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Abstract 
 
A high-fidelity simulation of a commercial 
turbofan engine has been created as part of 
the Numerical Propulsion System Simulation 
project. The high-fidelity computer simula-
tion utilizes computer models that were de-
veloped at NASA Glenn Research Center, in 
cooperation with turbofan engine manufac-
turers. The average-passage (APNASA)  
Navier-Stokes based viscous flow computer 
code is used to simulate the 3D flow in the 
compressors and turbines of the advanced 
commercial turbofan engine. The 3D National 
Combustion Code (NCC) is used to simulate 
the flow and chemistry in the advanced air-
craft combustor. The APNASA turbomachin-
ery code and the NCC combustor code 
exchange boundary conditions at the interface 
planes at the combustor inlet and exit. This 
computer simulation technique can evaluate 
engine performance at steady operating con-
ditions. The 3D flow models provide detailed 
knowledge of the airflow within the fan and 
compressor, the high and low pressure tur-
bines and the flow and chemistry within the 
combustor. The models simulate the perform-
ance of the engine at operating conditions that 
include sea level takeoff and the altitude 
cruise condition.  
 
Introduction 
 
In the design phase of gas turbine engines, 
components are designed using computer 
models that simulate the aerodynamic, ther-
mal and structural characteristics of the  
component. In the early phases of the design 

process, the component characteristics within 
the thermodynamic cycle system model may 
not accurately represent the performance of 
the engine components, and may not model 
the interactions between the components. The 
components are later designed, built and 
tested to verify that the design intent per-
formance specifications have been met. As 
each component is assembled to form the 
core engine and ultimately the complete en-
gine system, further verification tests are usu-
ally required. Due to component interaction 
effects such as radial profile variations, the 
performance of components in an engine sys-
tem may be different from the performance 
obtained from isolated component tests. 
These differences can result in a non-
optimum performance match between the en-
gine components. The difference in perform-
ance between the isolated component and the 
performance of the component within the en-
gine system can be the cause of additional 
iterations in the design and development 
process. Multiple component and engine 
build and tests can add $300 M and 2 years to 
the design/development cost and time.  
 
NPSS is a system simulation infrastructure 
designed to provide an integrated computing 
environment for conducting low and high  
fidelity engine simulations on a variety of 
computer platforms (Reference 1). NPSS 
simulations are characterized by their ability 
to introduce low and high fidelity component 
simulation codes (References 2, 3) and com-
bine multi-disciplinary analyses all deployed 
on heterogeneous computing platforms for 
fast turnaround.  
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The goal of the NPSS high fidelity engine 
simulations is to provide to aircraft engine 
manufacturers the capability to numerically 
verify engine performance, including the ef-
fects of component interactions, prior to 
building and testing the engine. This capabil-
ity will support the development of commer-
cial engines, supersonic business jets, and 
military programs. NPSS high fidelity simula-
tions can model engine performance at oper-
ating conditions throughout the envelope, 
including sea level takeoff and cruise. High 
fidelity system simulation can also reduce the 
amount of expensive engine testing during 
development, which typically costs in excess 
of $15,000 per hour. 
 
Detailed Flow Simulation of a Modern 
Turbofan Engine 
 
The detailed flow simulation of a modern tur-
bofan engine is one of the key tasks in the 
NPSS project at NASA Glenn Research  
Center (NASA GRC). The objective of this 
task is to perform a 3D flow and chemistry 
simulation of a modern high-bypass ratio 
commercial turbofan engine. The goal of the 
turbofan engine flow simulation task is to 
perform the high-fidelity computer simulation 
of the entire engine, at the design point oper-
ating condition, in under 24 hours of wall 
clock time on a parallel computer system.  
 
The GE90 turbofan engine was selected  
(Fig. 1) and modeled in cooperation with GE 
Aircraft Engines (References 4, 5, and 6). The 
detailed flow simulation task leverages from 
previous efforts at NASA GRC and coopera-
tive efforts with U.S. aerospace industry par-
ticipants that resulted in the development of 
the APNASA turbomachinery flow code  
and the National Combustion Code (NCC). 
APNASA is NASA's average passage  
3-dimensional steady state Navier-Stokes 
flow code that has been developed to simulate 
the complex flow within the turbomachinery 
components of gas turbine engines. 

 
 
Figure 1. The GE90 high-bypass ratio commercial  
turbofan engine. 
 
 
The components within the GE90 turbofan 
engine’s primary flow path were simulated 
with the 3D Navier-Stokes flow codes. All 
secondary flows such as compressor bleeds, 
turbine disk cavity purge and cooling flows 
have been accounted for to accurately simu-
late the engine. These secondary flows were 
modeled macroscopically as source terms, or 
boundary conditions to the APNASA and 
NCC codes. The information on these source 
terms was obtained from detailed descriptions 
of the bleeds and cooling flow and from low 
fidelity thermodynamic cycle simulations of 
the engine system. These source terms pro-
vided boundary condition data to the 3D 
simulations. The radial variations of flow 
conditions at the exit of the high-pressure 
compressor have been utilized as the inlet 
boundary condition for the NCC combustor 
simulation. The combustor exit conditions, as 
modeled with the NCC code, were averaged 
in the circumferential direction and utilized as 
the inlet boundary conditions for the high-
pressure turbine simulation. This method was 
effective at transferring the combustor exit 
radial profiles of pressure and temperature to 
the turbine inlet, and therefore, modeled the 
steady-state aerodynamic interaction effects 
between the compressor, combustor and tur-
bine components of the engine.  
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Compressor Simulation 
 
The fan, booster compressor and the high-
pressure compressor (HPC) were successfully 
modeled with the APNASA flow code.  
Figure 2 shows the simulation of the fan, 
booster and HPC with the absolute Mach 
numbers at mid-stream.  
 
The simulations were run on parallel work-
station clusters at NASA Ames Research 
Center. 

 
Figure 2. The APNASA flow simulation of the fan, 
booster and high-pressure compressor. 
  
To simulate the engine turbomachinery in 3D 
also requires accounting for the multistage 
aerodynamic blade interaction effects. The 
APNASA code accounts for most of these 
effects by calculating the deterministic 
stresses in the adjacent blade rows and apply-
ing these as a body force. Rotor tip clearance 
and stator leakage flows were also modeled. 
The inlet total pressure to the APNASA 
model of the HPC was adjusted to match the 
exit corrected mass flow in the thermody-
namic cycle model. The corrected and physi-
cal shaft rotational speeds were held constant 
at engine cycle values. Figure 3 shows the  
21 blade row HPC simulation with the Mach 
number superimposed onto the blade sur-
faces. The APNASA simulation of the high-
pressure compressor accurately models the 
performance as measured on compressor test 
rigs and the engine. 
 
 

 
Figure 3. The high-pressure compressor of the high-
bypass ratio turbofan engine. 
 
The computer timings were obtained for the 
converged APNASA simulation of the high-
pressure compressor (HPC) on the SGI Origin 
3000 computer at Ames Research Center.  
A total of 504 (400 MHz) processors were 
used, with 16 to 27 processors per blade row 
depending on the grid size. The size of the 3D 
grid is 9.9 million grid nodes. The total wall 
clock time for 10,000 iterations was 2 hours 
and 30 minutes.  
 
Combustor Simulation 
 
Modeling of the full combustor was a key 
part of the turbofan engine simulation project. 
The aerodynamics and the turbulent combust-
ing flow and chemistry were modeled with 
the National Combustion Code (NCC). This 
large-scale calculation also used high per-
formance computers at both NASA GRC and 
at NASA Ames Research Centers. The NCC 
is an integrated system of code modules that 
uses unstructured meshes and can be run on 
parallel computing platforms for reduced 
turnaround time. The current version of the 
NCC consists of several major modules such 
as baseline flow solver, chemistry, turbu-
lence-chemistry interaction and spray com-
bustion. The code has been used to model the 
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full combustor from the compressor exit dif-
fuser, to the turbine inlet including all secon-
dary flow regions (Fig. 4).  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. The combustor of the high-bypass ratio  
turbofan engine. 
 
In a typical turbine engine approximately 
80% of the air passes through the combustor 
and flows through the high-pressure turbine. 
The remaining 20% is bled off the combustor 
diffuser for cooling and cavity purge of the 
turbine blade, vane and disk. The flow path of 
the complete combustor was modeled with 
the NCC enabling detailed knowledge of the 
complex flow field.  
 
The detailed simulation capability provided by 
the NCC can enable combustor designers to 
minimize losses through the various regions 
within the combustor, as well as to optimize 
cooling and dilution air requirements. Reduced 
cooling requirements can have a large impact 
on engine specific fuel consumption. The 3D 
model of the GE90 combustor is a 24 degree 
sector representation of the full annulus that is 
spatially periodic. The NCC combustor model 
included the compressor exit diffuser, flow 
swirlers, cooling and dilution holes, inner and 
outer case and four fuel nozzles. The NCC 
model consists of a 3D Navier-Stokes flow 
simulation with heat release. The spray and 
chemistry models were not utilized in the full 
engine simulation, but are currently being  
incorporated into the NCC model. The suc-

cessful NCC simulation increases knowledge 
about the flow conditions within the combus-
tor and provides the detailed inlet conditions 
into the cooled high-pressure turbine stage. 
The NCC simulation enables modeling hot 
streaks caused by the pattern factor exiting the 
combustor. However, for this project the total 
temperature and total enthalpy exiting the 
combustor were averaged in the circumferen-
tial direction to provide the inlet boundary 
conditions into the subsequent steady state tur-
bine simulation with the APNASA flow code. 
 
Turbine Simulation 
 
The flow simulation through the cooled high 
and low-pressure turbines and the transition 
duct (Fig. 5) was successfully accomplished 
using version 5 of the APNASA flow code. 
The inlet boundary conditions into the turbine 
simulation were the radial profiles of total 
temperature and enthalpy obtained from the 
exit plane of the combustor. At this plane there 
is no flow recirculation in the combustor and 
almost all of the combustion has taken place.  
 
The fully coupled APNASA simulation of the 
high and low-pressure turbines has provided 
designers with improved understanding of the 
detailed flow within the turbine stages. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. The high and low-pressure turbines of the 
high-bypass ratio GE90 turbofan engine. 
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In addition it successfully simulated the inter-
action between the high and the low-pressure 
turbines which could not otherwise be mod-
eled in separate simulations (see References 
4, 5, and 6 for the detailed description of the 
turbine simulation). The APNASA combined 
HP and LP turbine simulation can now be 
done in 2 hours and 16 minutes on the Chap-
man computer, which is a 512 node machine 
with 400 MHz processors at NASA Ames 
Research Center (References 7, 8, and 9).  
 
Summary 
 
The 3-D flow was successfully simulated in 
all of the major components of the turbofan 
engine. The simulation of the complete en-
gine was achieved by utilizing two interface 
planes to exchange boundary condition data 
at the combustor inlet and exit. At the two 
planes of data exchange, the radial profile exit 
boundary conditions were transferred to the 
downstream components as inlet boundary 
conditions. The compressor and turbine were 
modeled with the APNASA flow code. The 
combustor was modeled with the National 
Combustion Code using a gaseous spray 
model and a Magnussen heat release model.  
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