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Abstract

The implications of using different control variables for the analysis of moisture

observations in a global atmospheric data assimilation system are investigated. A

moisture analysis based on either mixing ratio or specific humidity is prone to large

extrapolation errors, due to the high variability in space and time of these parameters

and to the difficulties in modeling their error covariances. Using the logarithm of

specific humidity does not alleviate these problems, and has the further disadvantage

that very dry background estimates cannot be effectively corrected by observations.

Relative humidity is a better choice from a statistical point of view, because this field

is spatially and temporally more coherent and error statistics are therefore easier to

obtain. If, however, the analysis is designed to preserve relative humidity in the absence

of moisture observations, then the analyzed specific humidity field depends entirely on

analyzed temperature changes. If the model has a cool bias in the stratosphere this
will lead to an unstable accumulation of excess moisture there.

A pseudo-relative humidity can be defined by scaling the mixing ratio by the back-

ground saturation mixing ratio. A univariate pseudo-relative humidity analysis will

preserve the specific humidity field in the absence of moisture observations. A pseudo-

relative humidity analysis is shown to be equivalent to a mixing ratio analysis with

flow-dependent covariances. In the presence of multivariate (temperature-moisture)

observations it produces analyzed relative humidity values that are nearly identical

to those produced by a relative humidity analysis. Based on a timeseries analysis of

radiosonde observed-minus-background differences it appears to be more justifiable

to neglect specific humidity-temperature correlations (in a univariate pseudo-relative

humidity analysis) than to neglect relative humidity-temperature correlations (in a

univariate relative humidity analysis). A pseudo-relative humidity analysis is easily im-

plemented in an existing moisture analysis system, by simply scaling observed-minus-

background moisture residuals prior to solving the analysis equation, and rescaling the
analyzed increments afterward.



Introduction

This paper concerns the choice of control variable for the analysis of moisture

observations in a global atmospheric data assimilation system. Most analy-

sis methods can be formulated in a variational framework as a procedure for

minimizing the distance between model and observations (Courtier 1997). The

choice of variable is important because the notion of 'distance' depends on it.

This means that the error covariance models that determine the relative weight-
ing of information in the analysis must be provided for the control variables. In

practical terms, the analysis is essentially a procedure for extrapolating observa-
tional information to the model domain. Some representations of the moisture
field are better suited to this procedure than others.

The question of which variable to use to for atmospheric moisture analysis has

been around for a long time (Atkins 1974, van Maanen 1981). The major nu-

merical weather prediction centers have arrived at different choices during the

development of their assimilation systems. At the time of this writing, relative
humidity is analyzed at the Met Office (Lorenc et al. 2000) and at the Aus-

tralian Bureau of Meteorology Research Centre (P. Steinle, pers. comm.). The

National Centers for Environmental Prediction (Parrish and Derber 1992), the

European Centre for Medium-Range Weather Forecasts (Rabier et al. 1998),
and the Japan Meteorological Agency (K. Onogi, pets. comm.) analyze spe-

cific humidity. The operational system at the Canadian Meteorological Centre

(L. Fillion, pers. comm.) and the newly developed Naval Research Laboratory

Atmospheric Variational Data Assimilation System (Daley and Barker 2001) use

the logarithm of specific humidity. Some of the centers are currently rethink-
ing various aspects of their humidity analysis, including the choice of control
variable.

Here we document some of the considerations that went into the development
of the moisture analysis component of the Physical-space/Finite-volume Data

Assimilation System (fvDAS). This system was recently developed at the Data

Assimilation Office at NASA l's Goddard Space Flight Center and is expected

to become operational in early 2002. It is based on a finite-volume general
circulation model (Lin and Rood 1996) and uses the Physical-Space Statistical
Analysis System (PSAS) (Cohn et al. 1998). The system obtains information

about atmospheric water vapor content from radiosonde soundings (Garand et

al. 1992), from interactive TOVS 2 retrievals (Joiner and Rokke 2000), and from

total precipitable water (TPW) estimates derived from SSM/I 3 data (Wentz

1997). Work is in progress to extract additional humidity information from

radio occultation data transmitted by the Global Positioning System (Poli et

al. 2002). A comprehensive description and evaluation of the fvDAS system will
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bepublishedelsewhere.

Theneedto carefullyconsiderthechoiceof moisturevariablebecamepartic-
ularlyclearto usduringthedevelopmentof theobservationalqualitycontrol
componentofthefvDAS.Thefinalphaseofthequalitycontrolreliesonanadap-
tivebuddycheckalgorithm(Deeet al. 2001), which involves the statistical esti-

mation of the expected local variability of the flow. We initially found that the
algorithm did not perform well for moisture observations, because the statisti-

cal estimation applied to mixing ratio observed-minus-background residuals was

not meaningful due to the high variability of the field itself. We then developed

a simple background-dependent transformation for the residuals that effectively
removed this problem. This ultimately led us to use the same transformation

to define a new humidity variable for the fvDAS global analysis system.

The outline of this paper is as follows. After briefly reviewing some back-
ground material, we discuss each of the currently prevalent choices of control

variable: mixing ratio/specific humidity, logarithm of specific humidity, and
relative humidity. Our main concern is with the statistical properties of the

background and observation errors for each choice, as manifested in observed-

minus-background residuals obtained from radiosonde humidity soundings. We
then introduce the variable used in the fvDAS, which we refer to as pseudo-

relative humidity, and discuss the implementation of a change to this variable in
an existing analysis system. We discuss the differences and similarities between

relative humidity and pseudo-relative humidity analyses, and finally present

some preliminary results obtained with the fvDAS to illustrate the impact that
such a change can bring about.

2 Background

The analysis in an atmospheric data assimilation system is constructed by com-

bining a model-generated background estimate with bias-corrected and quality-
controlled observations. If the background estimate is represented by the n-

vector x b, the observations by the p-vector yO, and the mapping from the con-

trol variable to the observations by the vector function h - IRn -+ IRp, then the
goal is to compute the analysis x a that minimizes

J(x) - (x b - x)Tp -1 (x b -- x)

+ (yO _ h(x))TR-l(yo _ h(x)),
(1)

where the n x n matrix P and p x p matrix R are the background and obser-
vation error covariances, respectively. In the special case when the observation

operator h is linear, i.e., when h(x) - Hx for some p x n matrix H, the mini-



mizingsolutionis

xa - x b + PH T [HPHT+ R]-I [yO _ Hxb].

This expression shows that the change to the background due to the obser-

vations is in the column space of P. The structure of the analysis increment
x a - x b therefore strongly depends on the specification of the background er-

ror covariances. This is true in case of a nonlinear observation operator as well,
and/or if the operator involves integration forward in time as in four-dimensional
variational (4DVAR) assimilation.

To illustrate this general point with a simple example, consider the one-dimen-

sional analysis of a single observation yO of total precipitable water in a vertical

column. Let x - (ql,q2,...,qn) T, where qk is the mean specific humidity for a
model layer whose pressure thickness is @k. The 1 x n observation operator H
is then defined by

Hx- lj_ 1- qJ_PJ, (3)
g ._

with g the gravity constant. For simplicity we take a diagonal background error

covariance P - diag(al 2, a_,... ,a_). The analyzed specific humidity for layer k
is then

q_ _ q_ + a_hpk . (yO _ yb) (4)
gs2

where yb _ Hx _ is the total precipitable water in the background column, and
n 2 0.os2 (a°) 2 + _-_j=l ajhP_/g 2 with the observation error standard deviation.

The vertical structure of the analysis increment q_ -q_ in this case depends only
on the assumed background error variances. If we include vertical correlations

in P then the redistribution of moisture in the column will obviously depend on
them as well.

In practice, background error covariances are not known and must be modeled.

This can be done based on statistical properties of forecast differences (Parrish

and Derber 1992), by means of ensemble methods (Evensen 1994) or by explicit
parameterization (e.g., Riish0jgaard 1998). The usefulness of a covariance model

is not necessarily related to its degree of mathematical sophistication. For ex-

ample, the covariance evolution associated with the Kalman filter involves many
modeling assumptions which are, at best, questionable in the context of atmo-

spheric data assimilation (Dee 1991). A fundamental fact which is still widely

misunderstood is that the ability to estimate error covariances is limited not by

computing power but by a lack of data. For this reason, none of the existing
approaches deals with the model errors (i.e. errors in the atmospheric prediction
model) in a satisfactory manner.



Theseissuesareespeciallypertinentto the analysisof atmosphericmoisture,
whichis stronglyaffectedby mesoscaledynamicsandnonlinearphysicalpro-
cessesthatarepoorlyresolvedbygeneralcirculationmodels.Errorsin model
predictionsof the humidityfield canbequitelarge,involvingthe deforma-
tionanddisplacementofsynopticfeatures,andmisrepresentationofsmall-scale
sourcesandsinks.Mostmodelsexhibitsystematicerrors,suchasa tendency
to beconsistentlydry in certainareas,but thesebiasesvarywith seasonand
location.Theusualstochasticassumptionsaboutmodelerrorsinvokedin data
assimilation(zero-mean,stationary,whitenoise)evidentlydonotapplyhere.

Thequestionwetry to addressin thispaperis thereforeprimarilya practi-
calone,concerningtherobustnessof ananalysisschemein viewof inevitable
approximationsin therepresentationsof theerrors.Specifically,wesetout to
chooseamoistureanalysisvariablesuchthat spatiallyand/ortemporallyaver-
agedstatisticscanprovidemeaningfulestimatesof theerrorcovariances.We
will alsoconsiderwhetherit isevenreasonableto attemptto characterizethe
errordistributionsbythecovariances--i.e.,whetherthedistributionisapprox-
imatelyGaussian.Thesearebasicprerequisitesfor anyattemptto formulate
moreadvancedflow-dependentcovariancemodels.It will turn out, of course,
that eachchoiceofvariablehasits drawbacks,andthat themostpracticalso-
lutionmaydependon theprioritiesof the centerthat is operatingthedata
assimilationsystem.

3 Mixing ratio and specific humidity

The water vapor content of a given volume of air can be expressed in terms of
the mixing ratio

my

- (5)
md

where my is the mass of water vapor and md the mass of dry air contained in

the volume. The water vapor concentration, or specific humidity is

my

q - • (6)my -k-md

Since q - w/(1 + w), mixing ratio and specific humidity are equivalent inde-

pendent parameters of the moist atmosphere. Their numerical values are nearly

identical and rarely exceed 20gkg -1. Peixoto and Oort (1992, Section 12.3)
provide a comprehensive overview of the observed climatology of atmospheric

water vapor. Specific humidity is a prognostic variable in most general circula-
tion models, being conserved in a parcel of air in the absence of condensation
and evaporation.



Figure1showsatypicalsnapshotofthespatialdistributionofspecifichumidity,
1o fvDAS analysis valid at 0 UTC on 1 January 1998.taken from a 55-layer 1° x 13

The central panel shows the layer-mean specific humidity for the fourth model

layer, which corresponds to approximately 850 hPa over the oceans. The top

panel shows the vertical distribution along the Equator in the lowest eight model
layers, from the surface up to about 500 hPa. The right panel shows the vertical

distribution along the Greenwich Meridian. The field shows a rapid decrease of

magnitude in the vertical direction, and intricate patterns and sharp gradients

in horizontal cross-sections. Maximum values occur at low altitudes and high
temperatures.

[Figure 1 about here.]

We can obtain some information about the mixing ratio background errors by
comparing the background estimates with radiosonde observations. If w ° is

a vector of mixing ratio observations and Hw b the corresponding vector of
interpolated background values, then

w° -- Hwb -- e° -- Heb, (7)

where e ° - w °- Hw t is the observation error and e b - w b- w t the background
error. Here w t denotes a representation of the true mixing ratio field in the
model state space, so that this definition of the observation error e ° includes

what is commonly known as representativeness error (Lorenc 1986).

Equation 7 shows that statistical properties of the residuals w ° - Hw b are di-

rectly related to those of the background and observation errors. Dee (1995) and
Dee and da Silva (1999) exploit this relationship in order to estimate unknown

parameters of the covariance models for both types of errors. In the present

article we are primarily interested in the degree of statistical homogeneity of
the errors, as evidenced by spatially and temporally averaged statistics of the

residuals. We will also examine whether the residuals tend to support a repre-
sentation of the errors by Gaussian distributions with sample statistics based
on time and space averaging.

Figure 2 displays root-mean-square (rms) statistics for mixing ratio residuals
over a one-year period, taken from an fvDAS assimilation. The three main

panels show the rms of the residuals as a function of time and pressure for

stations in the Northern Hemisphere, Tropics, and Southern Hemisphere. The
resolution in time is one day: each data point represents the rms of all available

residuals on that day and at that pressure level. Only residuals associated with

quality-controlled radiosonde humidity reports at mandatory levels up to 300
hPa were processed for these plots.

[Figure 2 about here.]



Notsurprisingly,thevariabilityoftheresidualsreflectsthatofthehumidityfield
itself.Thesolidcurvesin theleftmostpanelsofFig.2show,foreachregion,the
rmsof all residualsforthemonthJanuary(blue)andJuly (red).Theyclearly
indicatethelargechangesofmagnitudewithaltitude,latitude,andseason.The
dashedcurvesin thesepanelsprovideanindicationof thedegreeofnormality
of theresidualdistribution.Theyareobtainedbycomputing,at eachpressure
level,the68th percentileoftheresidualmagnitudesfortheensembleassociated
withthecorrespondingsolidcurves.Thedashedandsolidcurvesshouldnearly
coincidein caseofa Gaussiandistributionwhosemeanandstandarddeviation
arefunctionsof pressureonly,sinceroughly68%ofanensemblewouldthenlie
withinonestandarddeviationofthemean.

Theextremevariabilityandchangesin scaleof theerrorsandof thefieldit-
selfcausessomedifficultieswhenusingmixingratio (or,equivalently,specific
humidity)astheanalysisvariablefor atmosphericmoisture.Thiscanbeillus-
tratedbyconsideringthemixingratioanalysisat w2 at model grid location j
obtained from a single observation w ° at grid location i, given by

a b

_ + _ (8)
b b

where wi, wj are the background estimates at locations i, j, respectively. The

coefficient _ depends on the specification of mixing ratio background and ob-

servation error covariances; compare with (2). In the absence of bias, the best
linear unbiased estimator is obtained when

b b

Pij Cri (7 _

- (a_)2 + (ao)2, (9)

with flij the correlation between the background errors at locations i and j,
b b their standard deviations, and _o the error standard deviation associ-(9"i , O'j

ated with the observation. With _ ¢ 0, the analysis (8) extrapolates moisture

information from the observation location to nearby grid locations.

The ability to perform meaningful extrapolation of observational information in

the analysis requires that expected changes in magnitude of the errors between

any two locations be accurately represented in the error covariances. Clearly

this is problematic for mixing ratio, in view of the large changes in scale over

short distances in space and time. Large errors can result from locally inaccu-

rate covariance specifications by extrapolating mixing ratio increments across
sharp gradients, especially in the vertical direction. The problem can be made

worse if the analysis scheme contains a mechanism for ensuring non-negative
humidity estimates, since the distribution of the extrapolation errors will then

be asymmetrical, resulting in a tendency to produce excess moisture in the
analysis.

One can attempt to formulate a flow-dependent covariance model in order to

account for the spatial and temporal variability of the humidity field. Rabier et



al. (1998) developed an empirical model for the specific humidity background
error variances, which depends on the background temperature and relative hu-

midity estimates. They also noted a small but significant accumulation of excess

water vapor in the lower stratosphere, found to be due to the inaccurate extrap-
olation of information from upper tropospheric observations. Their solution to

this problem was simply to avoid extrapolation altogether to levels higher than
100 hPa, by setting the error correlations between these and all lower levels to
zero.

4 Logarithm of specific humidity

The discrepancy between the dashed and solid curves in the left panels of Fig. 2
indicates that mixing ratio errors are not well represented by a Gaussian dis-

tribution with monthly statistics. Phrased in more practical terms, this means

that spatially and/or temporally averaged variance estimates may not be very

meaningful as statistics of the mixing ratio errors. It has been argued that it is

more reasonable to assume that the errors follow a lognormal distribution (e.g.,

Daley and Barker 2000), based on the idea that errors in tracer transport are

perhaps more naturally modeled as an accumulation of independent multiplica-

tive, rather than additive, effects (Ott 1995). That would suggest taking the
logarithm of specific humidity s as an analysis variable:

s-- logq (10)

An important feature of a moisture analysis based on s is that the specific
humidity q - e s in the analyzed state is always positive.

Note that additive errors in s correspond to multiplicative errors in q. It might

seem reasonable to assume that the magnitudes of both background and ob-

servation errors tend to be proportional to the field itself. This would imply

that the rms statistics for observation residuals in s are more homogeneous in

space and time than those in q (or w). Figure 3, which is like Fig. 2 but for

observation residuals s ° - Hs b, shows that the spatial variability of the errors

in log q is still considerable, although not quite as large as that of w. However,

the dashed curves in the left panels do not closely match the solid curves, which
suggests that the distribution of the errors is not lognormal.

[Figure 3 about here.]

The use of an analysis variable that has a singularity at q = 0 has a serious

drawback, which can be explained by considering the analysis q] of a single
observation qO at model grid point i. A linear analysis of log q gives

log qa _ log qb + n[log qO _ log q/b] (11)



sothat

qa __ (qb)l-n(qO)n. (12)

Assuming c < _ < 1-e for some e > O, this means that the analyzed humidity
at a given location will approach zero whenever the background estimate or the

observation at that location is close to zero. Unfortunately it is not unusual
for a model-generated background estimate to be very dry in locations where

the observations indicate that, in fact, the atmosphere is wet. The use of log q
as an analysis variable would result in de facto rejection of all observational

information in such cases. The singularity at q - 0 can be removed by ana-

lyzing log (c + q) for some constant c > O, which would have to be comparable
in magnitude to the humidity field itself. However, this would eliminate the

advantage of a guaranteed non-negative humidity analysis, and it would defeat

any theoretical argument that suggests a lognormal error distribution in the
first place.

Relative humidity

The mixing ratio w s of a volume of air which is saturated with water vapor
is called the saturation mixing ratio. This quantity is a known function of

pressure and temperature; see Wallace and Hobbs 1977, Section 2.6, for a precise

definition and further details. Relative humidity is defined by

W
rh-

wS(T,p) " (13)

Relative humidity is a useful dynamic parameter for the description of moist

physics in the atmosphere. Its values are affected by all dynamic processes

that result in a change of temperature, such as convection and subsidence, ab-
sorption of radiation, and release of latent heat. Model parameterizations of

cloud formation and the prediction of precipitation are particularly sensitive to

changes in the relative humidity. Peixoto and Oort (1996) survey the climatol-
ogy of relative humidity in the global atmosphere, as derived from radiosonde
observations.

The rms statistics of radiosonde-observed relative humidity residuals (rh) ° -

H(rh) b are shown in Fig. 4. Changes in magnitude of the statistics with pres-

sure, latitude, and season are still noticeable but relatively modest. The ap-
patently larger errors at the upper levels in the Tropics are consistent with

the increased uncertainties associated with active convection and moisture di-

vergence below the tropopause. The increased noisiness in the lower panel is
primarily due to sampling; there are relatively few radiosonde stations in the

Southern Hemisphere. The left panels show that the 68th percentiles of the

residual magnitudes match the rms statistics reasonably well in each of the



casesshown.Thisindicatesthat a Gaussiandistributionismoreplausiblefor
relativehumidityerrorsthanforerrorsin specifichumidityor its logarithm.

[Figure4 abouthere.]

If themoistureanalysiscontrolvariableisrelativehumidity,theneithertemper-
atureor humidityobservationscanaffectboththeanalyzedtemperatureand
specifichumidityfields.Forexample,in theabsenceof humidityobservations,
asingletemperatureobservationT ° at model grid point i gives

Ta - Tb + _[ T° -- T/b] (14)

(rh)_ -(rh)bi (15)

which implies a change in the mixing ratio at that location:

a b

wi # wi (16)

by virtue of (13) and the fact that the saturation mixing ratio w s depends on

temperature. Therefore, any change in temperature implied by observations

will cause the water vapor mixing ratio to be adjusted in such a way that the
relative humidity background estimates remain unchanged.

Lorenc et al. (1996) have shown in the context of the Met. Office global data

assimilation system that the preservation of relative humidity in the absence of

humidity observations can be advantageous in certain meteorologically impor-

tant situations, and their work has led to a decision to use relative humidity
for the moisture analysis in their system (Lorenc et al. 2000). The argument is
based on the fact that the cloud parameterizations incorporated in the model

respond primarily to relative humidity. If the model has a tendency to be too

cool, and this tendency is corrected by observations, then it is preferable to

maintain the model's relative humidity by increasing the specific humidity es-

timates. This was shown to help improve the predicted precipitation in moist,
cyclonic situations in mid-latitudes.

By the same reasoning, however, if the model has a cool bias in the stratosphere
then the warming effect of temperature data will induce a spurious accumulation
of moisture there• In fact, from (13) we have

b

w a ,_ w i + F (T a - T_) (17)

where

b G_wS

F- (rh)i . --_- T=T: (18)

If the mean temperature increment (T a- T b} is positive, then (F} will also
be positive and (17) leads to unlimited growth in the assimilation. Strato-

spheric moisture is long-lived, so the only way to counteract this growth is by

10



introducinganartificialmoisturesinkin thestratosphere,e.g by Newtonian
relaxationto climatology.Evenin theabsenceof modeltemperaturebiases,a
slowaccumulationof moisturecanresultfromhumidityperturbationsinduced
byzero-meanrandomtemperatureforcing,if, asdiscussedearlier,theanalysis
containsa mechanismforensuringnon-negativehumidityestimates.

6 Pseudo-relative humidity

We can define a pseudo-relative humidity by

W W

w_b w_ (Tb p) (19)

where T b is the background temperature. The background pseudo-relative hu-

midity and relative humidity fields are, of course, identical:

W b

_bb = = (rh) b" (20)

However, the observed pseudo-relative humidity is not equal to the observed
relative humidity:

W o

_/fl O __. 0w_ b ¢ (rh) (21)

but rather amounts to a flow-dependent transformation of the observed mixing
ratio.

Pseudo-relative humidity predicts relative humidity fairly well, depending on
the accuracy of the background temperature estimates. The rms error statis-

tics of pseudo-relative humidity and of relative humidity should therefore be

similar. This is supported by Fig. 5, which shows the daily rms statistics for

radiosonde-observed pseudo-relative humidity residuals _°--H_vb; compare with

Fig. 4. The pseudo-relative humidity statistics show a slightly larger vertical

gradient, particularly at the highest levels in the Tropics. In all other respects
the similarities are striking.

[Figure 5 about here.]

Given a single observation at location i, the pseudo-relative humidity analysis
at location j is

-a -b
_ + _ (22)

11



where?_ now depends on the covariances for pseudo-relative humidity back-
ground and observation errors-

- -b -b
Pij O'i O"j

(_)_ + (_o)_ • (231

Based on the residual statistics shown in Fig. 5, it is not unreasonable to repre-
sent pseudo-relative humidity errors using sample statistics based on time and

space averaging. Homogeneous pseudo-relative humidity errors correspond to

mixing ratio errors that depend primarily on the local saturation mixing ratio

as predicted by the model. In physical terms, the uncertainty is expected to

be large where the atmosphere has a high capacity for water vapor, i.e., at low
levels and high temperatures.

We can show that the analysis of pseudo-relative humidity is equivalent to an
analysis of mixing ratio with flow-dependent covariance models for both back-

ground and observation errors. It is easy to see this for the special case of a

single observation at a model gridpoint, since (22, 23) corresponds to (8, 9) with

o -o sb

ai - cri wi , (24)
b -b sb

_j - _ wj , (25)

Pij -- fiij, (26)

confirming that constant 5°, _ correspond to mixing ratio error standard devi-

b that are proportional to the background saturation mixing ratiosations a°, aj

wisb , wjsb, respectively.

More generally, consider the variational analysis for mixing ratio w, obtained
by minimizing

J(w) - (w b - w)Tp -1 (w b -- w)

+ (yO_ h(w))TR-l(yO _ h(w)).
(27)

The pseudo-relative humidity analysis corresponds to a Change of variable in
model state space

@ -- D-lw, D -- diag(wsb),

and in observation space

(28)

_o __ E-lyo,

Accordingly, let

p - D-1pD-1

R - E -1RE -1.

E - diag(h(wSb)) (29)

(30)

(31)

12



Linearalgebrathenshowsthat (27)canbewritten

where

_ _ _

+ _ _
(32)

h(_i,)- E-lh(D_,). (33)

This proves the equivalence between a mixing ratio analysis with covariance

models P, R and a pseudo-relative humidity analysis with covariance models

P, R. The diagonal transformations D, E, which depend on the background
temperaturefield, generate flow-dependent mixing ratio error covariance models
even when P, R are stationary.

Fig. 6 shows a simple example of the flow-dependent mixing ratio increments

that can occur in a pseudo-relative humidity analysis. We computed the vertical

impact of a moisture observation in case of a background temperature profile
with a lapse rate of 8 K km -1 below 220 hPa, and constant temperature above.

Using a scale height H - 7 km, we calculated the background saturation mixing
ratio w sb and 'observed' the mixing ratio

o b 1 sb

wi - wi + -_wi (34)

at a single pressure level. The value and location of the observation residual

o b is marked by the dotted lines in each panel. We then computed pseudo-W i -- W i

relative humidity increments for this exercise using

- exp(-20(log(pi/pj)) 2) (35)

in (22), which corresponds to a vertically homogeneous and isotropic pseudo-

relative humidity error covariance model. The curves in each of the panels show
the vertical structure of the mixing ratio increments w a - w b associated with

observations at 850, 500, 250, and 200hPa, respectively. Note the different

scales indicated along the horizontal axes: the increments are proportional to

the saturation mixing ratios, which decrease rapidly with altitude. Background

temperatures are indicated along the vertical axis of the rightmost panel. The

increment in this panel shows the effect of an abrupt change in lapse rate at

the tropopause, whose location is indicated by the gray horizontal bar. For

tropospheric observations the maximum mixing ratio increment generally occurs
slightly below the observation location.

[Figure 6 about here.]
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7 Discussion

A crucial question for the analysis of atmospheric moisture is whether errors

in relative humidity can be considered statistically independent of errors in

temperature. That would justify a univariate relative humidity analysis, which
preserves the relative humidity field in the absence of moisture observations. A

univariate pseudo-relative humidity analysis, on the other hand, would preserve

the specific humidity field in that case. We earlier mentioned the work by Lorenc

et al. (1996), who argue in favor of preserving relative humidities, although
they were specifically concerned with mid-latitude weather prediction and the

performance of their cloud parameterization scheme. We pointed out, however,
that a univariate relative humidity analysis can cause an unstable accumulation

of excess moisture in the stratosphere. This argument has carried considerable

weight at the Data Assimilation Office, where there is a particular emphasis on
stratospheric analysis.

In order to shed some light on the underlying question of multivariate moisture-

temperature error correlations we examined timeseries of simultaneous relative

humidity and temperature observed-minus-background residuals. Using De-
cember 1999 radiosonde reports, we computed the correlation coefficient be-

tween relative humidity and temperature residuals at each station and at each

mandatory level up to 300 hPa. The dashed curves in Fig. 7 show the average

timeseries correlations for all stations with at least 30 complete reports in the

Northern Hemisphere, Tropics, and Southern Hemisphere. We see significant

anti-correlations between the relative humidity and temperature residuals, in-
creasing in magnitude toward the surface. At the lowest levels the correlations
are typically about -0.5.

[Figure ? about here.]

A recent paper by Franke and Barker (2000) shows very similar results. They

computed the cross-covariances between relative humidity and temperature er-
rots using residuals between radiosonde observations and 6-hour forecasts from

the Naval Operational Global Atmospheric Prediction System (NOGAPS) for
the period March-June 1998. The diagonal elements of the cross-correlation

matrix they obtained (shown in their Fig. 13) correspond to the dashed curves

in our Fig. 7, and are nearly identical if not slightly more negative.

We now turn to the correlations between mixing ratio and temperature residuals,
shown in Fig. 7 (solid curves), again computed from December 1999 radiosonde

data. These are significantly and consistently smaller than the relative humidity-

temperature correlations. As a further check we also calculated spatially (as op-

posed to temporally) averaged cross-correlations on a daily basis, similar to the

computation of the daily rms statistics displayed in Figs. 2-5. The results (not
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shown)areentirelyconsistentwithbothsetsof curvesin Fig.7. This suggests
that it is more accurate to neglect mixing ratio-temperature error covariances in

analyzing tropospheric moisture than to neglect relative humidity-temperature
error covariances.

The moisture analysis is obviously less sensitive to the choice of control variable

when both moisture and temperature are adequately observed. To illustrate,

we show in Fig. 8 the results of a univariate pseudo-relative humidity analysis

of mixing ratio observations, combined with a univariate temperature analysis.

These analyses are valid for the Eastern United States on 1 January 2002 at
0 UTC, and are based on actual 500 hPa radiosonde observations available at

that time. We used homogeneous and isotropic univariate covariance models for

this exercise, with a b - 2a ° and a horizontal decorrelation length scale of 300

km for all variables at all locations. The top panel shows the observed-minus-

background mixing ratio residuals with the mixing ratio analysis increments

superimposed, and the center panel shows the observed-minus-background tern-

perature residuals and increments. From these and the temperature background
field we computed the implied relative humidity increments, shown in the bot-
tom panel.

[Figure 8 about here.]

Figure 9 then shows the result of combining a univariate relative humidity anal-
ysis with a univariate temperature analysis, using the same set of radiosonde

reports and the same covariance specifications. The top panel shows the relative

humidity increments, directly computed from the relative humidity observed-

minus-background residuals. The temperature increments were already shown

in the previous figure, and the bottom panel now shows the implied mixing

ratio increments. Figure 10 shows the difference between the relative humidity
increments associated with the two analyses (left panel; this is the difference

between the bottom panel of Fig. 8 and the top panel of Fig. 9) and the dif-

ference between the mixing ratio increments associated with the two analyses

(right panel; this is the difference between the top panel of Fig. 8 and the bot-

tom panel of Fig. 9). We see that the relative humidity increments are equal to

within 3% in most places. The differences between the mixing ratio increments
increase with the temperature gradient South of Florida.

[Figure 9 about here.]

[Figure 10 about here.]
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8 Implementation

It is straightforward to implement a change of variable to pseudo-relative hu-

midity in an existing variational analysis system. For convenience we assume

that the original control variable is mixing ratio, although the same procedure

can be applied if the existing system is based on some other variable, simply by

redefining the diagonal transformations D and E. Writing the analysis equa-
tion (32) for pseudo-relative humidity as

j(._) _ (_b _ __)T_-I (._b _ ._)

(36)
+ [E-l(yo _ h(w))] T R-1 [E-l(yo _ h(w))] ,

suggests the following implementation:

1. Compute w sb and h(w sb) from the background state;

2. Compute the scaled residuals E-l(y ° - h(w));

3. Solve the variational problem with covariance models P, R and observa-
tion operator h;

4. Compute the mixing ratio increment w a - w b - D(_ a - _b).

In the linear case the solution procedure is expressed by

w a - w b + D_:E- 1(yO _ Hw b),

with

(37)

_ _T [H_T ___ fi]-1. (38)

The change of variable can be regarded as a preconditioner for the variational

analysis equation (Lorenc 1988), and it may improve the convergence proper-

ties of an iterative solver since the error covariance models for pseudo-relative

humidity should be better conditioned than those for mixing ratio.

The modified observation operator h as defined by (33) involves multiplying and

dividing by background saturation mixing ratios. For some data types it may be

more practical, and possibly more accurate, to ignore (33) and reformulate the

observation operator directly in terms of pseudo-relative humidity. For example,
in case of radiosonde observations

h(w) - Hw, (39)

where H now represents spatial interpolation from the model state to the ob-
servation locations. In this case

h(-_) - H-_ (40)
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ispreferableover(33),sincethepseudo-relativehumidityfieldissmootherthan
themixingratiofieldandthereforelendsitselfbetterto spatialinterpolation.

9 fvDAS results

We briefly summarize some initial results obtained with the pseudo-relative hu-

midity analysis incorporated in the fvDAS. Figure 11 shows bar plots of rms

mixing ratio background errors for three separate experiments. Errors are com-

puted with respect to January 1998 radiosonde mixing ratio observations at

1000, 850, 700, 500, and 300hPa, separately for the Northern Hemisphere,

Tropics, and Southern Hemisphere. The top bar (red) in each panel corre-

sponds to a control experiment in which mixing ratio was the analysis variable,
and the only source of moisture data consisted of radiosonde observations. The

blue bar shows the positive impact on the mixing ratio errors of changing to a

pseudo-relative humidity analysis, still analyzing radiosonde observations only.

The green bar adds the impact of interactive TOVS humidity retrievals (Joiner
and Rokke 2000) to the pseudo-relative humidity analysis.

These results show that the change of variable from mixing ratio to pseudo-
relative humidity produces a small but not insignificant decrease of rms back-

ground errors at all levels. It is encouraging that the introduction of TOVS
moisture information further improves the fit to radiosonde observations.

We did not perform model bias correction (Dee and Todling 2000) for this study,
nor did we make an effort to optimize the error covariance models for any of

the experiments. In each case we specified background and observation error
standard deviations and isotropic background error correlations, as discussed in

Dee and Todling (2000), such that the relative weight of an observation at its

location (_ in (9) with i-j) is a function of pressure only. The mixing ratio

and pseudo-relative humidity analyses therefore produce essentially identical re-
sults at the observation locations, but extrapolate the observational information

differently, as illustrated by the example in Fig. 6.

[Figure 11 about here.]

10 Conclusion

We reviewed several commonly used choices of control variable for the moisture

analysis in atmospheric data assimilation. For water vapor mixing ratio and
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specifichumidity,errorcovariancemodelingiscomplicatedbythehighvariabil-
ity in spaceandtimeoftheerrorsandofthefielditself.Inaccuratecovariance
specificationsfor thesevariablescancauseextrapolationerrorsin theanalysis
whicharelargecomparedto the localfieldvalues.Furthermore,characteri-
zationof theestimationerrorsin termsof their secondmomentsis not very
meaningful,sincetheerrordistributionsarefar fromGaussian.Theseremarks
applyto the logarithmof specifichumidityaswell,whichsuffersfromthead-
ditionaldrawbackthat drybackgroundestimatesarenotcorrectedwellbywet
observations.

Relativehumidityisabetterchoicefromastatisticalpointofview,in thesense
describedabove.Therelativehumidityfieldis morecoherentin spaceand
time,andthereforelendsitselfbetterto extrapolation.Sincerelativehumidity
dependsontemperature,its useasananalysisvariableimpliesthat tempera-
tureobservationsdirectlyaffectthespecifichumidityfield.Wefoundthat this
canresultinanunrealisticandunstableaccumulationofmoisturein thestrato-
spherein thepresenceoftemperaturemodelbiases.Fundamentally,aunivariate
relativehumidityanalysisinvolvestheassumptionthatrelativehumidityerrors
andtemperatureerrorsarestatisticallyindependent.However,radiosondesta-
tiontimeseriesofobserved-minus-backgroundresidualsshowasignificantnega-
tivecorrelationbetweenrelativehumidityresidualsandtemperatureresiduals.
Correlationsbetweenspecifichumidityresidualsandtemperatureresidualsare
generallymuchsmallerin magnitude.

Wedefinedapseudo-relativehumiditybyscalingthemixingratiobythesatu-
rationmixingratioofthebackgroundfield.Pseudo-relativehumidityisagood
predictorof relativehumidity,dependingon theaccuracyof the background
temperatureestimates.Its statisticalpropertiesarethereforesimilarto those
ofrelativehumidity.However,in theabsenceofmoistureobservationsaunivari-
atepseudo-relativehumidityanalysispreservesthebackgroundspecifichumidity
field,andthispreventsstabilityproblemswith thestratosphericmoistureanal-
ysis.Apseudo-relativehumidityanalysisisequivalenttoamixingratioanalysis
withflow-dependenterrorcovariancespecifications.It iseasilyimplementedin
anexistinganalysissystembyscalingtheobserved-minus-backgroundresiduals
priorto solvingtheanalysisequation,andthenconvertingthepseudo-relative
humidityanalysisincrementsbackto theoriginalhumidityvariable.Earlyre-
sultswith thefvDAS,obtainedwithextremelysimpleerrorcovariancemodels,
indicatethatthischangeofvariablecanleadto abetterfit of thebackground
humidityestimatesto radiosondeobservations.

Thenatureof theworkreportedhereisprimarilypractical,in recognitionof
thefactthatactualerrorsin operationaldataassimilationsystemsarenotwell
representedbythecovariancespecifications.It is importantto considertheto-
bustnessof algorithmicdesigndecisionsto thispracticalreality.In particular,
thecontrolvariableshouldbesuchthat time-andspaceaveragingoftheerrors
givesmeaningfulresults,sothatapproximatecovariancemodelsbasedonstatis-
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ticalaveragesdopresentsomeusefulinformationaboutlocalerrors.Anoptimal
moistureanalysisschemewouldrequiremultivariatemoisture-temperatureer-
ror covariancespecifications,but wehavenotpursuedthis beyondtheblunt
statementthat it appearsto bemorejustifiableto neglectspecifichumidity-
temperaturecorrelations(in a univariatepseudo-relativehumidityanalysis)
thanto neglectrelativehumidity-temperaturecorrelations(ina univariaterel-
ativehumidityanalysis).

With thisasa startingpoint,however,wefeelit maybefeasibleto improve
thedescriptionof humidityerrorsbymodelingthethreemaindynamiceffects
onthebackgrounderrorcovariancesin theassimilationcycle:(1)advectionof
initial errors,(2)errorgrowthdueto modeldefects,and(3)errorreductiondue
to theincorporationof observations.Thiswouldrepresenta simplificationof
theKalmanfilterequationsfollowingideasoutlinedinearlierwork(Dee1990,
1991).Wehavebegunto implementsimplerepresentationsof eachof these
effectsin thefvDAS,inorderto cyclethemoisturebackgrounderrorcovariance
specifications.Weplantopresenttheresultsofinitial assimilationexperiments
withthisschemein a separatearticle.
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Figure 1" Specific humidity distribution at 0 UTC, January 1, 1998, produced by the
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fvDAS on a 55-layer 1 ° x 1_ latitude-longitude grid. The larger of the three panels

shows the layer-mean specific humidity for the fourth model layer, where most of the

water vapor tends to be concentrated (at approximately 850 hPa over the oceans).

The top panel shows the vertical distribution along the Equator in the lowest eight

model layers, from the surface up to about 500 hPa. The right panel shows the vertical

distribution along the Greenwich Meridian.
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Figure 6: Mixing ratio analysis increments in a vertical column due to a single obser-
vation at 850, 500, 250, and 200 hPa, respectively, assuming vertically homogeneous
and isotropic (in log p) pseudo-relative humidity error covariances. Saturation mix-
ing ratios are computed based on a temperature profile with a lapse rate of 8 K km-1
below 220 hPa, and constant temperature above. Temperature values are indicated

along the vertical axis of the rightmost panel. The dotted lines in each panel mark
the location and the value of the mixing ratio observation residual.
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Figure 9: Top panel: Relative humidity observed-minus-background residuals (solid

disks) and analysis increments (contours) obtained with a univariate relative humidity

analysis, for the same region and time as Fig. 8. Bottom panel: Implied mixing ratio

analysis increments. Color shading is identical with Fig. 8.
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Figure 10" Top panel: Difference between the relative-humidity increments shown in

the top panel of Fig. 8 and the implied relative-humidity analysis increments shown

in the bottom panel of Fig. 9. Bottom panel: Difference between the implied mixing

ratio analysis increments shown in the bottom panel of Fig. 8 and the mixing ratio

analysis increments shown in the top panel of Fig. 9. Color shading is identical with
Fig. 8.
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Figure 11" Root-mean-square mixing ratio background errors for the three experi-

ments discussed in the text. Errors are calculated with respect to radiosonde mixing

ratio observations in the Northern Hemisphere, Tropics, and Southern Hemisphere, at

1000, 850, 700, 500, and 300 hPa. The units along the horizontal axes are g kg -1.
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