: http://www.gnu.org

7, Concurrent Versions System (CVS). URL: http://www.cyclic.com

74GNU Utilities for Windows (Cygwin). URL: http://sourceware.cygnus.com/cygwin/

7_Message Passing Interlace (MPI). URL: http://www-unix.mcs.anl.gov/mpi/

7_GLOBUS (GLOBUS). URL: http://www.globus.org

77FlexlO (FlexIO). URL: http://zeus.ncsa.uiuc.edu/-jshalf/FlexIO/

7_Hierarchical Data Formal Version 5 (HDF5). URL: http://hdf.ncsa.uiuc.edu/whatishdf5.html

w IEEE IO (IEEEIO). URL: http://zeus.ncsa.uiuc.edu/-jshalf/FlexIO/IEEEIO.html

_ LCA Vision (LCAVisionl. URL: hltp://zeus.ncsa.uiuc.edu/~miksa/LCAVision.html

_ Amira (Amira). URL: hltp://amira.zib.de

_2PETSC. URL: http://www.mcs.anl.gov/petsc/

_ GRACE. URL: http://www.caip.rutgers.edu/-parasharlTASSL/Projects/GrACE/index.html

Earth Modeling System Software Framework Survey 21

_4Autopilot.URL:http:Hwww pabio.cs.uiuc.edu/Project/Autopilot/AutopilotOvervicw,htm

_ OpenDx. URL: http://www.opendx.org

_" Performance Data Standard and AP1 (PAPi). URL: http://icl.cs.utk.edu/projects/papi/index.html

87Scalalablc Parallel I/O System (Panda). URL: http://cdr.cs.uiuc.¢du/panda/

_ Bcnger, Werncr, 1999: Web Cactus, NCSA Cactus Workshop, Sept 27.

URL: http://www.cactuscode.org/Workshops/NCSA99/talk 19/index.htm

_" Fayad, Mohamed E., Douglas C. Schmidt and Ralph E. Johnson, 1999: Building Application Frameworks.

Wiley.

URL: http://www.amazon.com/cxec/obidos/ASIN/0471248754/qid%3D96877825 I/102-0715276-9734544

_K_Foster, lan and Carl Kesselman (Ed.), 1999: Thc Grid: Blueprint for a New Computing Infrastructure.

Morgan Kaqfimmn Publishers. Inc.,

URL: ht,[p;//www.mkp,_;om/books t_atalog/catalog.asp?ISBN=l-55860-475-8

_ Kennedy, Ken, 1999: Compilers, Languages and Libraries, In The Grid, Ian Foster and Carl Kesselman

(Ed.), Morgan Kaufman Publishers, Inc., 181-204.

,_2Backus, J., 1978: The History of Fortran I, II, and III. ACM SIGPLAN Notices, 13, 165-180.

'J' James Hack, 303-497-1387, jhack@ucar.edu. URL: hltp://www.cgd.ucar.edu/asr98/cms.html

_ Kalnay, E., M. Kanamitsu, J. Pfaendtner, J. Sela, M. Suarez, J. Stackpole, J. Tuccillo, L. Umscheid and D.

Williamson, 1989: Rules for the Interchange of Physical Parameterizations. Bull. Am Met. Soc., 70, 620-622.

_5Hack, James J., 1995: Climate System Simulation: Basic Numerical and Computational Concepts, h7

Climate System Modeling, Kevin E. Trenberth (Ed.), Cambridge University Press, 283-318.

Koelbel, Charles, 1996: High Performance Fortran in Practice.

URL: hl_l;p://www.cs.rice.edu/-chk/hpf-tutorial.html

,_7PAWS. URL: http://www.acl.lanl.gov/paws/

_ Lanfennann, Gerd, 1999: The Standard Cactus Arrangements, NCSA Cactus Workshop, Sept 27.

_" ROOT. URL: http;Hroot.cern.ch.html

22 Earth Modeling System Software Framework Survey

2.4 Overture

2.4.1 Introduction

Ovcrlurc I I l, [21 originates in the Lawrence Livermore National Laboratory (LLNL) and the Los Alamos

National Laboratory (LANL). The project is now consolidated into the LANL. Ovcrturc is an object-oriented

software system for solving Partial Differential Equations (PDE) in serial and parallcl cnvironments. It
consists of a library of C++ classes for writing scrial and parallel PDE solvcrs using overlapping and/or

adaptivc block-structured grids. Overture programs are written at a very high-level, using data-parallel array

expressions in the stylc of HPF. It can achieve high performance (comparable to Fortran) through a source-to-
source (C++ to C++) preprocessor called ROSE. Effectively, ROSE is a counterpart to the cxpression

template tcchniquc of thc POOMA framework [3]. This survey is based upon Overturc documentation,
tclcconfcrenccs with Overture developers, and thc assessment of NERSC on Overture I4 I.

2.4.2 Synopsis

Prominent information about Overture includes the following:

1. Community of origin--Overture originates in the LLNL and the LANL. Now the project is
consolidated at the LLNL..

2. Description--Overture provides a portable, flexible software development environment Ibr

applications that inw_lve the simulation of physical processes in complex moving geometry such as

modeling the motion of a submarinc.

3. Team--Present members of the Overture learn include David Brown, Bill Henshaw, and Daniel

Quinlan.

4. Maturity--This prqiect began in the early 1990s. The parallel version of Overture is still being

developed. All serial implementations require OpenGL (a graphics library). Overture is based on a

few other software products, among which are the A++/P++ array library and the ROSE

preprocessor. Development of these products is not yet complete. The main issues awaiting
resolution are

• The ROSE preprocessor (needed to ensure adequate performance of aggregate array operations)

can currently optimize with hints; eventually it will optimize without hints.

• Overture runs in a parallel environment, but only for single-grid applications because of some

missing features in P++.

• P++ has only been ported to a network of workstations (Ultra Sparcsl, although it should be

quite easy to port to most common parallel architectures

5. User--most users are inside the LLNL and the LANL. During the last several years, Overturc has

been used to develop flow solvers lbr high-speed compressible flow problems, incompressible flow

problems, low Math number and non-Ncwtonian fluid flow. One National Oceanic and Atmospheric

Administration (NOAA) organization at Boulder is trying to use Overture for ocean modeling.

Language---Overture is written mostly in C++ and the A++/P++ array class library. Using the

serial/parallel array class library A++/P++, efficient and portable serial or parallel code is generated.

An application program has to bc written in C++ if the application program wants to use the features

of Overture, especially in the area of parallel communication.

Earth Modeling System Software Framework Survey 23

Tools/utilities included--the Overture C++ classes providc tools for the rapid development of

application codes. The main class categories are listcd below:

• A++/P++ arrays describe multidimensional arrays and provide for scrial and parallel operations

on those arrays. In the parallel environment, these providc for the distribution and intcrprelalion

of communication required for the data parallel execution of operations on the arrays.

• Mappings define transformations such as curves, surfaccs, areas, and volumes. These arc uscd to

represent the geometry of the computational domain.

• Grids detine a discrete representation of a mapping or mappings. These includc single grids and

collections of grids, in particular composite overlapping grids. The Ogen (a overlapping grid

gcnerator Ior Overture) provides tools lor the construction of curvilinear grids, and for

overlapping those grids to represent complex moving geometries such as submarine.

• Grid functions provide lor the representation and centering of solution values such as density,

velocity, and pressure, dcfincd at cach point on the grid(s).

• Operators provide discrete representations of differential operators and boundary conditions

through finite difference or linite volume approximations.

• Visualization tools based on OpenGL are provided to furnish a high-level graphics interface Ik_r
visualizing geometry and simulation results.

• Adaptive mesh refinement provides automatic refinement o1"the overlapping grid structure for
increased local resolution and eMciency of computational simulations.

• Load-balancing tools are provided for automatic load-balancing of computations on the adaptive

ovcrlapping grid structure on Parallel computers.

• Parallel distribution mechanisms are provided through the PADRE library, part of the

Department of Energy (DOE) 2000 ACTS toolkit.

Application interface---based on the utilities described above, application codes written in C++ can

be developed quickly by use of the features of C++ inheritance and polymorphism. Since the

Overture utilities are based on the A++/P++ array class library which is written in C++, an

application cannot bc written in Fortran easily.

7. Documentation---Overturc has a good documentation located at http://www.llnl,gov/casc/Overture

Associated software--Overture parallelism is implemented using the MPI and PVM message

passing libraries, PADRE (a library for the description of distributions of data and the generation of
communication schedules to address their communication requirements), and a HPC++ standard

thrcads library (TULIP). In addition OpenGL is used for visualization.

9. Special features--the developers of Overture create and use the ROSE preprocessor to optimize

C++ performance. In addition, Overture has aggregate array operations (similar to those in
POOMA) and tightly integrated graphical features based on OpenGL. AMR++, a package that

directly supports adaptive mesh refinement methods, is built on top of Overture. In the future,

Overture will add support lor unstructured grids and an improved ROSE preprocessor.

2.4.3 Description

The main objective of the Overture project is to provide a flexible code development environment lor

applications using adaptive overlapping grid technology which addresses:

24 Earth Modeling System Software Framework Survey

• complexoversetgriddatastructures;
• needtorapidlydevelopapplicationcodesforexistingandfutureapplicationareas:
• needforsoftwarethatisportableacrossmultiplearchitecturesfromworkstationstomassively

parallelplatforms,whilemaintainingatleastFortran77performance.

Overtureisanobject-orientedframeworkwitha layeredstructure.Figure2showsablockdiagramthat
representsthehierarchyoftheclasslibrariesthaidefinetheOvertureframework.Overtureincludesaboutsix
layers.All levelsbuttheapplicationlayerarcconsideredpartoftheOverturedistribution(applicationsare
thepropertyoftheapplicationdevelopersingeneral).C++optimizingpreprocessor,adaptivemesh
refinement,turbulencemodels,andfrontcapturingarcstillindevelopmentandnotapartofthepublic
distributionofOverture.DocumentationloreachlibraryisavailableontheWebseparately.Thefollowingis
abriefsummaryoftheOverturelayers:

• Communication,data distribution, and threads--This lowest level within the Overture framework

represents a lbundation of parallel libraries upon which the rest of Overture is built. This layer
includes the MPI and PVM message passing libraries, PADRE, a library for the description of

distributions of data and the generation of communication schedules to address their communication

requirements; and an HPC++ standard threads library (TULIP).

• Serial/parallel program interface----This layer represents the principal interlace for the

development of applications within Overture. As a single layer of the hierarchy, it represents a

hierarchy of program interfaces along with abstractions for the representation of complex geometry,

mapping objects; discrelizations of the geometric surfaces, mapped grid objects, defined upon those

mapping objects; and the representation of data on those grids, grid function objects. Separate

container objects are used to represent the collections of each of these mapped grid and grid function

objects, thus forming "mappedgridcollection" and "gridcollectionfunction" objects. The details of the

representation of the grid function objects are partly encapsulated within the A++/P++ array class
library, which forms a fundamental level and abstraction within Overture. The A++/P++ Array Class

Library provides the principal mechanism by which parallelism is encapsulated (hidden, to some

extent). The array class also is central in addressing the performance issues for different
architectures: the work on the array class library specific to performance is considerable. The

purpose of the ROSE C+ + Optimizing Preprocessor is to isolate the mechanisms by which

performance is addressed in the optimization of the array class objects and how they are used within

an application and within Overture directly. More details on how pertbrmance is addressed within the
A++/P++ array class can be obtained from the A++/P++ documentation and related papers 11]. File I/

O for all Overture objects is provided via HDF format file structures. The highest level of the

hierarchy within the serial/parallel program interface layer is represented by the Operator Library;
this class library includes both finite volume and finite difference operators (div, grad, curl, laplacian,

different orders of derivatives, etc.). The advantages of this level of abstraction is that it permits the

development of applications using high-level code remarkably similar to the fundamental

mathematical equations themselves. Finally, the serial/parallel program interface layer includes the

graphics and visualization required for real-time graphics, post-processing graphics, movies, and

more complex visualization as required for physical simulation using numerical techniques. The
visualization understands the geometry represented by the Overture objects so that applications

obtain a complete visualization solution.

• Numerics--This layer of the Overture lYamework includes elliptic solver, adaptive mesh refinement,

and grid generation applications.

• Computational Fluid Dynamics (CFD)----This layer of the Overture framework includes flow
solvers, some of which are available within the Overture primer manual and are particularly short

and simple to express in the high-level mechanisms represented by the serial/parallel program

Earth Modeling System Software Framework Survey 25

interface.Separatelibrariesisolatecurrentworkonturbulencemodelsandfrontcapturing(using
Icvcl-setmethods).

Combustionchemistry(interfacetoChemkin)mThislayeroftheOverturcframeworkrcprcscnts
aninterfacetothcChcmkinsoftwareavailablethroughSandiaNationalLaboratory.
Applicationlayer--Thistoplcveldefinesthehighestlevelof interactionbctwcenanapplicationand
theOvertureframework.Anapplicationmay,andtypicallywould,interfacethroughmultipleIcvels
ofthehierarchyrepresentedbyOverture.Figure2showsacoupleofdifferentapplications(including
weather,oceanmodeling)beingdevelopedbyothergroupsusingOvertureandinteractingwith
Overturethroughdifferentlevelsof thehierarchy.ThedevelopersofOverturcdidnotprovideany
detailedinformationonhowOverturewasusedintheclimatecommunity.It isnotclearfromligure
2,buteachapplicationadditionallyinteractswithsomeleveloftheserial/parallelprograminterface
aswell.All intcrnaldata(e.g., geometry) is similarly available to C and Fortran applications.

Design of the Overture Framework

Our Principle Application Domain

Combustion ApplicationsAPPS

Reaction

Chemistry

CFD

Numerics Elliptic Solvers [Adaptive Mesh Refinement
F1

- IOperator Libraries
m

Serial (j
_ Grid Collection Functionand

¢ "R o
Parallel

Program < --_
Interface "_ Grid Function Objects

÷ a.+_
< (j ,, HDF Storage

Combustion Chemistry (Chemkln)

Basic Flow Solvers

Other Application Domains

• Iv k

[ntGeptur,ngTf

Communication
Osta Distribution MPI/PVM

and Threads

Turbulence Models

PADRE

Grid Genel

Visualization

Mapped Grid Collect :>n

Mapped Grid Objec

Mappings (Geometry)

I Threads Library (HPC_-+)

Figure 2. Organization of the Overture Framework [l i

In general, the performance of C++ is not as good as Fortran for numerical computations. To satisfy the
requirements of the Overture framework, the performance has been addressed using multiple mechanisms,

both internal and external to the C++ language. Three techniques have been investigated:

Binary overloaded operators--Although highly optimized in Overture, the use of binary operators

results in only hall" the performance of optimized Fortran in practice (see figure 3) and performance
drops in hall" again for stencil operations on cache-based machines because reuse of data in cache is

poor. However, the method is extremely portable and compiles quickly.

Expression templates---Although the performance is generally superior to binary overloaded

operators this is most clear only on stencil operations where the greatest reuse of cached data is

possible. But, the expression template technique is only a single statement optimization mechanism

and as such it is limited in its applicability. This mechanism uses the C++ template mechanism so

aggressively that it lacks portability and results in compile limes that increase astronomically (factors
of 3,500 times slower) making program development difficult at best.

26 Earth Modeling System Software Framework Survey

• Optimizing preprocessor (source-to-source transformation)--To avoid the inefficiencies of low-

level abstractions within frameworks/libraries, preprocessor mechanisms (see figure 4) have been

developed to permit architecture-specific optimizations not possible within libraries. Applications

may in the future use mechanisms to permit their optimization using the additional semantics found

within the user's use of the framework. The compiler will still not know the semantics of the

framework, but the introduction of a third process, an optimizing preprocessor, can provide more

aggressive parameterized transformations of the user's expressions using the framework's more

restricted semantics. This mechanism uses the Sage It (an object-oriented toolkit for building

program transformation systems for Fortran77 including 90, and C, and C++ languages). More

information is available at the Sage Web site [5]. On cache-based architecture systems the Overture

framework achieves Fortran 77 performance, at a minimum, and can often achieve two to four times

better. This work represents the newest addition to the Overture framework and is the rcsul! of

significant focus on performance as Overture has matured.

Figure 3 shows typical perfi)rmance for Fortran 77, C++ (overloaded binary operators), C++ with expression

templates, and C++ optimized in the manner of the ROSE preprocessor. Part of the research of Overture

developers has been in the development and exploration of these different techniques.

¢)

o
o

rO

1.8e+5

1.6_5

1.4_5

1.2_5

1.0e+5

8.0e+5

6.0e+5

4.0e+5

2.0e+5

0.0

C++ with Expression Templates _..
.......... C++ j-

..................Fortran /
C++ Optimized

l

I I I I I I I I I I I I I I i I I

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Operands

Figure 3. Comparison of Execution Models [1]

90

Earth Modeling System Software Framework Survey 27

........ _ B;gh;;i;_ - - -

J I ; Optimization

(_ Interface _ ______ies

RTRAN, C, C.._

Figure 4. The Relationship of Optimizing Preprocessor with Application,
Framework, Programming Languages, and Hardware [11

The currenl version of Overture framework has elnployed the optimizing preprocessor I source-to-source

transformation) not the expression template technique.

2.4.4 Evaluation

Strengths

Through its object-oriented design, Overture reduces code duplication, encourages interoperability of
application software, and simplifies the learning curve for new computational methods if a user knows C++.

Ovcrture's object-oriented architecture provides flexibility to address a wide range of applications that

involve simulations of complex moving geometries on serial and parallel computers. The advantages of this
approach include reduced code development time and broader, more in-depth research into numerical

methods for scientific and industrial applications.

Weakness

Since A++/P++ is the basic data type used in the Overture framework, application codes have to be written

with A++/P++ array which means that application codes have to use C++. Legacy code written in Fortran

may not be easily ported and supported in the Overture framework. Currently, Overture does not have grid
utilities for climate modeling.

Summary

The Overture framework has successfully demonstrated that complex computational problems, such as

solving PDE for overlapping grids on parallel computers, can be effectively solved with the help of an object-
oriented framework. An application written in C++ can take advantage of the tools and utilities in the

Overture framework, while an application written in Fortran cannot do so easily. Currently, the Overture

framework does not have the grid utilities for climate modeling. Therefore, a set of geographical grids would
havc Io bc developed by deriving from the C++ class library of Overture.

28 Earth Modeling System Software Framework Survey

2.4.5References

t URL: http://www.supercomp.org/sc98/TechPapcrs/sc98 FullAbstracls/Bassclti949/

-_URL: http://www.llnl.gov/casc/Ovcrturc/

URL: http://www.acl.lanl.gov/pooma/

URL: http://acts.ncrsc.gov/overtu rc/main.html

URL: http://www.extremc.indiana.edu/sage/sagcxx ug/sagcxx ug toc.html

Earth Modeling System Software Framework Survey 29

2.5 GEMS

2.5.1 Introduction

Goddard Earth Modeling System (GEMSI is developed by the NASA Seasonal to Inter-annual Prediction

Project (NS1PP) and Data Assimilation Office (DAO) organizations at NASA Goddard Space Flight Center.
GEMS provides Fortran90 tools/utilities Ior developing climate modeling applications. A few years ago,
DAO and NSIPP worked together to outline the requirements and design for GEMS. Later, DAO and NSIPP
separately developed their own versions of GEMS. Since the DAO's version of GEMS is still under

development, this report addresses thc NSIPP's version of GEMS. This survey is based on information

contained at DAO's Wcb site I I I and review of the GEMS source code of Max Suarez's group.

2.5.2 Synopsis

Prominent information about GEMS includes the tbliowing:

1. Community oforigin--NSIPP

2. Description--lt provides tools/utilities for climate modeling.

3. Team--Max Suarez and others in NSIPP.

4. Maturity--It has been used fl_r developing NSIPP's production code.

5. Users---NSIPP

6. Language---GEMS is written mostly in Fortran 90 and contains some Perl. Applications can be
written in Fortran 90.

7. Tools/utilities included--The GEMS framework consists of parallel utilities (parallel

communication and wrappers), grid utilities (grid manipulation), couplers (exchange information

among application components), clock (time and alarm), array (expand and trim array), and other

utilities such as conversion of double precision for different computers. In the parallel

communication utilities, both SHMEM and MPI message passing protocols are wrapped so that the
codes can be run on various multi- or single-processor computer plattorms. (Wrapper here means
that a new set of instructions is introduced to cover the SHMEM and MPI instructions so that a user

does not use SHMEM or MPI directly.)

8. Application interface---A group of couplers has been developed to couple various application
components (Ocean, Dynamics, Fast Physics, Slow Physics).

9. Documentation--Very limited documentation is available (DAO's office Notes 11] and GEMS's
source codes).

I(). Associated software---MPl and SHMEM utilities have been used in parallel communication.

11. Special features--GEMS provides basic tools and utilities required for climate modeling.

30 Earth Modeling System Software Framework Survey

2.5.3 Description

GEMS developer's interpretation of object-oriented design in the case of global Earth science modeling is as
lollows:

"The main goal of object-oriented design is to modularize data, and data transformations,

thereby making lhe syslem robust to generalizations in the data structures. The object-

oriented paradigm seems particularly useful for global Earth science modeling, with models

and observations having their own data structures and complex transformations. In a
distributed memory envir(mment, a significant portion of the parallel algorithm is associated

with transformations from one model grid to another, or from model grid to observation

locations. By encapsulating model data structures and model grid transformations, a great

deal of code reusability can be realized, at the same time ensuring that changes in one model

do not unnecessarily propagate throughout the system." [] }

Based upon this understanding of object-oriented frameworks, the concept of GEMS framework has been
developed: "As put forward by Max Suarez, GEMS is made up of a collection of models, each operating on

its own grid and on its own state, and a collection of coupler routines which convert from one model grid to

another. The resolution and orientation of each model grid is dictated by the physics and numerics of the

modeled process, rather than by programming constraints imposed by the rest of the code. For example, the

calculation of diabatic heating due to long-wave radiation is extremely CPU-intensive and has become

problematic with the demand for high horizontal resolution within the dynamics. Using a coarser horizontal

grid within the brag-wave radiation model may significantly reduce CPU time while having little impact on

the system accuracy. Results may in fact improve if the reduced CPU time could allow for more frequent

radiation calls using more frequent chmd information." [1]

Figure I provides the high-level design of the GEMS systems. In the figure, Fortran 90 modules are denoted

with circles. Application modules supported by GEMS consist of ocean, dynamics, slow physics and fast

physics, and diagnosis (LSM DIAG and LLS_DIAG) utilities. The GEMS framework provides couplers for

those application components to exchange information and clock utilities for controlling the running

sequence. In addition, the GEMS framework also provides the utilities such as grid and parallel

communication for readily developing application components.

Application Components

@@@@@@
k.

Use Provide

GEMS Framework

Figure 5. Relationship Between Application and Framework in Aries/NSIPP

Earth Modeling System Software Framework Survey 31

ThedetaileddescriptionofthecodestructureofGEMScanbefoundinthefollowing:

"'First,GEMScompliancyrequiresthestandardizationof modelandcouplerinterfaces,as
wellasmodelutilities(e.g.,initialize,run,finalize), thus allowing greater casc in writing

applications. Memory management within a GEMS model is based on dynamical allocation,
and controlled by generic New() and Delete() routines. Interaction between models is

channeled through the coupler, which translates quantities from one representation into

another. Fortran 90 data structures are used for definitions of the model states and couplers to

allow data abstraction and to facilitate multiple instances of the model system within the
application. The concept of a class in object-oriented design includes data structures as well

as the routines (member functions or methods) which operate on the data structures. In the
GEMS framework there are two main classes:

I. Model class----As the name suggests, a model class is used to represent the environmental models
comprising GEMS. A model class has 3 main data structures:

• Input couplings---Contains the necessary information coming from other models, on the native
model grid, to update the model state.

• Model state---Contains the state which is updated by the model.

• Output euuplings----.Contains the necessary information to force other models, which arc not
part of the state, on the native model grid.

2. Hermes ClassmThis class contains the coupler utilities to transform from one model representation
(grid and domain decomposition) into another. A Hermes class also has 3 main data structures:

• Input couplings---Contains information on a grid of one type and decomposition.

• Output couplings--Representation of input information on a grid of a second type and
decomposition.

• TrausformmOperators to transform from one grid and domain decomposition to another." [11

2.5.4 Evaluation

Strengths

GEMS has successfully been applied in climate modeling at NSIPP. Its utilities written in Fortran 90 can bc

used for developing application codcs in Fortran 90. Modular design has been widely used, which reduces
the complexity of codes.

Weaknesses

Since Fortran 90 does not have inheritance and polymorphism, the extensibility and flexibility of the GEMS

framework is limited. Dynamically allocated storage has been heavily used in GEMS. That is certainly goc, d
for cMcienl use of memory during computing. However, it would be formidable for a code written in C/C++

to communicate with GEMS since the compiler treatment of dynamically allocated storage is different
between C/C++ and Fortran 90.

Summary

The GEMS framework, which is written in Fortran 90, satisfies the basic functionality requirements for Earth
System Modeling Framework (ESMF) and has been used in NSIPP's production code. However, whether

32 Earth Modeling System Software Framework Survey

GEMS can serve as a community framework is worth exploring since a community framework should have

good flexibility and extcnsibility in order to satisfy the needs of various organizations. Two object-oriented

concepts, inheritance and polymorphism, are very important in enabling good flexibility and extensibility.

Fortran 90 does not have these important fealures.

2.5.5 References

_URL: http://dao.gsfc.nasa.gov/subpages/office-notes.html

Earth Modeling System Software Framework Survey 33

2.6 Flux Coupler

2.6.1 Introduction

The Flux Coupler is developed by NCAR [11. It computes interfacial fluxes between the various component

models in the NCAR climate system nnodel (CSM) [21 and distributes these lluxes to all component models

while insuring the conservation of fluxed quantities. Currently, the Flux Coupler can support lk)ur ocean

models (NCOM at NCAR, POP al LANL, regional pacific, and a data-only dummy model), three

Atmosphere models (CCM, dummy model I, and dummy model II), and land and ice models.

The Flux Coupler is evolving into a new version (CPI5). The new Flux Coupler will implement the following
new features:

• Fewer constraints on surface model domains (e.g., allowing shifted pole grids).

• A more general and flexible method for mapping data between the various grids.

• A more accurate way of taking one atmosphere's net solar flux calculation and applying that to ice,

land, and ocean components with widely varying surface albedos.

• Miscellaneous efficiency improvements (e.g., with respect to multitasking).

More detailed information can be found at the ESM Web site [31.

The NCAR CSM is not a particular climate model, but a framework for building and testing various climate

models for various applications. In this sense, more than any particular component model, the Flux Coupler

defines the high-level design of the CSM software. This report is based on review o.f documents Iound at the
CSM Web site 11], review of Version CPI4 soflware, and several teleconferences with our POC, Brian

Kauffman, and Tom Bettge at NCAR.

2.6.2 Synopsis

Prominent information about the Flux Coupler includes the following:

I. Community of originmFlux Coupler is developed by NCAR for the NCAR CSM.

2. Description--It is a separate executable for coupling different climate modeling components such

as ocean and atmosphere components.

3. Team----Chief developers are Brian Kauffman for Flux Coupler Version CPI4 and Tom Bettge lor

Flux Coupler Version CPI5.

4. Maturity--A few years; CPI4 is the current version and CPI5 is under development.

5. Users---There are a few hundred users in the climate modeling community ranging from national
laboratories to universities.

6. Language---The Flux Coupler source code is written almost entirely in standard Fortran 77. Perhaps

the most notable exception is the use of the library calls "msread" and "mswrite" which rely on

NCAR's site-specific Mass Storage System (MSS) lor storing large output files. Application model
components can be written in Fortran 77 and Fortran 90.

7. Tools/utilities included_The Flux Coupler has Fortran subroutines to map flux fields between

various model grids, combine like fields from several grids onto one grid, and perform summation

34 Earth Modeling System Software Framework Survey

.

9.

10.

11.

and time-average of quantities. However, those subroutines are not sufficiently encapsulated to be

used by other components such as the ocean components.

Application interface--To use the Flux Coupler, the application model components must follow

rules set up by the Flux Coupler developers for the data types used in exchanging data between the

Flux Coupler and the application component. A user cannot modify the Flux Coupler easily to

satisfy his/hcr needs.

Documentation--The user's guide for the Flux Coupler is located at [4].

Associated software--MPl and multitask shared-memory utilities have been used to support

parallel communication.

Special features--ln addition to computing and distributing lluxes, the Flux Coupler also controls
the cxecution and time cvolution of the complete CSM by controlling the exchange of information

between the various components.

2.6.3 Description

The Flux Coupler performs flux computation and exchange for interacting component models within the
CSM. This allows the CSM to be broken down into separate components, atmosphere, sea-ice, land, and

ocean, that are "plugged into" the Flux Coupler (a.k.a. "driver"). A primary requirement of thc Flux Coupler

is to ensure that conservative properties--such as momentum, heat, and fresh water--are neither created nor

destroyed as they arc exchanged between CSM model components. The following characteristics of the Flux

Coupler were derived by examining the Flux Coupler source code and documentation:

• The Flux Coupler is a common application for coupling component models in the NCAR CSM.
There are four components to a complete system: atmosphere, land, ocean, and sea-ice.

• Each component is required to be connected to the coupler and exchange data through the coupler

only.

• Each component model is a separate code with its own computational requirements, such as spatial

resolution and time step.

• Individual components can be created, modified, or replaced without necessitating code changes in

other components.

• CSM components run as separate executables, communicate via message passing (MPI in particular),

and processing can be distributed among several computers.

• The Flux Coupler computes fluxes from component model variables and passes the required fluxes to

the components while ensuring the conse,'vation of fluxed quantities.

• The Flux Coupler synchronizes the execution of component models.

• The Flux Coupler performs grid interpolations of data from component models using different grids.

• The Flux Coupler uses parallel communication to exchange data with components.

The high-level design of the Flux Coupler is illustrated in figure 6. The Flux Coupler is written in Fortran 77

and consists of a main program and subroutines. As shown in figure 6, the Flux Coupler provides data

exchange services for application models such as the Ocean and Atmosphere components. However, utilities

in the Flux Coupler cannot be easily used for developing components because they are not sufficiently

encapsulated. The ellipses in ligure 6 represent a group of Fortran 77 subroutines. The purpose of those

subroutines is to gather, merge, sum, and/or time-average the various component flux fields from various

Earth Modeling System Software Framework Survey 35

sourcesandformasetofcompleteinputfluxesforeachcomponentmodel.A nested loop structure is used
for controlling the running sequence of components. The ocean model communicates with thc coupler once

per outer loop iteration, while the atmosphere, ice. and land models communicate once per inner loop

iteration. Modular design has been used to facilitate implementation of alternate configurations. A variety of

time coordination schemes can be, and have been, implemented by rearranging subroutine calls at the highest

level (within the main program file), requiring a minimal amount of code modification or new code.

Application Components

ProvideI

Flux Coupler

i trOI Flag'_ _olatlon, M_
story, Nagnos_,.,J

Figure 6. High-Level Design at the Flux Coupler

The Flux Coupler has incorporated a number of subroutines in the areas of mapping and control. The

mapping utilities include subroutines for initialization, bilinear interpolation, merging, verifying acceptable

component, and masking routines which are listed in table 2. Those subroutines are used in the Flux Coupler;
they are not available to the application components.

In the area of control, there are subroutines to set control flags for stopping the calculations, creating restart

and history data, and outputting standard diagnostics. These flags are used by the coupler, but are also sent to

component models to facilitate the coordination of data sets. The corresponding subroutines are shown in
table 3.

Both shared-memory multitasking and message passing (e.g., MPI) have been used in CSM for parallel
communication. Inside the Flux Coupler, shared-memory multitasking is used. Between the Flux Coupler

and an application component, MPI is used with a wrapper (msg_recv_r, msg_recv_l, rmg___nd_r, msg___nd_I).

The application components can use either MPI or shared-memory multitasking.

Since application model components and the Flux Coupler can be run as an individual executable, the load

balance among those executables has to be considered. Currently, the load balancing is done manually by
trial and error.

2.6.4 Evaluation

Strengths

Thc Flux Coupler has successfully served the CSM community by providing a utility to plug component

models into the CSM. If a user follows the rules for data exchange set up by the Flux Coupler developers,

36 Earth Modeling System Software Framework Survey

theycantesttheirapplicationcomponentsintheenvironmentofCSMthroughtheFluxCouplerwithout
changingtheFluxCouplercode:however,theirinterlaceisnotflexible(seeweaknesses).

Weaknesses

The Flux Coupler involves many operations, such as flux calculations and execution control, which makes

maintenance and upgrade difficult. One solution is to divide the multiple functionalities into several
subroutines and encapsulate the scope of data and functionality in each subroutine.

Thc high-level design of Flux Coupler is procedural not object-oriented, which limits its extensibility and

reusability. The most recent version of the Flux Coupler (CPI5) uses Fortran 90 to modularize the code and

some of the flux calculations have been removed, in favor of allowing the individual components to compute
the Iluxes.

The original design of the Flux Coupler was intended to provide an independent coupling tool allowing users

to test their application component in the CSM environment without modifying the Flux Coupler. In reality,

users still tend to modify the Flux Coupler code to interlace with their application models, rather than simply

following the rules set up by the Flux Coupler developers. In general, this procedure can result in significant
configuration management issues with the Flux Coupler code. At the current time, most users do not insert

new components into the CSM through the Flux Coupler: rather they run simulations with the existing CSM

components and modify the parameter sets to tailor the computations to their needs.

Summary

The Flux Coupler can be run as an independent executable providing coupling for application components. It

has many users in the climate modeling community. However, its procedural code structure limits the

flexibility of its interface for application components. In additioi_, the Flux Coupler contains several separate

functions (exchanging state variables, calculating and distributing fluxes, controlling the execution of a

program), which makes the code difficult to maintain and update.

2.6.5 Reference

http://www.cgd.ucar.edu/csm/models/cpl/

-"http://www,cgd.ucar.edo/csm

http://www.cgd.ucar.edu/csm/models/cpl-ng/

4 http://www.cgd.ucar.edu/csm/models/cpl/cpl4.0

Earth Modeling System Software Framework Survey 37

Table 2. Mapping Utilities

Subroutine Name

map init(Si)

map_aavg x2o init(ifrac)

map_aavg x2a init(ilrac)

map_aavg_rsum

(x0, yO, nx0, ny(l,

and

xl,yl,nxl,

ny I ,no_max,
and

daO, ncl, il, jl,dal)

Purpose

Initialize and/or update any

mapping weights or indexes

for all mapping options

Setup routines I`or area-averaging

onto ocean grid

Setup routines [or area averaging

onto atmosphere grid. Compute

weights for (1) area averaging
ice and ocean fields onto the

atmosphere grid (2) merging ice,

ocean, and land fields (given all

fields on atmosphere grid)

For each ()-grid cell (i,j), this
routine computes nc 1, i I(n),
j I(n), and dal(n), for n=l,ncl,

which can then he used to map
values lvia RIEMAN-UM/

integral) from the I-grid

(which has cell-edge

coordinates x l and y l) onto
the ()-grid (which has cell-edge

coordinates xO and y0)

Assumptions

Ocean and ice are on identical grids
Atmosphere and land are on identical grids

The grids used in this subroutine are "'edge" (a.k.a.

"vertex") grids (i.e., in both the x and y [longitude
and latitude[directions), these are the n+l

coordinates of grid cell edges which define the area
associated with the n grid cells

Any surface area not covered by ocean or ice is

covered by land
Further assumptions as per routine map_aavg_rsum:

-all grids are in degrees (as per spherical/global
grids)

-all grids are strictly increasing

-all y grids are in [-90,90]

-all x grids are periodic, ie. x(l)+360=-x(nx+l)

-all grids contain x= 180 (minimum requirement:

grids overlap)

Both grids are in degrees (as per spherical/global
grids)

All grids are strictly increasing

Both y grids are in [-90,90]

Both x grids are periodic, i.e. x(I)+360=x(nx)

The x grids overlap at some point

38 Earth Modeling System Software Framework Survey

Table 2. Mapping Utilities (continued)

Subroutine Name Purpose Assumptions

map_bilin_initlXin

,Yin .rex,my,
and

Xout,Yout,nx,ny,
and

w, iI,jl t

merge3(nx,ny,

wl,w2,w3, fl,f2,f3,
fsum)

merge2(nxmy,

w l,w2, fl,f2, fsum)

map_check()

map_masH()

Bilincar interpolation routines.
For every pair of output grid

indices (i:i) compute input grid

indices il(i),jl(j), and four
weights

w{ i,j, 1),w(i,j,2),w(i,j,3),w(i,j,4),

such that, Fout(i,j) =

F(Xout(i),Yout(j)) =

w(i:i,I)*Fin(il ,jl) +
w(i,j,2)*Fin(i 1+ 1:bI) +
w(i,j,3)*Fin(i I+ 1,j 1+ I) +

w(i,j,4)*Fin(il ,jl+l) is the

bilinear interpolationof field Fin,
on grid Xin, Yin, onto field Fout,

on grid Xout,Yout

Merges three quantities on

the same grid, using
associated .weights to obtain

a net quantity on the grid.

Presumably the weights add
up to 1.0

Merges two quantities on the
same grid, using associated

weights to obtain a net

quantity on the grid.

Presumably the weights add

up to 1.0

Verify acceptable component
model domains

set (or reset) mask_l such

that mask I(i,j) is non-zero
iffthe coupler will use land

data at location (i,j) Note:

wm_12a(i,j) > 0 => coupler
will use land data at !i,j)

All coordinates (x,y) lie in 10,360]x[-90,90]
(i.e., lie on the globe, with units of degrees)

X and Y grids are strictly increasing

X(I:mx) is periodic, so that Xin(mx+l) is
understood to be Xin(1,j)+360.0, likewise,

Fin(mx+ I,j) is understood to be Fin(l_j)if Yfl) > -90

and/or Y(ny) < +90,

Yin(O,j) is understood to be -90.0

Yin(my+l,j) is understood to be +90.0 and
corresponding north- and south-pole values may

need to be fabricated by the routine that uses these

weights and indices, is such cases,

Fin(i,O) is understood to be a fabricated south-pole
value, and

Fin(i.my+l) is understood to be a fabricated north-
pole value

atmosphere and land are on identical grids

ice and ocean are on identical grids
ice and ocean have identical domains

atmosphere and land are on identical grids

Earth Modeling System Software Framework Survey 39

Table 3. Control Utilities

Purpose Assumptions

Set control llags for the creation of This routine is called once

rumime diagnostics at every time step

Subroutine Name

control_diag()

control_hist() Set control [lags for the creation

and archiving of history files

control_rest() Set control tlags for restart file
creation

control_stop() Set control flags for when the

integration stops

This routine is called once at

every time step

40 Earth Modeling System Software Framework Survey

2.7 Distributed Data Broker

2.7.1 Introduction

The University of California, Los Angeles (UCLA) Distributed Data Broker (DDB)] I] results from a

collaboration between the Department of Atmospheric Sciences [2] at UCLA and the Computer Science

Department [3] at the University of Calilbrnia, Berkeley (UCB). The DDB, as described on the DDB
homepage, is a

"'software tool to handle distributed data exchanges between ESM (Earth Science Model)

components. The DDB differs from conventional coupler tools in that it handles

communication between two independent ESM components without the need for a central

communication agent. The DDB has three major components: the Model Communication

Library (MCL), the Communication Library (CL) and the Data Translation Library (DTLI.

The MCL contains a set of callable routines that are used by the different ESM components

to register during an ESM run, and perform the exchanges of data. The CL is a set of routines
used by the DDB to manage the data exchanges based on the communication libraries

supported by the available computer platforms. Lastly, the DTL transforms data in a given

grid domain to the domain of the requesting model. This library will include a number of

utilities from simple linear interpolation routines to high-order data translation ['unctions.

The Distributed Data Broker works in a producer-consumer paradigm in which the data

producers send the data directly to the consumers at given time intervals. The data consumers
will later receive the data at a rate dictated by its internal computations." [I]

2.7.2 Synopsis

Prominent inlormation about DDB includes the following:

1. Community of origin--DDB originates in the Atmospheric Science Department at UCLA and the

Computer Science Department at UCB.

2. Description--DDB provides a communication mechanism between climate models, enabling them

to share gridded information without an intermediate agent process. Instead it provides for direct

communication between components without a separate process.

3. Team--Past and present members of the DDB team include Tony Drummond 14], C. Roberto

Mechoso [51, J.A. Spahr, James Demmel 161, Howard Robinson [71, and Keith Sklower [81. Tony
Drummond, the POC, has recently left UCLA [2] for a new position at NERSC [91. The DDB team

is in the process of deciding how the data broker project will be supported. Tony is also a member of

the Common Component Architecture Forum [10l and the Common Modeling Infrastructure

Working Group (CMIWG) [I 1 I.

4. Maturity--This project began 1994.

5. Users----DDB is primarily used within UCLA lbr coupling climate models in the context of the

Earth System Model (ESM) I121. It has been used by the National Partnership for Advanced

Computational Infrastructure (NPACI) [13] to perform multiscale multiresolution modeling 114]

using Legion [I 51. There is only one user outside the UCLA group.

6. Language--DDB is written in C++ and C. The library provides interfaces in both Fortran and C,

thus allowing it to work with models written in multiple languages.

Earth Modeling System Software Framework Survey 41

7. Tools/utilities included--DDB comes packaged as three libraries:

• the Model Communication Library (MCL):

° the Communication Library (CL);

• the Data Translation Library (DTLI.

8. Application interface---DDB employs a simple interface scheme in which models register at the

beginning of the task using a registration broker and they communicate during the task using send or

receive subroutine calls. The architecture for this system also seems to be influenced by Common
Object Request Broker Architecture (CORBA) [16] [171.

9. DocumentationmThere are several documents specifically about DDB including the home page
[I], a recent presentation [18] by Mechoso and others [191. Much of the inlbrmation about DDB is

derived from inlormation about applications which use it, the primary one being the ESM [121 at
UCLA, for which the DDB plays a prominent role [20]. Other publications include articles on

parallelization and perlbrmance of atmospheric chemical tracer models by Demmel and Smith 121]

122 I, the UCLA Atmospheric General Circulation Model (AGCM) [23] by Mechoso et al. 1241125 I,

coupling to an ocean model by Farrara et al. [26], and others [271 [28]. Some fragmentary
documentation is also available over the Web for project status and results [11]. There is no user/

reference manual. Mechoso notes ([18], p. 19) that DDB will soon be available upon request from
UCLA or at the U.S. National HPCC Software Exchange (NHSE) I291.

10. Associated software---The DDB can use either PVM [30] or MPI 1311 libraries.

II. Performance---The DDB is designed to replace an equivalent service which runs as a separate

centralized computational process on an independent processor. In actual tests, as shown in figure
I0, DDB does indeed perform faster than such a system.

12. Special features----DDB is targeted towards highly distributed processing. It can work in

conjunction with Legion [15], a distributed virtual computing system developed at the University of
Virginia.

2.7.3 Description

DDB is designed to operate in a multimodel system where each model distributes its processing across
multiple processors according to a geographic grid. DDB provides the functionality of an intermediate

communication agent without the implementation of an intermediate communication agent.

High-Level Design

DDB consists of three libraries--an MCL, a CL, and a DTL. It is designed to serve as a communications
interface between multiple components in a simulation.

The Problem DDB Is Designed to Avoid: Centralized Coupling

DDB is designed to solve problems associated with centralized coupling approaches where, on an N

processor system with M models, N- I processors are dedicated to model processing and one is designated as

a communication agent. On such a system, as M (and N) increases, there is an increasing processing burden
which is cast upon the single communication process. Thus the potential exists to have N- 1 processors
waiting while an overloaded single processor handles all of the communication between them. This situation

can be aggravated in cases where different models have different grid sizes where a geographic region on one

42 Earth Modeling System Software Framework Survey

model(correspondingtoasingleprocessor)wouldbe,foradifferentmodelwithadifferentgrid,associated
withmultipleprocessorsthaiallowncorrespondingpartsofthesubgrid.In suchasituation,couplingdata
fromaregionononcmodeltoanothermodelmightinvolvenumerousprocessors,allofwhichcanbe
affectedbyacommunicationbottleneck.Thus,thismelhodofdividingtheprocessorsintomodeland
communicalionprocessortaskshasperformancerisks.

TheDDBSolution: Distributed Coupling

The DDB approach provides the appearance of a central coupler with the implementation of a distributed

coupler. In this case on an N processor system all N processors can be dedicated to m¢xlel processing and

when communication is required, it is handled on a point-to-point basis with both processors sharing the

communication processing burden. Thus this is a solution which is more appropriate for distributed

processing and can scale more effectively. DDB can be shown diagrammatically as an intermediate agent
between all models but functionally it is implemented as a function call which operales in each processor's

process space.

DDB Implementation

The DDB provides the functionality of a communication agent between model processes without the agent
bcing implemented as a separate process. Figure 7 illustrates how DDB is considered in the contcxt of the

ESM [121, incorporating the lbllowing models:

• the UCLAAGCM 1231;

• the Oceanic General Circulation Model (OGCM)[32]:

• the UCLA Atrnosphcric Chemical Model (ACMI [33].

The models communicate using DDB as an intermediate agent but DDB docs not run as a separate task. The

diagram shows all models using function call API, implemented as part of the DDB library.

Schematic Representation of the UCLA Earth System Model

I AGCM] OGCM

I ACM °CM I

ESMDIS]

Figure 7. DDB as Part of the ESM

Earth Modeling System Software Framework Survey 43

As described on the DDB home page, the DDB operates in two phases. In the first phase, it employs a

registration broker to collect model information. In the second phase, il functions as a communication

intermediary between the othcr models. Each of thcse phases are explained below.

Model Registration

To use the DDB each process must register with it at the beginning of each run. A Registration Broker (RB),

implcmented as subroutine calls, is used to collect information on each model which includes both the

information it can supply and thc iniormation it requires from other models. This information specifically

incorporates information about grids. The RB returns to the model a set of information which can be used in

connection with the later communication calls. After registration, each process has enough information to

communicate with the other models. This procedure is illustrated in ligure 8.

MCL Registration

MCLMetaRegister

I Model ctrl process
registers subdomain
information

Model A

Pa2 :

i

Pal ::

; Pa3

• RB records id's of

registering processes

• RB establishes the
communication links

between processes

/,

//" Model B
//

/ I I i I
MCLRegisterConsume I PIkO! Plbl PI

Ctrl process registers I _p-_ _
data production and _z

consumptiOnMcLRegisterProduce 11 _IPI_IO[P 1 ,_,.
I I []

Distributed
Data

Broker

MCLRegisterProduce

Ctrl process registers
data production and
consumption

MCLRegisterConsume

//.**//

./
//-

• RB records data
from subdomains

• RB maps regional
subdomains from one
model into the other

!R,

%%

i 1 i I I ""-,
2 I Pb3 I Pk4 I

registers subdomain
Information

MCLMetaRegister

]]

Figure 8. DDB Registration [l]

Inter-Model Communication

During the rest of the run, models communicate using MCLGetData and MCLSendData function calls as

illustrated in figure 9. As described by Drummond:

"In figure 9, Pa0 requests data from Model B. The region in the Model B's domain that

corresponds to the subdomain being worked by Pa0 is highlighted by the orange rectangle.

44 Earth Modeling System Software Framework Survey

ThisrectanglecoversthesubdomainsbeingworkedbyPb0,Pbl,Pb2,Pb5,Pb6,Pb7.
Therefore,asimplecalltoMCLGctDatais translatedinto6receives-operationsfromeach
oftheModelBprocesses.Likewise,asingleMCLSendDatafromeachoftheModelB
processeswillgettranslatedintooneormoresend-operationstoModelA processes.After
allthedataisreceivedbyPa0,it pastesthedifferentinliwmationreceivedandtranslatesthe
datatoitsowngridunits."[I]

ThecommunicationtakesplaceabovethcMP![31]level.Eachsendmaybetranslatedintomultiple
MPlcalls.

MCL Send and Receive Data

MCLGetData

Process Pa0

requests data

for its

subdomain

Distributed

Data

Broker

Model A

• _ i\i i

i %,

\
\
\
\
\
\

_ H Hi

Transform data
received for P 0

,i +

_, !\i

\ x

2i

t t t" t
I I I I
I I I I I
I I I I I

I I I I
I II...... I I
I I ; I I-J--- I

' I

L

MCLSendData

I Gather data for Pa0

i

P

PI

Model B

*0 Pill
!

10 P_11

Figure 9. Inter-Model Communication [I]

PI _3 PI

PI)B

14

Earth Modeling System Software Framework Survey 45

200

Performance

180 -

160 -

a

"o 140 -
m

i_ 120 -

80-

40

200

Centralized Coupling

DDE

(92)

(51)
I l I I I

300 400 500 600 700 800

Number of T3E nodes

Figure 10. Comparison of Centralized Coupling Versus DDB Coupling as a
Function of Number of T3E Nodes [1]

Performance results Ior DDB versus a centralized coupling implementation are shown in figurc I0. The

figure shows a decrease in time (seconds per simulation day) ranging from 7.5 percent lbr 250 nodes to 12
percent for 500 nodes and 7.5 percent Ior 800 nodes.

2.7.4 Evaluation

According to Tony Drummond, who has investigated other coupling software similar to DDB and presented
concise comparison results [34i to CMIWG [I 1], the DDB has characteristics in common with the NCAR

Flux Coupler I35], CSU Flux Coupler [361, CERFACS Coupler (OASIS) [3711381, and the Max Suarez

Coupler [39] in that it provides a modular interlace between different numerical models. DDB is unique in its
registration and distributed coupling approach.

According to the definition, DDB is not a framework as "a framework is a reusable, semi-complete

application that can be specialized to produce custom applications," ([40], p. 4), but it has the potential to

play an important role in any framework in that it efficiently "describes the interface of each object and the
flow of control between them," ([40], p. 4).

Strengths

The strengths of the DDB are the following:

I. Library--It is packaged as a library, which means it can be easily incorporated into other
framework solutions.

46 Earth Modeling System Software Framework Survey

2. Language--It has dual Fortran and C interfaces which eases integration into larger frameworks.

3. Simple API--Thc AP! lor registering models and communicating between them is simple, a sign of

good design.

4. Distributed--DDB can work in distributed environments without tying up another processor.

5. Registration--The DDB uses a registration process for the models, a procedure which should be

incorporated into an)' framework.

6. Proof of concept--DDB shows that this concept works.

Weaknesses

The weaknesses of DDB are as follows:

1. Few users--It has a small user community and therelorc may not be as robust as other couplers

with more users. OASIS I381, on the other hand, has at least 15 user groups as of 1997.

2. Lack of documentation--The lack of a user manual, reference manual, or other documentation is a

serious deficiency, particularly compared to o(her couplers which provide User's Guides, such as
OASIS 1411 and NCAR FC 1421.

3. Uncertain support--The DDB team does not seem to offer the level of support of Cactus [431 or

ROOT [43]. DDB seems mainly to be an internal project. The issue of support becomes more

uncertain with the loss of Tony Drummond 14] to NERSC [91.

Summary

The UCLA DDB is not, by itself, a complete framework. Nevertheless, the task it seeks to accomplish,

exchange of gridded data, represents a crucial part of any framework solution. DDB seeks to fill the role of

coupler using a distributed technique. This technique works and provides some performance gains in

comparison to centralized coupling, which makes it worthy of close examination for the underlying

technology because the general design concept is excellent. At the same time the number of users is small,

there is little specific documentation and the level of future support from the team appears uncertain.

2.7.5 References

' DDB. URL: http:Hwww, atmos.ucla.edu/-drummond/DDB

-" UCLA Department of Atmospheric Sciences (UCLA_DAS). URL: http://www.atmos.ucla.edu

UCB Department of Computer Science (UCB_CS). URL: http://www,cs.bcrkeley.edu

a Tony Drummond, 510-486-7624, LADrummond@lbl.gov. URL: http:llwww.atmos.ucla.edul~drummond

C. Roberto Mechoso, 310-825-3057, mechoso@atmos.ucla.edu.

URL: http:llwww.atmos.ucla.edu/~mechosol

_' James Demmel, 51(/-643-5386, demmel@cs.berkely.edu. URL: http:llwww,cs.berkely.edul~demmel/

? Howard Robinson, 510-642-4979, hbr@cs.berkeley.edu. URL: http:llwww.cs.berkeley.edu/~hbr/

Keith Sklower, 510-642-9587, sklower@cs.berkely.edu. URL: http:l/www.cs.berkely.edul~sklowerl

NERSC. URL: http:llhpcf.nersc.gov/

_"DOE Common Component Architecture Prqject (DOE_CCA}.

URL: http://www.extreme.indiana.edu/~gannon/cca report.html

Earth Modeling System Software Framework Survey 47

_JCMIWG.URL:http://janus.gsfc.nasa.gov/-mkistleffinfra/master.html

_-'Earth System Model (UCLA_DAS_ESM t. URL: http://www.atmos.ucla.edu/esm/

_' NPACI. URL: http://www.npaci.edu/indcx.html

_ Multi-Scalc Multi-Resolution Modeling (NPACI_MSMRM).

URL: http:l/www,npuci._du/ResearchlESS/projectslmsmr.html

'_ Legion (UVA_Lcgion). URL: http://www.cs.virginia.edu/-legion/

_"Common Object Request Broker Architecture (CORBA). URL: http://induslry.ebi.ac.uk/-corba/

_7Group, Object Management, 1991: The Common Object Request Broker - Architecture and Specification.

Object Management Group.

_ Mechoso, C.R., 2000: A Distributed Data Broker Ior Multi-Disciplinary Applications.

URL: http://www,_,f, mos.ucla.edu/-mechoso/l, oulouse workshop/

"_ Drummond, Leroy, Carlos Mechoso, J. Demmel, J. Robinson and K. Sklower, 1999: A Distributed Data

Broker for Coupling Multiscale and Multiresolution Applications, 1999 Advanced Simulation

Technologies Conference High Performance Computing Symposium, Apt 11-15, SCS.

URL: http://www.scs.org/con fcrnc/astc99/html/hpc-pp.html

-'_'Farrara, John, Leroy Drummond, Carlos Mcchoso and A. Spahr, 1999: An Earth System Model for MPP

Environments: Performance Optimization and Issues in Coupling Model Components, 1999 Advanced
Simulation Technologies Conferencc High Performance Computing Symposium.

URL: http://www.scs.org/confernc/astc99/html/hpc-pp.html

-_'Demmel, J. and S.L. Smith, 1994: Parallelizing a Global Atmospheric Chemical Tracer Model,

Proceedings of the Scalable High Performacne Computing Conference, Knoxville, TN, May 23-25, IEEE

Computer Society, 718-725.

,.2Demmel, J. and S.L. Smith, 1995: Performance of a Parallel Global Atmospheric Chemical Tracer Model,

Proceedings of Supercomputing "95, IEEE Computer Society.

'-_AGCM. URL: hltp:llwww.atmos.ucla.edulesmlagcmdir/

.,4Mechoso, C.R., C.C. Ma, J.D. Farrara, J.A. Spahr and R.W. Moore, 1993: Parallelization and Distribution
of a Coupled Atmosphere-Ocean General Circulation Model. Monthly Weather Review, 121, 2062-2076.

-'_Mechoso, C.R., L.A. Drummond, J.D. Farrara and J.A. Spahr, 1998: The UCLA AGCM in High

Performance Computing Environments, Supercomputing "98.

URL: http://www.atmos.ucla.edu/~drummond/SC98 1

-'" Farrara. John D., Leroy A. Drummond, Carlos R. Mechoso and Joseph A. Spahr, 1998: An Atmospheric

General Circulation Model with Chemistry for the CRAY T3E - Design Performance Optimization and

Coupling to an Ocean Model, Proceedings from Second International Workshop on Software Engineering
and Code Design in Parallel Meteorological and Oceanographic Applications, 251-264.

-'_Wchner, M.F.. A.A. Mirin, P.G. Eltgroth, W.P. Dannevik, C.R. Mechoso, J.D. Farrara and J.A. Spahr, 1995:
Pcrhwmance of Distributed Memory Finite Difference Atmospheric General Circulation Model. Parallel

Computing, 21, 1655-1675.

-'_Wchner, M.E, J.J. Ambrosiano, J.C. Brown, W.P. Dannevik, P.G. Eltgroth, A.A. Mirin, J.F. Farrara, C.C.

Ma, C.R. Mechoso and J.A. Spahr, 1993: Towards a High Performance Distributed Memory Climate

Model, Second International Symposium on High Performance Distributed Computing, Spokane

Washington, IEEE Computer Society, I(12-113.

'-" NHSE. URL: http://www.nhse.org

)c_PVM. URL: http://www.epm.ornl.gov/pvm/pvm hom¢.html

48 Earth Modeling System Software Framework Survey

_ MPI.URL:http:Hwww-unix.mcs.anl.gov/mpi/

_20GCM. URL: http:Hwww.atmos.ucla.edu/esm/ogcmdirl

_ Atmospheric Chemical Model (ACM). URL: http://www, atrnos.ucla.edu/esm/acmdir

34Drummond, Tony, 1998: A Partial List of Available Coupling Software, Infrastructure Working Group

Mccting, Tucson, AZ, Oct 15-16. URL: http://janus.gsfc.nasa.gov/-mkistlcr/infra/docdir/csw.html

35Flux Coupler Version 4.0 (FC 4.0). URL: http://www.cgd.ucar.edu/csm/modcls/cpl

3¢,CSU Flux Coupler (CSU FC).
URL: http://kiwi.atmos.colostate.edu/BUGS/groupPIX/don/fc/fiuxcoupler.html

37 European Centrc for Research and Advanced Training in Scientific Computation (CERFACS).

URL: http://www.cerfacs.fr

3_OASIS Flux Coupler (OASIS). URL: http://www.ccrf_s.fr/gtob¢/soflware/oasis/oasis.html

_; Max Suarez, 301-614-5292, max.suarez@gsfc.nasa.gov.

_'_Fayad, Mohamed E., Douglas C. Schmidt and Ralph E. Johnson, 1999: Building Application Frameworks.

Wiley.
URL: htlp://www.amazon,gom/¢xc, g/obidos/AS1N/0471248754/qid¢;_ 3D968778251/102-0715276-9734544

4_Valcke, Sophie, Laurent Terray and Andrea Pacentini, 2000: OASIS 2.4: Ocean Atmosphere Sea Ice Soil
User's Guidc, CERFACS. URL: http:l/www.cerfacs.fr/globc/software/oasis/doc oasis2.4.ps

42 Kauffman, Brian G., 1998: The NCAR CSM Flux Coupler Version 4.0 User's Guide, NCAR.

URL: http://www.cgd.ucar.edu/csm/mcxtels/cpl/cpl4.0/docO.html

43Cactus. URL: http://www.cactuscode.org

Earth Modeling System Software Framework Survey 49

2.8 Other Frameworks

This section examines three other frameworks--ROOT, PAWS, and ALICE-- in somewhat less detail than

the prior six.

2.8.1 ROOT

2.8.1.1 Introduction

ROOT arises from the European Organization for Nuclear Research (CERN) [1]. ROOT is described in the

Executive Summary of the mission statement on the ROOT home page as follows:

"The ROOT system provides a set of OO frameworks with all the functionality needed to

handle and analyze large amounts of data in a very efficient way. Having the data defined as

a set of objects, specialized storage methods are used to get direct access to the separate

attributes of the selected objects, without having to touch the bulk of the data. Included are

histogramming mcthods in I, 2 and 3 dimensions, curve fitting, function evaluation,

minimization, graphics and visualization classes to allow the easy setup of an analysis

system that can query and process the data interactively or in batch mode.

"Thanks to the built-in CINT C++ interpreter the command language, the scripting, or

macro, language and the programming language are all C++. The interpreter allows for fast

prototyping of the macros since it removes the time-consuming compile/link cycle. It also
provides a good environment to learn C++. If more performance is needed the interactively

developed macros can be compiled using a C++ compiler.

"The system has been designed in such a way that it can query its databases in parallel on
MPP machines or on clusters of workstations or high-end PC's. ROOT is an open system that

can bc dynamically extended by linking external libraries. This makes ROOT a premier

platlorm on which to build data acquisition, simulation and data analysis systems." [2]

2.8.1.2 Synopsis

Prominent inlormation about ROOT includes the following:

I. Community of origin--ROOT arises from CERN I I] in the particle physics community. It was

designed to support data analysis lbr the Large Hadron Collider where the expected amount of data

produced exceedcd I million GB (1 PB) per year.

,-) Description--"ROOT is a system for large-scale data analysis and data mining. It is being

developed for the analysis of particle physics data, but it can be equally well used in other fields

where large amounts of data need to be processed." [31

3. Team--Team members include Rene Brun [41 and Fons Rademakers [51.

4. Maturity--this project has been functioning since 1994 and is still active. Version 2.25/02 has

recently been released.

, Users---According to a paper by Rademakers and Brun in 1998, "More than 16,000 copies of the

ROOT binaries have been downloaded from lthe] Web site, about 700 people have registered as
ROOT users, and the Web site gets more than 150,000 hits per month. ROOT is currently being used

in many different fields: physics, astronomy, biology, genetics, finance, insurance, pharmaceutics,

50 Earth Modeling System Software Framework Survey

.(5.

7.

10.

11.

12.

etc.'" [3j Since thai lime the numbe, of distributed binaries has increased to more than 75,000. The

ROOT home page also lists at least 37 applications using ROOT [6 I. Thus, ROOT is a broadly

disseminated development Iranlework.

Language--C++

Tools/utilities included--According to Brun 17J,class categories include basic ROOT classes,

container classes, Mstogram and minimization chtsses, tree and n-tuplc classes, two-dimensional

graphics classes, Ihrec-dimensional and detector geometry classes, Graphical User lntcrfacc (GUI)
classes, interactive interlhce classes, the C++ interpreter 18], the operating system interface,

networking classes, and documenlalion classes.

Application interface--The application interface consists ¢51"the object-oriented class structures.
The interfaces arc well thought-out and extremely well documented.

Documentation--The ROOT Web site has an enormovs amount of documcntation including 5 I

tutorials 19], 37 applications examples [6], a reference guide [10], and numerous other documents.

An interesting presentation by Fcderico Carminati describes the migration by CERN to C++/OO

away from Fortran [11]. On page ,6, he discusses how this choice was made:

• Migrate irnmedialely to C++.

• Adopt the ROOT framework.

• Allow use o[" Fortran and C++.

• Impose a single framework.

He also discusses specilic policies adopted regarding programrning styles in C++ (p. 15), support for

a Bazaar [12] model of development (p. 16), and lessons learned in migrating scientists familiar with

Fortran to a new environment (p. 25 I.

Associated software--The C++ interpreter [8] is an associated software package that has been

tightly integrated into the ROOT system.

Performance--Unknown.

Special features--According 1¢5the developers the main features of ROOT include the runtime type

information system [I 3], the object 1/O system 114], and automatic documentation generation [15]:

• The runlime type information system J l3] is a rnemory resident dictionary that, at runtime,

maintains information on all objects including lists of all global functions, all global variables,

all classes, data member descriptions of the classes, and class member functions. This
centralized information source is a powerful capability not implemented in any other framework

surveyed.

• The object I/O system [14J includes a set of classes to support l/O to/from machine independent
I]les. It is "designed to be particularly eflicienl for objects manipulated by physicists:

histograms, n-tuples, trees, and events."

• ROOT provides for automatic documentation generation [I 5] using a set of documentation

classes which "allows the creation of hyperized (in HTML formal) C++ header and source liles,
inheritance trees, class indices, macros, and session transcripts. Thanks to this facility ahnost

everything in the ROOT system can be automatically documented and cross-referenced." This is

a tremendously useful capability not duplicated in any other framework.

Earth Modeling System Software Framework Survey 51

ROOT provides an excellent example of an object hierarchy, it has 310 classes grouped in about

24 frameworks divided into 14 categories 171.

ROOT uses a C inlcrprctcr (CINT) [81, for the scripting language. This is a great cxa,nplc of

how a scripting language should be associated with a framework, though it is not necessarily

obvious that interp,etcd C or C++ represents the best choice.

2.8.1.3 Description

ROOT is primarily oriented towards data analysis instead of simulation. The distribution in focus between

event generation, detector simulation, event reconstruction, data acquisition, and data analysis is shown in

figure I1.

Unlike many frameworks, ROOT has a true class inheritance hierarchy. The ROOT schema organization is

loosely illustrated in figure 12. Basic classes in an inheritance hierarchy arc shown in figure 13.

Figure 14 illustrates the ROOT environment and tools.

om

Evmlt Data

Acquisit lot1

Analys_s
_ructk)n

Root Framework

Figure 11. The Primary Speciality of the ROOT Framework is

Event Reconstruction, Data Acquisition, and Analysis [2]

52 Earth Modeling System Software Framework Survey

Figure 12. ROOT Schema 12l

Earth Modeling System Software Framework Survey 53

i TRandom

I Tlter

[Tlterator

[TBtNode

[TBtltem

_ TDatlme

-_ TStrlngRef

{ TSubstring

--_ TStrlng

-t TObjLInk

•-_ TStorage

-t TObject

I
I

I
I
I
I
I
I
I

TMaplter I

TOrdCollecUonlter I

TBtreelter J

TListlter I

THashTablelter]

TObJArrarylter I

TBtlnnerNode I

TBtLeafNode]

-_ TCollecUon _ TSeqCotlectton
I TObjOptLink

TMap

THashTable

--_TAssoc I
-I TOb_,To_.I

_, TFIleHandler

--I TSysEvtHandter " _lTSlgnal Handier

-I_v_]
-I.,.v]
-{.,.-]
-{ ,,..,o, I
-t's'°,w.'°" I

•_ TKey

•_ TClass

•--_ TData Member

--{ TMethod

•--_ TMethodArg

-_ TBaseClass

TNamed _ -_ TBenchmark

--I TSortable

•_ TDataType

--] TSystem

TGIobal

I
I

I
I

I
I
I
I

---[TOrdColk_ction

•_ TBtree

-_ TList

----_ TObjArray

_-[TDlrectory

Figure 13. Basic ROOT Classes in an INheritance Hierarchy 12l

!
I

__ THashLIstTSortedLisl

I

_ TROOT J
TFIle I

54 Earth Modeling System Software Framework Survey

ROOT Environment and Tools

I C++ application. I
source code

*User.C

I
I
I

I

Macros Log files
*User.mac

*User.log

rootcint

ROOT compiler

C++ code for

User Interface and IIO
*UserUI.C

I ROOT-based Application

Interactive or Batch
User.exe

User
Libraries
*User.si

Root Library l

and Includes
Root.si

Root/Include

l files with l

hyperlinks
*User.C.html

*User.mac.html
Dictionary l

Inheritance graphs
*User Tree.ps

t
with references

*User.html

Figure 14. ROOT Environment and Tuols 12]

Earth Modeling Syslem Software Framework Survey 55

2.8.1.4 Evaluation

ROOT is an excellent example of a scicnlific object-oriented framework. AI the currcnl lime it is not

specifically suited Io handling models for Ihe climate communily.

Summary

ROOT exceeds all other stn'veyed frameworks in terms of number of users, maturity, extenl of

documentation, and excellence in object-oriented design. Is worthy of close inspection and emt.lation by Ihe
climate community. The facl thai a scienlilic organization such as CERN has migrated from Fortran to C++

using ROOT provides lessons regarding options available to the climate community.

2.81.5 References

European Organization for Nuclear Research (CERN). URL: http://www.web.cern.ch/CERN/

-' ROOT (ROOT}. URL: http://roo!.cern.ch/Welcome.hlml

' Rademakers, Fans and Rene Brun, 1998: ROOT- An Object-Oriented Data Analysis Framework. Linux
Journal, 51.

Rcne Brun, +41 22 76 74124, Rene.Brun(q)cern.ch. URL: http://consult.cern.ch/xwho/people/O0526

Fons Rademakers, Fons.Rademakers@cern.ch. URL: http:l/root.cern.ch/-rdm/

" Applications Using ROOT. URL: http://root.cern.ch/root/ExApplications.html

7 Brun, Rene and Fons Rademakers, 1996: ROOT Architectural Overview.

URL: http://root.cern.ch/root/Arhitectur¢.html

C/C++ Interpreter (CINT). URL: http:l/rooLv¢,rn.c,h/rool/Cint.html

_' ROOT Tutorials. URL: http://root.cern.ch/root/Tulorials.html

*" Brun, Rene and Fons Rademakers, 2000: ROOT Reference Guide.

URL: http://root,cern.ch/rool/Re ference.html

_ Carminati, Fcdcrico, 20(X): ALICE AliRoot Framework.

URL: http://root.cern.ch/cgi-bin/print hit bold.pl/root/R2000Html/AliRoot/img0.htm

_-"Raymond, Eric S., 1999: The Cathedral and the Bazaar.

URL: http://www.tuxedo.org/-esr/writings/calhedral-bazaar/cathedral-bazaar.html

_' Rademakers, Forts, 1996: The ROOT Dictionary. URL: http://root.cern.ch/root/Dictionary.html

'_ Brun, Rene and Fons Rademakers, 1996: the ROOT Object 1/O System.

URL: http:llroot.cern.chlroot/InputOutput.html

*_Brun, Rene, Nenad Buncic and Fons Rademakers, 1997: ROOT Aulomatic Documentation Generation.

URL: http://root.cern.ch/root/Documentation.html

56 Earth Modeling System Software Framework Survey

2.8.2 PAWS

2.8.2.1 Introduction

The PAWS originates in the Advanced Computing Laboratory (ACL) Ill at LANL 12l with some

collaboration fronl the NEXUS pn{iect 131at ANt. 141and the POOMA pro.iec1151 at LANL 121.As

described on the home page:

"'PAWS (Parallel Applicalion Workspace) is a software infrastructure for use in connecting

separate parallel applications within a component-like model. A central PAWS Controller

coordinates the linking of serial or parallel applications across a network to allow them to

share parallel data structures such as multidimensional arrays. Applications use the PAWS

API to indicate which data structures are to be shared and at what points the data are ready to

be sen! or received. PAWS implements a general parallel data descriptor, and aulomatically

carries out parallel layout remapping when necessary. Connections can he dynamically

established and dropped, and can use multiple data transfer pathways between applications.

PAWS uses the NEXUS [3] communication library and is independent of the application's

parallel communication mechanism." [61

2.8.2.2 Synopsis

Prominent information about PAWS includes the following:

1. Community of origin--PAWS originales at ACL [1].

2. Description--Provides a mechanism to connect separate parallel applications.

3. Team--Team members include Peter Beckman [7], Patricia Fasel [8], Bill Humphery, Suc

Mniszewski, and Teresa Roberts.

4. Maturity--This packagc does not seem to be very mature. There are few papers and few users.

5. Users--There are no known users outside of the PAWS team.

6. Language--C++

7. Tools/utilities included--PAWS is considered an ACTS [91 toolki! component.

8. Application interface--PAWS has a Fortran and C interface.

(). Documentation--There are several documents specifically about PAWS including a users guide

[I 0], a programmers manual [11], a programmers reference [12 I, a conference publication [13 I, and

an overview presentation [14 I. The home page also provides a project overview and technical

sulnmary.

10. Associated software--PAWS employs lhe NEXUS [3] communication mechanism for its message

passing substrate, and is currently in the process of adding the ability for PAWS applications to work

within the GLOBUS [15] metacomputing environment. Initial test applications use the POOMA 151

framework. The POOMA framework includes an interface that uses PAWS to allow all POOMA

multidimensional array objects to be shared with other programs.

Earth Modeling System Software Framework Survey
57

I I. Performance--Pcrlormancchasnotbeenevaluated.

12. Special Features--TBD

2.8.2.3 Description

The PAWS I'ramework concept has something in common wilh the rolc played by the UCLA DDB 1161 and

the NCAR Flux Coupler [I 71: the sharing of information belween running modules. PAWS is primarily

concerned with the sharing of scalars, multidimensional fixed-size arrays, and mullidimensional varying-

sized arrays. Like Ihe flux coupler, PAWS has a separate controller process. Unlike the flux coupler, it has a
scripting language based on Tel [I 8].

Figure 15 shows functional segments and interfaces of the PAWS framework. Figure 16 shows Ihe

relationship between the controller and other applications.

PAWS Applications

User Extensions I]PAWS C, F77 API

PAWS Core C++ API I

PAWS C++ Abstract Interface

PAWS

Controller

PAWS Run-Time System

Figure 15. Breakdown of PAWS Programming Interface and Controller [101

/ •

/

s

I

Application
A

PAWS Controller

Running Programs

Registered Ports

Established Connections

• Y,

i

k

ApplicationB y

Figure 16. The PAWS Controller Interacting with Several Applications II0l

Application
C

58 Earth Modeling System Software Framework Survey

2.8.2.4 Evaluation

PAWS does not perform interpolation functions o1 mapping to coordinate systems like the Flux Coupler or

data broker. For this reason it is probably not suited for specil]c tasks needed by the climate conlnlunJty.

Summary

PAWS does not seem mature cnough at this limc to merit a great deal of consideration by the climate

community. Nevertheless, the concepts of having a controller associalcd with a scripting language and that of

registration of the applications with the controller, are useful examples of capabilities that a framework

should have.

2.8.2.5 References

ACL. URL: http://www.acl.lanl.gov

z LANE URL: http://www.lanl.gov/worldvicw

NEXUS. URL: http://www.globus.org/nexus

4 ANL. URL: http://www.anl.gov

POOMA. URL: http://www.acl.lanl.gov/pooma/

" PAWS. URL: http://www.acl.lanl.gov/paws/

7 Peter Beckman, beckman_acl.lanl.gov.

Patricia Fasel, 505-667-3533, pkf(q_lanl.gov. URL: http://www.c3.1anl.gov/~pkf/

'_ ACTS Toolkit (ACTS). URL: http://www.ncrsc.gov/ACTS

"' Beckman, Pete, Pat Fasel, Bill Humphrey, Sue Mniszewski and Teresa Roberts, 20(X): PAWS Uscr's Guide,

Version 1.3. URL: http://www.acl.lanl.gov/paws/docs/UserMan/index.html

L_ Beckman, Pete, Pat Fasel, Bill Humphrey, Sue Mniszewski and Teresa Roberts. 2000: PAWS

Programmers's Manual, Version 1.3. URL: http://www.acl.lanl.gov/paws/docs/ProgMan/index.html

_z Beckman, Pete, Pat Fasel, Bill Humphrey, Sue Mniszewski and Teresa Roberts, 2000: PAWS Refercnce

Manual, Vcrsion 1.3. URL: hltp://www.acl.lanl.gov/paws/docs/ProgRelTindex.html

k, Beckman, Peter H., Patricia K. Fasel and William F. Humphrey, 1998: EMcient Coupling of Parallel

Applications Using PAWS, Hi eh Pel:fbrmance Distributed Computin£ (HPDC) 7, Chicago, IL.

_4 Humphrey, William, 1998: Efficient Coupling of Parallel Scientific Applications Using PAWS.

URL: http://www.acl.lanl.gov/paws/papcrs/slidcs PawsSummary/

_5 GLOBUS. URL: http://www.globus.org

_" DDB. URL: http://www.atmos.ucla.edu/_drummond/DDB

_7 Flux Coupler Version 4.0 (FC 4.0). URL: http://www.cgd.ucar.edu/csmlmodels/cpl

_ Tcl/Tk (TclTk). URL: http://dev.scriptics.com/

Earth Modeling System Software Framework Survey 59

2.8.3 ALICE

2.8.3. ! Introduction

Advanced Large-Scale Integrated Computational Environment (ALICE)originates in the Mathematics and

Computer Science Division of ANL [I l. As described on the homepagc:

"'The goal of the ALICE (Ad'_anced Large-Scale Integrated Computational Environment)

project is to eliminate barriers in using independently developed software components in the

construction of highq_rformance numerical applications. We believe this will lay the

groundwork for widespread exploitation of tcral]op-scale computational resources and for

new scientific insights.

"'The ALICE project, a collaborative effort among researchers in the Mathematics and

Computer Science Division of Argonne National Laboratory, has grown out of our long

t,'adition of expertise in high-performance software. This experience has demonstrated the

benefits of encapsulating numerical and parallel computing expertise in user-ready tools.

However, the complexity of tcuday's large-scale scientific simulations often necessitates the

combined use of multiple software packages to address areas such as mesh manipulations,

numerical solution of partial differential equations, optimization, sensitivity analysis, and

visualization. While efficient and robust tools exist, combining them remains difficult

because of data management and interoperability problems. ALICE research focuses on

I. dc'_cloping low-overhead mechanisms for integrating cxtcnsiblc software for scientific problem
solving: and,

2. building component-based toolkits that encapsulate expert knowledge in numerical algorithms
and parallel computing.

"'AIACE development is motivated by a range of large-scale scientific applications that

ensure the relevance and practicality of our design. Our approach supports both new and

legacy applications, thereby enabling scientists to reuse legacy kernels and to program in the
style of most comfort to them, for example, traditional Fortran development or more object-

oriented paradigms. In addition, wc are actively engaged in dialogues within the DOE

Common Comlxment Architecture Forum [21 concerning component-based software

intcropcrability throughout the DOE high-performance computing community." [31

2.8.3.2 Synopsis

Prominent information about ALICE includes the following:

1. Community of origin--ALICE originates at ANL [11.

2. Description_A set of tools for building scientific applications.

. "ream--Primary investigators include Ibrahima Ba, Satish Balay 141, Steve Bcnson, Anthony Chan,

Paul Fischer, Lori Frcitag, Bill Gropp 15 I, Paul Hovland, Jell" Linderoth, Rusty Lusk, Lois Curfman
Mclnncs, Jorge Mot, Lucas Rob, Barry Smith, Deb Swider, Rajeev Thakur, Henry Tufo, Steve

Wright, and Golbon Zakcri.

4. MaturityIAS a whole ALICE does not seem mature because of sparse documentation.
Individually, the tools may be .just fine.

61) Earth M(_eling System Software Framework Survey

,

7.

Users - projects using ALICE include

• The Center on Astrophysical Thermonuclear Flashes (ASCI ASAP Center)

• Multi-Model Multi-Domain Con_13utalional Methods in Aerodynamics and Acoustics (NSF

Mullidisciplinary Challenge Pro iccl)

• Massive Crystallographic and Microtomographic Structural Problems (DOE Grand Challenge

Pr(tiecl)

Language---ALICE has a mullilanguage architecture of object-oriented libraries that arc usable by
Fortran, C, C++, and Java.

Tools/utilities included--The core of the ALICE infrastructure is formed by the following tools:

• Aulomatic Diffcrenliaiion: ADIC and ADIFOR--ADIFOR and ADIC are source lranslalors thai

augment Fortran 77 and C programs with derivative computations.

• High-performance portable I/O: ROMIO--A high pcrlormancc, potable implementation of
MPI-IO.

• Message-passing tools: MPICH [61--A specification for the user interface t(7 message passing

libraries for parallel computers.

• Optimization: MINPACK and NEOS--Libraries of advanced optimization software.

• PDE and numerical linear algebra softwarc: PETSC [71 and BlockSolve95--Function libraries.

• Unstructured Mesh Computations: SUMAA3D I81--A framework for parallel unstructured

mesh computations.

• Computational Steering--a new project to develop a computational steering system based on

hierarchical adaptive analysis, parallel computing, and immcrsivc visualization.

• Futures Lab: [9l--Explorcs, develops, and prototypes next-generation computing and
communications infrastructure systems.

• Distributed Supcrcomputing Tools: GLOBUS I101.

Application interface_With respect to interfacing, the ALICE home page 131 provides the
following information:

"Critical is the design of interfaces to handle the inlerconneetions among components.

Clearly, no singlc mechanism will solve all problems. ALICE uses multiple layers to providc

both coarse-grained functionality in connecting applications together and fine-grained

functionality for high-performance data sharing. Key design features arc:

a numerical object interface based on mathematical abstractions (e.g., the interface

spccifics classes of linear and nonlinear solvers as opposed to particular algorithms and
data structures), and

• a common interface specification among components that may use various underlying

implcmcntations to address portability and performance issues."

Documentation--The sole document lbr ALICE is an overview slide presentation [11 I. Individual

documentation exists for some of the comt_)nents and is available from the ALICE homepage 131.

10. Associated software---The whole framework is a collection (71"tools.

Earth Modeling System Software Framework Survey 61

I I. Performance--Performance can only be evaluated for individual tools.

12. Special featuresnThis framework is oriented towards intcroperability between a diverse collection
of tools.

2.8.3.3 Description

Most of the information available on ALICE is conceptual and high level, though some detailed information

is available for the individual components. Figure 17 shows the ALICE infrastructure concept where ALICE

components are used by applications and in turn are bascd on lower-level components. Figure 18 illustrates

the type of components that can be potentially integrated into the ALICE framework. Figure 19 illustrates the

relationship between ALICE componcnts and toolkits. Figure 20 illustrates the ALICE vision of how

• _.iomponents would work together in advanced applications.

Beneath the Infrastructure

[Applications 1

AUCE Components

Standards-baeed HPC low-level components I

.....11...,,.,I[o,o.°,c11-_ I _Pasalng IlO Processes Models Analysis

MPICH Rornio MPICH-2 MPICH-2 Jumpehol

Architecture I

Figure 17. ALICE Infrastructure Concept (from [11 I, P. 15)

Computational Components

Figure 18. ALICE Concept of Computational Components (from [l I 1, p. 8)

62 Earth Modeling System Software Framework Survey

Component Implementations

Toolkits

I .Eos.me_.Eos1(31--]
I O0"m"='°nT°°Ik"1(31
I OPT.. IOI

I B.o0kSo,ve.SI+1

I _ec I+l
I .reoo.,,b I+1

Components

Toolkits

SUMAA3d I

CUBIT I

DAGH I

I Architecture I

Figure 19. AI,ICE Component Implementations (from I11 I, P. 10)

Typical Application: Future Generation •

p[_ Physics Modules _]4

Grids_ _ _ Adaptive Solution

Optimization [[_ _ _,_ Diagnostics

Derivative Computation _ [_ DlscreUzatlon _ Steering
_-1 Visualization

L_ _[_ Algebraic Solvers _

Data Reduction

q

Figure 20. ALICE Vision of Next (;eneration Applications (from [11], p. 12i

Earth Modeling System Softwarc Framework Survey 63

2.8.3.4 Evaluation

There is not sufficient inlkwmation on ALICE to make a useful evaluation, Based on the amount of available

inl'oMmtion, this l'_rojccl does not seem to have matured yet.

Summary

AI+ICE is useful in that il has developed a high-level concept of how a variety of comptmcnts could work

together in a framework. More inl'ormatitm is required bcl+orc this framework could bc rccommcndcd for the

climate commtmity.

2.8.3.5 References

L ANL. URL: http;//www.anl.gov

-' Common Component Architecturc Toolkit (CCAT).

URL: http://www.cxtreme.indiana.edu/ccat/index.html

ALICE. URL: htlp://www-unix.mcs.anl.gov/alicc/

Satish Balay, balay@ mcs.anl.gov. URL: http://www-fp.mcs.anl.gov/~balay

5 William Gropp, gropp@mcs.anl.gov. URL: http://www-unix.mcs.anl.gov/~gropp/

" Message Passing Interface (MPICH). URL: htlp://www-unix.mcs.anl.gov/mpi/rnpich

Portable Extcnsiblc Toolkit for Scientific Computing (PETSC). URL: hltp://www.mcs.anl.gov/pctsc/

Scalable Unstructured Mesh Algorithms and Applications (SUMAA3d).

URL: htlp://www-unix.mcs.anl.gov/sumaa3d/

" Futures Lab (ANL_FuturcsLab). URL: http://www-fp.mcs.anl.gov/fl/

L,_GLOBUS. URL: http://www.globus.org

_t Staff, DOE, 1998: What is ANL Thinking About?

URL: http://www-unix.mcs.anl.gov/alice/presentations/doc2000 retrcat98/index.htm

t'_ Earth Modeling System Software Framework Survey

3.0 Discussion and Recommendations

3.1 Motivation for Earth Science Modeling Framework (ESMF)

The primary motivation behind Ihe ESMF 111 is to provide a community software infrastructure, in the spiril

of Ihe report 111 isstled by lhe Common Modeling lnfraslruclure Working Group (CMIWG) 121 and in the

spiril of Ihe Cooperative Agreement Nolice (CAN) 131, and provide an infraslruclure which

I. provides a common soflware base for the entire cmnmunily;

2. specifies syslems and methods by which models arc developed bul not the models themselves;

3. focuses more upon the interactions and collaborations (141, p. 4) between the models and less upon

the implemenlalion of the modcls;

4. provides cfficient and flexible means of communicalion and coupling belwcen models:

5. provides the means, including fools and utilities, to develop focused core models Ill which can he

used as standard models within Ihc communily;

6. provides sufficient flexibilily lo allow Ihe community to develop variations and alternalives of core

models as needed for research, experimentation, and operations;

7. is designed so thai modeling adsances can be primarily delermincd by community consensus and

scientific meril instead of software favoritism or rigidity or the disposition of the organization

responsible for supporting the framework;

8. can support both operational and research modeling efforts:

9. provides technol,ogy-transfer mechanisms Io allow research model capabilities to migrate to the

operational cenlers;

I0. caters specifically io a communily skilled in the Forh-an language, recognizing and supporting

Fortran as a valued language for representing functional mathematical relationships;

I]. provides a means lo nol only reuse code that has been developed in Ihe past, but to also reusc codc

thai will be developed in the future;

12. provides a bridge to new computing technologies, allowing researchers to access new capabilities

without requiring major modifications to established and trusted code;

13. fosters documentation of individual models, communicalion between researchers, and cooperation

among organizalions.

The ESMF does all this with lower costs, shorter development times, more simplicity, higher reliability, and

/'aster speeds, even as it is used with more complex computing architectures and with more models written by

more participants from more diverse backgrounds to solve increasingly difficult problems.

3.2 Current Status of Existing Surveyed Frameworks

In the previously established conle×l of whal an ideal framework should provide, Ihe surveyed frameworks

can be grouped into several categories:

Earlh Modeling System Software Framework Sur_ey 65

1. Couplers for Earth science application components.

2. Conlnlunily level application fralneworks.

3. Object-oriented franlcworks/loolkits.

4. Earth science frameworks.

3.2.1 Couplers for Earth Science Application Components

A Coupler Is Not Really a Framework, but Plays a Crucial Role

Couplers do not have the breadth to be considered as framework by themselves. Nevertheless, by providing

crucial information coupling services between models, couplers arc found near the core of any framework

design concept because they represent the primary collaboration and communication mechanism between the

models and their limitations and strengths primarily determine whal can and cannot be done within the

framework. An inappropriately chosen coupling mechanism can lorce users outside the framework to obtain

either speed or enhanced communication, thus defeating the framework concept in its entirety, by promoting

the prolifcration of additional interfaces within the community. On the other hand, a strategically chosen

coupler can relieve researchers of communication difficulties and allow them to focus on more scientifically
diverse problems, thus promoting thc use of the framework in the spirt! of community collaboration.

Two Couplers Considered: DDB and Flux Coupler

Two couplers considered in this survey include the UCLA Distributed Data Broker (DDB) 15] and the
National Center for Atmospheric Research Flux Coupler [61 as only two of thc many [7] couplers that could

potentially be considered.

DDB has a Better Design

Of the two couplers, DDB clearly, stands out as being designed upon better principles than the Flux Coupler.

DDB is primarily designed as a cot, pier and only a coupler, whereas the Flux Coupler design incorporates

coupling, flux computation and control into a single unit which constitutes a defect with serious long term

architectural consequences for the entire framework.

Why the Flux Coupler Design Is Flawed

To understand why the FC design is llawed it is important to properly understand the role of a framework,

such as in the context discussed by Fayad and Johnson (141, p. 4). A framework provides at least two maior
services:

1. It describes the interface between objects.

2. It provides a capability known as inversion of control (p. 5_ which is a supervisory service, at a high
level, for all of the participant objects in the simulation.

Both of these capabilities are needed in any major simulation framework. It is understandable, in the absence
of a true simulation framcwork and because the functions are somewhat related, that the designers of the Flux

Coupler would combine them into a single unit. Notwithstanding this choice, the issues of communication

between participant models and control of the same models are two separate functions and should bc

M"_ Earth Modeling System Software Framework Survey

properlybedesignedandimplementedastwodilTcrentcapabilitiesinseparatemodules:acoupling
capabililyandacontrolcapability.

Thecombinationofthesetwodistinctcapabilitiesinasingleunil,whichinadditiontocombiningthetwo
separateprinciplesalsoexecutesasasingleandscparatccomputingprocess,isachoicethatnotonly
complicatesthecouplingprocessbutalsoworksagainsttheimplementationofatruchigh-levelsimulation
conlrx_llec,ci/hcr by the framework developers or by individual researchers.

If used in a community framewo,'k, the Flux C_uplcr, as a separate entity combining control and
c0mmunicalion functions, has the potential to be subject to continued modification and upgrades as

researchers require either improved control, improved communication, or additional c¢_upling with new and

diffcrcnt models. Because of these requirements, the Flux Coupler will have to undergo continual changes as
researchers from the community work closely with NCAR to get it to incorporate new capabilities to talk to

new models _hey wish to use or old ones they wish to modify. Each change may impacl the interface, which

in turn may impact every member of the community who has implemented a model using thai interface. This
may in turn drive the researchers to find ways of communicating between models without using the Flux

Coupler, so they arc not subject to a changing interface for a crucial service. This will in turn defeat the entire

framework concept.

These, then, are the potential Iong-ten'n consequences resulting from the flaw in the Flux Coupler design

which combines communication with control in a single module.

DDB Does Not Have the Flux Coupler Flaws

Thc DDB, on the other hand, has none of the Flux Coupler l'laws. It is designed primarily as a gencral-

purpose coupler upon sound principles similar to those used by Common Object Request Broker Architecture

(CORBA) 18I, an object-oriented comrnunication architecture. Furthermore, it does not run as a separate

process but executes in the process space of the communicating models, which is an advantage lbr distributed

system because it reduces bottlenecks. The interface is simple: Models register at the beginning and

communicate with each other directly as needed using straightforward calls. DDB is intplemented as three

libraries and has C and Fortran interfaces, thus it can integrate nicely with almost any framework
architecture.

The Interface Is the Most Crucial Part of a Framework

For a function as crucial to a framework as communication and coupling between participant objects, nothing

is morc important than a simple, flexible, and stable interface. It does not matter, hypothetically speaking, if

DDB runs slower, has fewer interpolation options, supports fewer message-passing libraries, does not support

as many grid systems, and is scientifically inferior in every way to fflux Coupler or any other coupling

system.

In such cases, DDB performancc could be improved, interpolation options could be added, more message

passing libraries could bc supportcd, as could additional grid systems, and so on. In each and every case

these changes would hardly impact the interface. This, then, is the most important feature because it
promotes the use of the community framework.

Disadvantages Associated with DDB

DDB is developed by the University of California, Los Angeles (UCLA) group and has only one user outside

the group. Tony Drumm_md, the lead devclopcr, has left the group for a new position at NERSC. The issue of

long-term support is currently uncertain. The DDB documentation is sparse. DDB does not have the benefit

Earth Modeling System Software Framework Survey 67

ofhavingbeenusedbymanyusers,soit maypotentiallyhavebugs.Theseare all negatives which are

completely t,nrelated to the strength of the DDB design but which need to be overcome.

Advantages Associated with Flux Coupler

Flux Cot, pier is available froun NCAR, a htrger organization with a Web site containing a large aunounl of

high-qualily doct, mentation. FIt, x Coupler is in its fourth release and is prohably quite stable and has more

users than DDB. These are all positives thai, unforlunately, cannot compensate for the weakness of the Flux
Coupler design.

3.2.2 Community Level Application Frameworks

Two of the Contenders: Cactus and ROOT

There are two major open source frameworks which qualify fully as true general-purpose application

frameworks: Cactus 191and ROOT [101.

ROOT Is Elegant and Is in C++

ROOT is an elegant example of the kinds of services that can be provided by a true object-oriented

framework. The elements of the framework arc well designed and, as a result of the common inheritance tree,

have high consistency lhat provides numerous capabilities with simple interfaces, One of the strongest points

is a fine documentation system, a critical component for any scientific community. ROOT has users
numbering in the thousands. It is written in C++. It has almost no climate-specific features. These would all

have to bc added by the climate community as well as a means to effectively integrate Fortran modules into a

C++ framework. Whether or not ROOT is actually used in an eventual climate framework, its design should

be carefully studied so that as many features as possible can be imitated.

Cactus Is Practical for a Fortran Community

Cactus is a community level framework but has different strengths than ROOT. Cactus supplies object-

oriented features like inheritance by simultaneously attaching them on lop of both Fortran and C. This is no

small feat, considering the diflcrences between the two languages. Cactus accomplishes this task, though
with an awkwardness which is inherent to this type of approach.

Cactus provides a high-level development environment with numerous interfaces to Fortran 77, Fortran 90,

C, and numerous other systems. It can produce cxecutables that can run on laptops or parallel computers. It

carefully defines the interface by the control structure (flesh) and modules (thorns) and implements
communication between modules effectively. It also provides powerful supervisory capabilities, such as

inspecting a running simulation via a Web browser [I I I. This is an enticing example of a type of new service

which can be effectively implemented by powerful frameworks such as ROOT or Cactus without requiring

changes to legacy code. Cactus has many users, a strong support group, is mature and stable, has a lot of

documentation, but no climate-specific support features.

If the Climate Community Is Not Willing to Migrate to C++ then Cactus Is a Better Choice

In a contest between Cactus and ROOT for choice of framework for the climate community, Cactus would

clearly bc superior because of its explicit support Ibr Fortran modules. Neverlheless, climate models would
have to bc unodified at the highest levels to conform to the Cactus interface. Using Cactus requires the full

commitment of the community as onec thc code is modified, at a high-level, for the Cactus interface, it

68 Earth Modeling System Software Framework Survey

cannot be independently compiled with a Fortran compiler as it was belk_re. It is not cleat thai the Cactus

interface would work directly for coupling between models in a manner similar to DDB or Flux Coupler. It is

likely that some cooperation with the Cactus team would be necessary to incorporate these types of features.

The Cactus learn has a good track record of cooperating wilh many inslitutions.

3.2.3 Object-Oriented Frameworks/Toolkits

Two C++ Contenders: Parallel Object-Oriented Methods and Applications IPOOMA) and Overture

POOMA [121 and Overture 1131a,e two frameworks which are written in C++ and are used for Partial

Differential Equations (PDE) problems. Both f,'ameworks offer a user the opportunity I¢1 build an application

using components from the framework: a collection ¢11"C++ classes. Recognizing thai migrating to C++ from

Fortran is a difficult task, each of them takes different approaches.

POOMA Uses Expression Templates to Achieve Speed Gains

POOMA takes the approach of using the standard C++ STL libraries and implementing high-speed classes

using an expression template technique [14] [151 [16]. Regardless of the speed benefits, the benefits are

achieved by the introduction of a type of complexity that will impede researchers migrating to C++ from

Fortran. This technique is also subject to larger compile times due to the use of a technique that coerces the

compiler into performing optimizations for which it is not ideally designed.

The POOMA approach was used to support Parallel Application Workspace (PAWS) l171, another framework

for connecting parallel applications that was brielly considered in this survey. The POOMA team has

virtually disbanded recently and future support is questionable, although it is likely that their sponsor will

continue to need POOMA capabilities. This fact, in addition to the complexity of the approach, suggests that

this framework should not be considered lk)r inclusion in a climate community framework.

Overture Uses a Preprocessor to Achieve Speed Gains

Like POOMA, Overture seeks to obtain speed improvements in C++. Overture uses a different approach than

POOMA. First, it developed a powerful array package, A++/P++ 1181, which is available separately and may

be of interest to the climate community. Second, building on these classes it implements a variety of

functions. Third, it uses a source-to-source translator, SAGE++ [1911201, to improve execution speed instead

of expression templates. This is a more straightforward procedu,'e though it introduces an extra step into

compilation. Thus, independent of Overture itself, there are at least two components of Overture, A++/P++

and SAGE++, which can be o[" use to the climate community framework. A disadvantage of Overture is that

the team has their own research work and cannot as easily support independent requests for software

changes, as could the POOMA team (before it lost most of its people).

Overture Approach Is More Practical

In either case, the strict use of C++ and the current situations with both POOMA and Overture make it

unlikely that the climate community can adopt either framework completely, though parts of Overture could

be used. These issues are still separate from the Fortran/C++ speed issue in which C++ can still stand

improvement. The importance of this issue needs to be addressed separately by the climate community given

that Fortran is faster but C++ is better designed for constructing frameworks, possibly requiring source-code

translators to merge the two should a joint approach be taken.

Earth Modeling System Software Framework Survey 69

3.2.4 Earth Science Frameworks

Two Contenders: Goddard Earth Modeling System {GEMS_ and Flexible Modeling System (FMSJ

Two franmworks arising directly ill the Earth science community are GEMS and FMS 121]. (Note: GFDL's

FMS was not investigated as part of this Task 4 activity, but was examined in the Task 2 survey of current

Earth system modeling applications, as was GEMS.) These frameworks have neither the elegance of ROOT,

the full-service development features of Cactus, nor the object-oriented characteristics of POOMA or
Overture. What they do have is a direct orientation towards the primary function of the climate community:

climate modeling.

Both Are Specifically Geared to Climate Issues

Both GEMS and FMS are Fortran 90 implementations and both address model ctmpling issues. FMS has an

excellent amount of documentation and GEMS has little. Both are currently used for modeling problems.
Both of these frameworks have an inherent weakness in that they do not use a true object-oriented language.

3.3 Summary

This section contains overall observations coming out of the survey as well as opinions regarding ESMF

development.

Observations:

• No single existing framework can be used without change to construct the ESME All frameworks

incorporate some desirable features; all lack some desirable features.

• The maiorily of the climate community code is written in Fortran 77/90. On the other hand, Fortran

is not extensively used outside the research community. Most researchers do not want to migrate to

other languages (e.g., C++t. The scientific community questions C++ performance relative to
Fortran.

• The most powerful frameworks identified (ROOT and Overture_ are written in C++. No equivalently

powerful frameworks are written in Forlran. There are, however, many useful Fortran libraries and
utilities.

• Fortran is missing two key OO features that are available in C++ and Java: inheritance and

polymorphism. Fortran 20(X) is scheduled to have these features in a few years.

• C++ can bc combined with Fortran in only a limited way. There is no standard way lot C++
programs to read dynamically-allocated Fortran 90 data structures. This problem will still exist with
Fortran 2000.

Opinions:

• OO design and algorithmic design are complements to one another, not competitors. Some system

components arc better expressed with algorithms. Other system components arc better expressed

with objects.

• Most complex systems incorporate complementary components. Microsoft Excel is both data visible
(spreadsheet) and algorithm visible (Visual Basic MacrosL The Overture framework has a high-level
OO structure but some of its linear solvers are written in Fortran.

70 Earth Modeling System Software Framework Survey

• Physicsfocusesonalgorithmicexpressions,whicharebestrepresentedbyafunctionallanguage
suchasFortran.Frameworksfocusonrelationshipsbetweenparticipatingobjecls(modelsi,which
arebestrepresentedbyanOOlanguage,suchasC++.Java,orSmalltalk.

• II maybeIha!intheclimalecommunity,tileissueol language,insteadofevolvingproperlyinloa
questionregardingtheappropriaieblendofccnnplements(OOantialgorithmicexpression.Javaand
Fortran,etc.)hasevo]_,'edinto>acompelition belween complements (Forlran or C++, etc.)

• The i.vxue c?/htngua_e is absolutely crilical lo the design _?['l]/e ESMF.

• If a community ignores the complementary relationship and tries to design a framev_'ork using a

functional language (Fortran) instead of an OO language, it will incur complexity problems in the

complementary space. For example, POOMA's goal is to achieve Fortran performance with an OO

language (C++). It uses expression templates to make compiler optimizations for which it was not

designed. The result is extreme complexily. On the other hand, if a framework is designed using
Fortran, the framework will he less capable, more complex, and will have less flexibility in the
interfaces.

• OO design is critical for building a flexible and exiensible ESMF meeting Ihe CAN requirements.

Inheritance and polymorphism are the importan¢ OO features that are building blocks of a

conzl_rehensive framework, lnheriiance is a way of distributing capabilities to models that minimizes

the programming burden on the researchers. Polymorphism provides a simple mechanism for

researchers to modify models. Together, inheritance and polymorphism reduce cost and error. They
provide a clear hierarchical structure for a complex problem.

• Properties of a framework are derived from the capabilities of Ihe underlying programming
languages. A consensus and eommilment with respect to language are crucial for developing ESMF

in the long run.

• A practical solution must haltlllCe cultural and technical factors. It must balance Ihe high value of

legacy Fortran code and Fortran expertise with the llexibility and extensibilily of OO languages and
their widespread use in industry.

• A practical solution must blend OO and functional design approaches: OO design and flexibility for

the framework and functional design and performance for the physics.

• An ideal framewo,'k would blend the underlying OO architecture of ROOT and/or Overture, the

developmental and language scope of Cactus, the optimization approach of Overture, the coupling

design of DDB, the performance of Fortran 90, the documentation and configuration management of
Flux Coupler, and the utilities of GEMS and FMS.

• If Cactus did have climate-ready features immediately available it is almost certain thai the climate

communiiy would want to use i¢, even it"it meant learning someihing new (Cactus system and control

words) and making modifications Io the upper layers of their model sofiware in Fortran. However

they musl be willing to learn something new and make some changes to their software. It" the climale

community is unwilling or unable to migrate to an OO language for the framework, Ihen Cactus may

be a good choice.

3.4 References

Zebiak, Stephen and Robert Dickinson, 1998: Report of the NSF/NCEP Workshop on Global Weather and

Climate Modeling, Executive Summary, NSF/NCEP Workshop on Global Weather and Climate Modeling,

Aug 5-6. URL: http:/lnsipp.gsfc.nasa.gov/infralreport.final.hlml

2 Common Modeling Infraslruclure Working Group (CMIWG_.

URL: htlp://janus.gsfe.nasa.gov/-mkistler/infra/maslcr.hlml

Earth Modeling System Software Framework Survey 71

Staff,NASA,2000:NASAHPCC/ESSCooperativeAgrcemcntNotice(CAN)forSolicitationofRound-3
GrandChallengeInvestigations:IncreasinglntcroperabilityandPerformanceofGrandChallenge
ApplicationsinthcEarth,Space,Life,andMicrogravitySciences.
URI,:http://earth.nasa.go_'/nra/currcntlcanO()_es()l /

4 Fayad_ Mohamcd E., Douglas C. Schmidt and Ralph E. Johnson, 1999: Building Application Frameworks.
Wiley.

URL: http://wwv,.amazon.ct)m/cxec/obidos/ASIN/0471248754/qid% 3D96877_,251/1{}2-{)715276-9734544

Distributcd Data Broker (DDB I. URI,: http://www.atmos.ucla.edu/-drummond/DDB

" Flux Coupler Version 4.0 (FC 4.0). URL: http://www.cgd.ucar, edu/¢sm/mo0¢ls/cpl

7 Drummond, Tony, 1998: A Partial List of Available Coupling Softwarc, h?J_'astructure Working Group

Meeting, Tucson. AZ, Ocl 15-16. URL: http:/Ijanus.gsfc.nasa.govl-mkistlerlinfr'aJdocdirlcsw.hlml

C_wnmon Object Request Broker Architecture (CORBA). URL: http://industry.ebi.ac.uk/~corba/

'_ Cactus URL: http://www.cacluscode.org

io ROOT URL: http://root.cern.ch/Wclcome.html

_ Benger, Werner, 1999: Web Cactus, NCSA Cactus Workshop, Sept 27.

URL: http :l/www.cactusccxte.orglWorkshops/NCS A99/talk191index.htm

'-_Parallel Object-Oriented Methods and Applications (POOMA). URL: http:l/www.acl.lan[.gov/pooma/

_' OVERTURE (OVERTURE). URL: l]ttp://www.llnl.gov/casc/Ovcrturc/

_4Vcldhuizen, Todd, 1995: Expression Templates. C++ Report, 7, 26-31. URL: http:/lextreme.indiana.edu/
-tveldhui/papers/Exprcssion-Templates/exprtmpl.html

_ Velduizen, Todd, 1997: Scientific Computing: C++ Versus Fortran.

URL: hl_p://cxtrcmc.indiana.edo/-tv¢ldhui/papers/DrDobbs2/drdobbs2.hlml

_"Velduizen, Todd L. and M. Ed Jernigan, 1997: Will C++ Be Faster than Fortran'?, ISCOPE'97, Aug.
URL: htlp://www.acl.lanl.govliscope97/agenda.html

7Parallel Application Work Space (PAWS', URL: http:/Iwww.a_l,lanl.gov/paw,_/

_8A++/P++ (APPPPP).

URL: http://www.llnl.gov/CASC/Overture/henshaw/documentation/App/manual/manual.html

_" SAGE++ (SAGE++). URL: http://www.extreme.indian.edu/sage/sagexx ug/sagexx ug toc.html

2, Edison Design Group (EDG). URL: http://www.edg.com

z_ Flexible Modeling System (FMS). URL: http://www.gfdl.gov/

-'-"Simplified Wrapper and Interface Generator (SWIG). URL: hr,lp;//www.swig.org/

2_Program Database Toolkit (PDT). URL: http://www.cs.uoregon.edu/research/paracomp/pdtoolkil/

__4Scripting Interface Languages lbr Object-Oriented Numerics (SILOON).

URL: http://w w w.ac l,lanl.go,,'/siloon

-_5PERL (PERL). URL: http://www.pcrl.org

-'" PYTHON (PYTHON). URL: http://www.python.org

72 Earth Modeling System Software Framework Survey

ACRONYMS

ACL-Ad_anced Computing Laboratory

ACM-Atmospheric Chemical Model
AEI-AlberI Einslein Inslitutc

AGCM-Almospheric General Circulation Model

ALICE-Advanced Large-Scale [ntegra[ed Computa¢ional b.'n_ironmenf

ANL-Argonnc National Laboratory
ASC-Aslrophysics Simulalion ColJaboralory

CAN-Cooperative Agreemenl Notice

CCAT-Common Componen! Architecture Toolkit

CERFACS-European Cenlre for Research and Advanced Training in Scientific Computation

CERN-Europcan Organization lbr Nuclear Research

CFD-Compulaliona] Fluid Dynamics

CINT-C lnterpreler

CL-Communicalion Library

CM1WG-Common Modeling Infrastructure Working Group
CORBA-Common Object Requesl Broker Architecture

CSM-Climate System Model

CSU FC-CSU Flux Coupler

CTC-Cornell Theory Center

CVS-Concurrem Version Systems
DA()-Data Assimilation Office

DDB-Dislribuled Data Broker
DLR-Deutsche Lufl- und Raumfahrlzenlrum

DOE-Deparlmenl of Energy
DTL-Data Translation Library

EDG-Edison Design Group

EGRID-Eumpean Grid Project

ESM-EarIh Syslem Model

ESMF-Earlh System Modeling Framework

ESS-NASA Earth and Space Sciences

FMS-Flexible Modeling System

GEMS-Goddard Earth Modeling System
GrACE-Grid Adaptive Computational Engine

GrADS-Grid Application Development Software Projecl

HPCC-NASA High Performance Computing and Communications

HPF-High Performance Fortran
lNRG-Imernational Numerical Relalh,ily Group

i/O-input/oulpul
LANL-Los Alamos National I.aboratory

LBL-Lawrence Berkley Laboratories

LLNL-Lawrence Livermore National Laboratory
MCL-Model Communication Library

MPI-Message Passing Interface

MSMRM-Multi-Scale Multi-Resolution Modeling

MSS-Mass Storage System

NCAR-National Center for Atmospheric Research

NCSA-Nalional Center lor Supercomputing Applications

NERSC-National Energy Research Scienlific Computing Center
NHSE-National HPCC Software Exchange

Earth Modeling System Software Framework Survey 73

NOAA-NationalOceanicandAtmosphericAdministration
NPACI-NationalPartnershipt_r Advanced Computational Infrastructure
NSF-National Science Foundation

NSIPP-NASA Seasonal to Inter-annual Prediclion Projecl
OGCM-Occanic General Circulation Model

PAPl-Performance Data Slandard and API

PAWS-Parallel Applicalion Workspacc

PDE-Partial Differenlial Equations

PDT-Program Database T_olkit

PETSC-Porlable Exlensible 'lbolkil for Scienlific Computing
POC-Point of Contac!

POOMA-Parallel Object-Orienled Methods and Applications
RB-Regislralion Broker

RZG-Rechenzentrum Garching der Max-Planck-Gesellschaft

SHMEM-Shared Memc_ry

SILOON-Scripling Inlerface Languages for Object-Oriented Numerics
STL-Standard Template Library

SUMAA-Scalable Unstructured Mesh Algorithms and Applications

SWIG-Simplified Wrapper and Interface Generator

TAU-Tuning and Analysis Utililies

TIKSL-German Gigabit Testbed Project
UCLA-University of Calilornia, Los Angeles

UCSD-University of Calili_rnia, San Diego
UIB-Universital de les llles Balears

WUGRAV-Washington Universily Gravity group
ZIB-Konrad-Zuse-Zenlrum fur Inlormationstechnik Berlin

74 Earth Modeling System Software Framework Survey

Form Approved
REPORT DOCUMENTATION PAGE OMBNo.0704-0188

Pobhc r_por_lng burden Ior Ibis collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching ex=shng data sources

gathering and mamlaining the data needed, and complehng and reviewing the collection Of inlorrnatlon Send comments regarding Itlis burder) estimate or any olher aspecl of IhLS

collection Of informaliorl, including suggestions for reducing Ibis burden, Io Washington Headquarters Services, Directorale for Information Operalions and Reports, 1215 Jefferson

[)avis Highway, Suite 12134. Arlington1VA 22202-4302, and Io the OIlice ol Management and Budget, Paperwork Reduelion Pro}eet (0704 0tSBL Washmglon DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

May 2002
4. TITLE AND SUBTITLE

Earth System Modeling Software Framework Survey

6. AUTHOR(S)

Bryan Talbot, Shujia Zhou, and Glenn Higgins

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES)

Goddard Space Flight Center

Grcenbch, Maryland 2(1771

g.SPONSORING / MONITORING AGENCY NAME(S)AND ADDRESS (ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

3. REPORT TYPE AND DATES COVERED

T?qhnjcal M?m, ,randum
5. FUNDING NUMBERS

8. PEFORMING ORGANIZATION
REPORTNUMBER

2001-03976-0

IO. SPONSORINGIMONITORING
AGENCY REPORTNUMBER

TM--2001-209992

i

11. SUPPLEMENTARY NOTES

B. Talbot, S. Zhou and G. Higgins: Northrup-Grumman Information Technology/TASC, Chart[lily,

Virginia

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassi fled-Unlimited

Sub[oct Category: 61

Report availablc from the NASA Ccnter for AcroSpace Information,

7121 Standard Drivc, Hanover. MD 21076-1320. (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

One of the most significant challenges in large-scale climate modeling, as well as in high-performance comput-

ing in other scientific fields, is that of effectively integrating many softwarc models froln multiple contributors.

A software framework facilitates thc intcgration task, both in the development and runt[me stages of the

simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them

to focus marc on the science and less on the parallel communication impleinentation, whilc maintaining high
performance across numerous supercomputcr and workstation architectures.

This document sur_eys numerous software frameworks for potential use in Earth science modeling. Several

frameworks are evaluated in depth, including Parallel Object-Oriented Methods and Applications (POOMA),

Cactus (from the relativistic physics community), Overture, Goddard Earth M(xleling System (GEMS), the

National Center for Atmospheric Research Flux Coupler, and UCLA/UCB Distributed Data Broker (DDB).
Frameworks evaluated in less detail include ROOT, Parallel Application Workspace (PAWS), and Advanced

Large-Scale Integrated Computational Environment (ALICE). A host of other frameworks and related tools are

referenced in this context. The fralneworks arc evaluated individually and also compared with each other.

14. SUBJECT TERMS

Simulation architectures, software framework, survey, climate modeling,

computer languages, object-oriented applications.

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

74
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std Z39 18
298 102

