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Scientists studying the atmosphere typically rely on mathematical and computer mod-
els to try to make sound predictions about weather and climate change. By themselves,
these models are not enough to allow for very accurate predictions since not all natural
processes are known and accounted for in the models. Data assimilation is the vehicle
used by scientists to bring model predictions close to reality. Atmospheric data assimila-
tion consists of a series of mathematical steps that combine model predictions with actual
observations of the atmosphere to produce an estimate of the state of the atmosphere at
any given time. The estimates are commonly referred to as analyses. When all goes well,
the analysis is a better estimate of the state of the atmosphere than the estimate provided
by either the model or the observations alone. Usually, only observations before and at the
time of the analysis are used to calculate this “filter” estimate. The name filter comes es-
sentially from the fact that, in a manner of speaking, this assimilation procedure combines
the best of two worlds by filtering out their errors: the “observation-only world” and the
“model-only world”. More sophisticated assimilation procedures known as smoothers are
capable of combining filter estimates with observations within a certain time interval to
produce refined estimates of the state of the atmosphere, within the desired time interval.

There are different smoother types. In the present work the so-called fixed-lag Kalman
smoother is used as a framework to construct a retrospective assimilation system for the
NASA/Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). In
this type of smoother formulation, when observations up to 6 hours ahead of a regular filter
estimate are used to calculate the (refined) retrospective estimate we say we are calculating
the lag-1 retrospective analysis; when observations up to 12 hours ahead of a regular
filter estimate are used to calculate another (even more refined) retrospective estimate
we say we are calculating the lag-2 retrospective analysis; and so on. The results of our
experiments with GEOS DAS indicate that the lag-1 retrospective assimilation procedure
does indeed provide an overall improvement over the regular assimilation procedure. One
particular significant result, obtained by studying the skill of 5-day forecasts, indicates
that lag-1 retrospective analyses seem to consist of better initial conditions than those
normally provided by the filter analyses. Even though our results are obtained for a
slightly simplified version of GEOS DAS, they are quite promising and work is already in
progress to expand this research, including study of the impact of lags higher than one.
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Abstract

The fixed-lag Kalman smoother (FLKS) has been proposed as a framework to construct data
assimilation procedures capable of producing high-quality climate research datasets. Fixed- -lag
Kalman smoother-based systems, referred to as retrospective data assimilation systems, are an
extension to three-dimensional filtering procedures with the added capability of incorporating
observations not only in the past and present time of the estimate, but also at future times. A
variety of simplifications are necessary to render retrospective assimilation procedures practical.

In this article, we present an FLKS-based retrospective data assimilation system 1mplemen—
tation for the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). The
practicality of this implementation comes from the practicality of its underlying (filter) analysis
system, i.e., the physical-space statistical analysis system (PSAS). The behavior of two schemes
is studied here. The first retrospective analysis (RA) scheme is designed.simply to update the
regular PSAS analyses with observations available at times ahead of the regular analysis times.
Although our GEOS DAS 1mplementat10n is general, results are only presented for when obser-
vations 6-hours ahead of the analysis time are used to update the PSAS analyses and thereby to
calculate the so-called lag-1 retrospective analyses. Consistency tests for this RA scheme show
that the lag-1 retrospective analyses indeed have better 6-hour predictive skills than the pre-
dictions from the regular analyses. This motivates the introduction of the second retrospective
analysis scheme which, at each analysis time, uses the 6-hour retrospective analysis to replace
the first-guess normally used in the PSAS analysis, and therefore allows the calculation of a
revised (filter) PSAS analysis. Since in this scheme the lag-1 retrospective analyses influence
the filter results, this procedure is referred to as the retrospective-based iterated analysis (RIA)
scheme. Results from the RIA scheme indicate its potential for improving the overall quality of
the assimilation.



1 Introduction

The concept of retrospectivé data assimilation, as invoked in the present article, was introduced
by Cohn et al. (1994; CST94 hereafter) to refer to the calculation of the analyses from observa-
tions after the analysis time, as well as before and at the analysis time as is done in numerical
weather prediction. Retrospective data assimilation is possible when analyses are not required

in real time, such as in the production of reanalysis data sets for climate research.

In estimation theory, estimates of the state of a system produced from observations on both
sides of the analysis time are known as smoother estimates. In sequential data assimilation a
natural smoothing technique to employ is that of fixed-point smoothing. In this case, the usual
filter estimate obtained at a fixed time using observations before and at the analysis time is
sequentially updated as future observations became available. Future observations can be used
for as long as experimentation shows their impact to be useful. The idea of estimating the
state of a system at a fixed time over and over again as more observations become available can
be taken a step further by seeking fixed-point estimates at a series of consecutive fixed times.
This is what is accomplished by fixed-lag smoothing. Specifically, for linear systems under
the typical assumption of unbiased Gaussian-distributed errors the fixed-lag Kalman smoother
(FLKS) provides the best unbiased estimate of the state of the system at a sequence of given
times using observations in the past, present, and at a time lag-£ ahead of the time of each

estimate.

The FLKS is composed of two major components: the Kalman filter (KF) portion and the
\ fixed-lag smoother portion. The FLKS is fully dependent on the KF as it is formulated on the
basis of the observation-minus-forecast residuals resulting from the KF. In general, when the
filter is not the KF, but rather some suboptimal implementation of it, we can still think of sub-

optimal implementations of FLKS-based retrospective data assimilation schemes as consisting



of a filter portion and a smoother (or retrospective) portion. Todling ef al. (1998) used this
explicit separation between filtering and smoothing portions to study the behavior of a vari-
ety of combinations of filter and smoother approximations to the linear FLKS. One particular
approximation studied there, namely the adaptive CCF-based retrospective data assimilation
scheme, was seen as having the potential for being implemented in practice. It replaces the
filter portion of the FLKS by a constant forecast error covariance filter much like operational
three-dimensional variational analysis systems do. The spectral statistical-interpolation analysis
system of Parrish and Derber (1997'2) is an example of such a system; the U.S. Navy analysis
system of Daley and Barker (2001) is another; the European Center for Medium-Range Weather
Forecasts (ECMWF) system of Courtier et al. (1998) is yet another; and so is the physical-space
statistical analysis system (PSAS) of Cohn et al. (1998), which is also central to the work in

the present article.

To take forward the idea of developing a practical retrospective data assimilation system,
the linear FLKS formulation of CST94 has to be extended to handle nonline;abr dynamics. Since
the retrospective portion of the algorithm relies completely on the filter, designing nonlinear
filters immediately results in deéigning nonlinear smoothers. Todling and Cohn (1996; TC96
hereafter) derived a nonlinear FLKS algorithm based on the traditional extended Kalman filter
(EKF). Similar derivations can be found elsewhere (e.g., Biswas and Mahalanabis 1973; Verlaan
1998). The way smoothers use futu;e observations to calculate updates to state estimates is
by propagating information back in time using the adjoint dynamical model. For nonlinear
dynamics the adjoint of the tangent linear dynamics must be provided in principle. Four-
dimensional variational (4D-var) procedures such as that of Rabier et al. (2000) also require the
adjoint of the tangent linear dynamics. The need for the adjoint model can be avoided if the
retrospective assimilation strategy is based on ensemble techniques such as that of Evensen and

van Leeuwen (2000).



In this article, we study the perforfnance of a PSAS-based retrospective analysis (RA) system
developed for the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS).
Since the forecast error covariance matrix of PSAS in GEOS DAS varies slowly in time we
can identify the suboptimal RA procedure studied here with the CCF scheme of Todling et al.
(1998). Our RA implementation in GEOS DAS is general and applicable to any number of time
lags, but in the present article we concentrate on results for the 6-hour, i.e. lag-1, retrospective
analysis. Motivated by some of the results obtained with this version, and by the ideas of
constructing so-called iterated filters and smoothers common in the engineering literature, we
also study here the performance of a retrospective-based iterated analysis (RIA) scheme. In the
RIA, the lag-1 retrospective analysis at a given time ¢;_; is uéed to produce a new first-guess at
time # that is used to revise the filter (PSAS) analysis at the same time ¢;. In the RIA the final
analysis is the second (iterated) analysis calculated using the first-guess generated from the lag-1
retrospective analysis. This is a considerably different use of the “static” retrospective analyses
proposed by CST94. Though a formal argument for the RIA procedure is not presented here,
the procedure is found to improve the overall quality of the analyses. This lag-1 RIA scheme
makes the retrospective procedure resemble a 4D-var cycle (e.g., Courtier et al. 1994; Rabier et

al. 2000, Li and Navon 2001).

Indeed, the original FLKS-based retrospective analysis formulation of CST94, and the RIA
here, can be viewed as alternative approaches to 4D-var. The FLKS framework is a natural
four-dimensional extension to three-dimensional procedures formulated sequentially rather than
variatiénally. Four-dimensional variational procedures are an extension of 3D-var that take
into account observations within a time interval. Ménard and Daley (1996) have shown the
equivalence of 4D-var and fixed-interval smoothing. Similarly, for linear dynamics, the FLKS is
algebraically equivalent to 4D-var and can be derived from the 4D-var cost function by solving a
two-point boundary value problem (Zhu et al. 1999)‘ The main distinction between 4D-var and

the FLKS is in their computational approaches. The former involves an iterative optimization



procedure to arrive at the solution, whereas the latter deals directly with the analytical solution
of the problem. One practical consequence of this distinction relates to how these procedures
account for model error. As pointed out by Todling et al. (1998), FLKS-based assimilation
schemes directly inherit any model error covariance parameterization embedded in the filter
portion. Various techniques to account for model error in 4D-var can be formulated by using the
dynamical model as a weak constraint on the optimization problem (e.g., Derber 1989; Bennett
et al. 1996; and Zupanski 1997). However, until a more complete understanding of model error
is acquired, and the corresponding model error covariance parameterizations can be relied upon,
this distinction between 4D-var and FLKS-based assimilation is rather moot. Another important
point to make relates to what now seems to be recognized (Fisher and Andersson 2001) as one
of the main advantages of 4D-var over 3D-var-like procedures, namely, that the former uses the
observations nearly at their proper times [as the case of the ECMWEF 4D-var implementation of
Rabier et al. (2000)], whereas in the latter it is more common to bundle the observations into
6-hour batches. This can be resolved, particularly in sequential 3D-var assimilation procedures,
by using a rapid update cycle strategy. Though this is not explored in the present article, since
in GEOS DAS the observations are bundled into 6-hour batches, we should point out that there
is no intrinsic difficulty in building an FLKS-based retrospective analysis system under- a rapid

update cycle filtering strategy.

In the sequel we briefly review, in section 2, the theoretical framework behind retrospective
analysis. The presentation is based on the EKF and the corresponding nonlinear extension of
the FLKS. In section 3, we describe the framework of our practical implementation directed
toward adding a retrospective component to GEOS DAS; here, both the RA and RIA schemes
are .presented. In section 4, results of a preliminary evaluation of these retrospective schemes

are presented and discussed. Conclusions are drawn in section 5.



2 Theoretical framework: the fixed-lag Kalman smoother

In this section we briefly recapitulate the formulations of the fixed-lag Kalman smoother of
CST94 and TC96. Following Todiing et al. (1998) we separate the FLKS into a filter portion and
a retrospective portion. The filter portion is based on the linear Kalman filter, or more generally
on any nonlinear extension of the KF; the retrospective portion is based on the linear fixed-lag
Kalman smoother, or any equivaient nonlinear extension compatible with the underlying filter.

As in TC96, the discussion below is based on the EKF.
(a) The filter portion

Using the notation of CST94, the filter portion of the FLKS formulation of TC96 can be

summarized by the usual EKF equations

Wi[k—1 = Ake-1(Wi_1jk—1) - (1a)
Wi = W£|k_1 + Kipvi (1b)
Kie = P£|k-1H:krr1:1 ) (1c)

P£|k—1 = Ak,k—lpi—nk—lA;{,kq +Qk (1d)
Py = (- Kk|ka)P£|k_1 . (1e)

The first two expressions refer to the state estimate evolution, which depends on the last three
expressions essentially related to error covariance evolution and update. At time ¢, the forecast
n-vector Wilk_l evolves through the nonlinear dynamical operator Ay x—; from the analysis n-
vector Wi—llk—p according to (la). The dynamical operator A x—1 stands for, say, a general
circulation model, and possibly any transformations necessary to convert the model prognostic

variables into the filter state vector, and vice-versa.

The main difference in the EKF equations written above and the way they more commonly

appear in the atmospheric data assimilation literature (e.g., Miller et al. 1994) is in the time



subscripts. Here, the subscripts follow standard engineering notation developed in estimation
theory and which is mostly suitable to the development of smoothers. This subscript notation
is also particularly helpful in reminding us that for linear systems perturbed by Gaussian-

distributed noise the forecast w and analysis Wi State vectors are actually conditional

f
klk—1

means of the true state n-vector w}, that is,

W]J:Ik_1 = E{WZIWZ—M e 7W§} ’ (23‘)

WZU: = g{w}tclwlocv WE_10 s Wit (2b)

at time ¢x. The conditioning, represented by the vertical bar in the expectation operator £{e|e},
is on the time series of observations w{. The forecast at time ¢; is the expected value of the true
state conditioned on all observations prior to time tx; the analysis at time ¢; is the expected

value of the true state conditioned on all observations up to and including those at time tg.

The EKF, like the KF, depends on the residual pg-vector v in (1b) formed by the difference
between the pi-vector of observations w{ and the model-predicted “observations” ?—lk(wilk_l')

at time ¢k, that is,
vi = wi— Ha(wly_,) - | 3)

The nonlinear observation operator Hj stands for the transformations involved in converting
filter state vector quantities inté observables. Optimality of the filter depends on the » x
pr weighting m‘a,trix Kyx given to this observation-minus-forecast (OMF) residual vector vi
through (1b). Although the expression for the weighting matrix Ky, in the EKF is sirﬁilar in
form to its linear KF equivalent, contrary to the linear case, Ky, in (1c) is now state-dependent
since the px X n Jacobian matrix Hj of the observation operator Hj is linearized around the
- forecast state vector W}:' p_,- State dependence of the EKF weightiﬁg matrix Ky also comes

from its dependence on the OMF residuals covariance matrix I'g, given by

Iy =HP], Hf +Ry, (4)



for uncorrelated observation and forecast errors. Here, Ry is the pr X p observation error
covariance matrix and Pil x_; is the state-dependent nxn forecast error cqvariance matrix. The
dependence of the forecast error covariance matrix in (1d) on the state comes from the n x n
Jacobian matrix Agz_; of the dynamics operator A x—1 which is linearized about ’ché model
trajectory initialized from the analysis vector WZ_” x—1- The forecast error covariance matrix
also depends on the model error covariance matrix Qg, which is normally assumed to be known.
Since the forecast error covariance matrix P;’:l 41 evolves from the n X n analysis error covariance
matrix Pz_ll x—; it depends furtherb on the accuracy of the previous estimate calculated by the

filter, i.e., through (le) applied at time tz_;.

In the linear case, the dynamics and observation operators reduce to Agx—1 = A -1 and
M = Hy, respectively, and (1) reduces to the linear KF for known model and observation error
statistics. Moreover, as pointed out in TC96, in the linear Gaussian-distributed noise case, the
forecast and analysis error covariance matrices are the conditional mean error cévariances. It
is when the observation errors are Gaussian and white in time, that the time series of residual
vectors v can be identified with the innovation sequence (see for example, Anderson and Moore

1979, section 5.3)
(b) The retrospective portion

In the FLKS, the retrospective portion uses the OMF residual vector vi at time t; to
calculate corrections to filter analyses and retrospective analyses at previous times tz_p using
an upddte equation similar to the state update expression (1b) of the filter portion. The lag-¢

FLKS retrospective analyses based on observations newly available at time ¢; are calculated by
Wi_ge = Wi_ge—1 T Krk—elkve (5)

for £=1,2,...,min(k, L), and a maximum desired lag £ = L. They are analyses for times £x_g.

Each retrospective analysis for fixed time tz_; is also an “incremental” correction to an estimate



of the state calculated previously. For example, when k£ = x and £ = 1, the lag-1 retrospective

analysis wi_,, s a correction to the most recently available state estimate at time ¢, i.e., the

1

filter analysis Wi-m-u based on the observations newly available at time ¢,; when k =k + 1
and £ = 2, the lag-2 retrospective analysis WL”R 41 18 a correction to the most recently available

state estimate at time ¢._; which is now the lag-1 retrospective analysis Wz_lln; and so on up to
the desired lag £ = L when the estimate at time ¢,_; is given by the lag-L retrospective analysis

a
Wie—1|r+L—1"

This example to illustrate the mechanism for correcting consecutive state estimates at a given
time with successive smoother calculations makes the FLKS algorithm resemble very much the
fixed-point smoother. This is simply because in this example we chose to fix the time at which
estimates are being sought, that is, time t,_;. The resemblance between the fixed-lag and
fixed-point smoothers is no coincidence. The FLKS of CST94 and TC96 can be derived from a
fixed-point smoother formulation using, for example, the approach of state augmentation (e.g.,
Biswas and Mahalanabis 1973). Out point here is simply that the incremental corrections to
the state estimates at a fixed time t._; are calculated on the basis of the OMF residual vectors
Vi, Va1, and so on up to veir_1. That is, each lag of the algorithm introduces corrections to
the state estimate by uéing observations at times further and further ahead of the retrospective

analysis time, up to the maximum desired lag L.

Because the retrospective analyses are based on the same OMF residual vectors used in
the filter portion of the algorithm, the retrospéctive n X py weighting matrix Kj;_g; depends
on the OMF residual covariance matrix Iy in (4). Furthermore, K;_ 4 also depends on the
n X pr matrix Hg, the transpose of the Jacobian of the observation operator, and on the n X n

forecast-analysis cross-covariance matrix Piak_ k-1 through the EKF-based expression
Ty Tp-1
Kigr = (Pi’“k_ak_l) Hy Ty, ‘ (6)
as can be found in TC96. The forecast-analysis cross-covariance Piak_ olb-1 evolves from previ-

8



ously calculated analysis error covariances and analysis-analysis error cross-covariances through
the Jacobian Ay x—1 of the dynamics operator. Its evolution equation and the update equations

for the retrospective analysis error cross-covariances are

Pl e = Progp—1— Kk—ZIkaP;f:k_glk_l ; ~ (7a)
Z?k-élk = (I- Kklk'Hk)PI{:lk—elk-l J (7b)
£3c—£|k—1 = Ak’k—lpiil,k—elk;l ) (7c)

and the details of their derivation can also be found in TC96.

That retrospective analyses are built on the basis of future observations can be simply
understood by recalling the meaning of the time subscript notation used here. In the linear
Gaussian-distributed noise case the time subscript notation signifies that the retrospective anal-
ysis estimates are indeed estimates of the conditional means. In this case, the rejurospective

analysis at time tx—; is
a _ 1 [ o o
Wik = E{Wh_o|Wh, Wi_q, -, Wi, (®)

where now, in contrast to the filter estimates (2), the expectaﬁon is conditioned on all obser-
vations before, at and after time tz_, up to time ¢;. As mentioned previously, in the linear
optimal case, when the underlying filter is the KF and the sequence of OMF residual vectors is
actually the innovation sequence, the retrospective portion just described reduces to the optimal
FLKS. Independently of nonlinearities, in general, if the filter is éuboptimal the corresponding
retrospective analyses are suboptimal as well. This is simply because both the filter and the
smoother are based on the same sequence of OMF residual vectors vi. Unfortunately, in the
suboptimal case, there is no guarantee that consecutive retrospective lagged estimates will repre-
sent improvements over estimates with smaller lag(s) or even over the filter results (see Todling

et al. 1998 for illustration).

As pointed out by Todling et al. (1998), one interesting feature of the FLKS that arises

9



directly from its being formulated on the basis of an underlying filter is that it incorporates model
error covariances naturally and automatically (see also appendix A, here). In fact, equations
(5)-(7) do not depend explicitly on the modél error covariance. A variety of techniques exist
to incorporate model error in 4D-var (e.g., Derber 1989; Bennett et al. 1996; and Zupanski
1997). Since 4D-var is algebraic‘ally equivalent to fixed-interval smoothing (see Ménard and
Daley 1996; and Zhu et al. 1999) and for all practical purposes we call always choose a lag L
in fixed-lag smoothing that accomplishes the same benefit as fixed-interval smoothing (Moore »
1973), FLKS-based assimilation procedures present a potential alternative to 4D-var. Since we
currently lack the necessary knowledge to parameterize model error covariances this advantage

of the FLKS ovef AD-var is not very significant, but it may prove to be relevant in the future.
3 Practical framework: GEOS DAS considerations

The algorithm described in the previous section serves mainly as 2 guide to help design suitably
feasible data assimilation procedures. It is well known that the computational cost of evolving
full covariances is excessive for filtering, let alone for smoothing as in (7), and likely not justiﬁ@ble
because of our relative lack of knowledge of the required input model and observation error
statistics. This has motivated the study of a number of simplifications to both filtering (e-g-,
Cohn and Todling 1996, and references therein) and smoothing (e.g., Todling et al. 1998, and
references therein) procedures. In this section, we describe the det;ﬂs of our implementation of
the FLKS-based retrospective procedure for the GEOS DAS. Before describing the retrospective
analysis portion of the implementation we summarize the current GEOS DAS that approximates,

in principle, the filter portion of the algorithm.
(a) The GEOS analysis and data assimilation system

The DAO operational GEOS data assimilation system consists of three major components:

10



an atmospheric general circulation model (GCM); the physical-space statistical analysis system
(PSAS); and the incremental analysis update (IAU) procedure. At the so-called analysis times,
the GCM provides a first-guess field to PSAS so it can process OMTF residuals and generate the
analysis state. The physical-space statistical analysis system is an implementation of the EKF
equations (1b)-(1c), obtaining the analysis state as a correction to the model ﬁrst—éuess. The
error covariance evolution expressions (1d) and (1e) are neglected and therefore PSAS functions
as a suboptimal filter, as in the case for other operational 3D-var systems. Each PSAS analysis
is used in the IAU procedure of Bloom et al. (1996) to construct a tendenéy term that is used to
force the GCM during a 6-hour period around the analysis time. The GCM trajectory obtained

during the IAU integration is known as the assimilated trajectory.

In GEOS DAS the state-space of the GCM is different than the state-space of the analysis
system and it is convenient to define a specific nomenclature for the purposes of the present
article. In what follows, we refer to background as the state-vector provided by the GCM and
to forecast or first-guess as the background field transformed to the analysis space. The model
and analysis spaces are different because their state variables and grids are different. The GCM
state variables are surface pressure, potential temperature, speciﬁc humidity and the zonal and
meridional components of the wind, where all variables are deﬁnéd on the Arakawa C-grid and
on a vertical sigma coordinate system. On the other hand, the analysis state vector is composed
of sea level pressure, the zonal and meridional components of the sea level wind, the zonal and
meridional components of the upper-air wind, mixing ratio, and geopotential heights, where all
variables are defined on the Arakawa A-grid and in pressure coordinates (see DAO 1996, for

details).

We designate an m-dimensional sigma-coordinate GCM state vector by y(o) and an n-
dimensional pressure-coordinate analysis state vector by w(p), to emphasize explicitly the ver-

tical coordinate system these states are defined on. For our purposes, we can represent a GCM

11



integration as

= Mly(0)] + adygy(o)- 9) -

Here, M is the nonlinear GCM operator and the second term on the right-hand side corresponds
to the constant IAU forcing term applied to the GCM during the IAU integration period. The
parameter o controls when and how the model-space analysis increment 5YZ|1¢(‘7) affects the
integrations. For 6-hours the JAU time interval [te—1/2) trs1/2] We set T = fp 41/ —tr_1/2 and
a=1/7 and during the 3-hour GCM background integration time interval [tg41/2, tr+1] we
set @ = 0. At an analysis time t;, the GCM-provided background field yzlk_l(a) is converted

into the analysis first-guess through the operation

Wi, (0) = TOyi_ ()], (10)

where for convenience we use similar time subscript notation as that used in the previous section.
The space conversion operator II is nonlinear since it represents not only simple interpolation
from one grid to another but also variable transformations such as conversion from potential
temperature to geopotential heights. This operator can be absorbed in the definition of the
state vector and become transperent in the description of the filter and smoother equations.
However, to make clear the connection between the mathematical description and the actual

implementation of these procedures we opt to refer to II explicitly.

The forecast vector W}:!k_l(p) is used to construct the OMF residual p-vector v in (3).
Instead of calculating explicitly the weighting matrix (1c), PSAS splits the calculation of the
Jast term in the analysis equation (1b) into two steps. The first step is to solve the linear system

of equations
Tixg = Vi, (11)
for the variable x, so that in a second step the analysis Wz!k(p) can be calculated by

wi(p) = Wi, (0) + PL,_ Hixe. | (12)

19



To keep notation simple, we denote the PSAS forecast error covariance with the same symbol
Pil ,_; used in the previous section. However, as mentioned above, PSAS does not use (1d) to
calculate the forecast error covariance matrix. Instead, the forecast error covariance in PSAS is
parameterized using simple dynamical constraints. Only its variance fields vary (slowly) in time;
its correlations are constant in time. A consequence of such simplification is that the forecast
wilk_l(p) and the analysis wi“c(p) vectors in (12) are also distinct from those of the previous
section, even though they are designated with the same symbols as in the previous section.
Furthermore the forecast error covariance formulation of PSAS is for the analysis variables and,

in particular, in pressure coordinates. Moreover, the observation operator Hy in PSAS is linear,

that is, Hir = Hg.

To proceed with the GEOS IAU assimilation, the analysis in (12) is converted back to the

model space, through a conversion operator o+,

yie(o) = I [wi(e)], (13)

which is then used finally to construct the IAU 53’21 ,(0) increment to be used in (9),

6yi(0) = V(o) = Yip-a(o)- (14)

The actual implementation of II* is such that it renders minimal the difference between a field
w(p) in the analysis space and the field resulting from transforming W(.p) to the model space

using IIT and subsequently transforming the resulting vector back to the analysis space using

II.

A schematic representation of the IAU assimilation procedure is shown in Fig. 1. In GEOS
DAS observations are processed in 6-hour intervals, which in the IAU framework implies that
the GCM is integrated for 6 hours starting 3 hours before the analysis time. Going from the
left to right in the diagram, at an analysis time, say ¢ = 67, observations and a 3-hour model

first-guess (represented by the north-eastward pointing dashed arrow) are combined in PSAS

19



to calculate the filter analysis. This analysis is used to construct the IAU increment (14) and
the model is integrated forward forced by the IAU tendency starting from ¢ = 3Z up t.o t = 97.
Beyond this time, the IAU forcing is set to zero and the model runs “free” for the next 3 hours.
At the end of this free 3-hour integration the GCM provides the background to be used in the
PSAS analysis of the 12Z observations, and the cycle is repeated. The assimilated trajectory is

represented in the figure by the thick-solid eastward-pointing arrows.
(b) The GEOS retrospective analysis

We now have the challenge of converting the retrospective portion of the FLKS as presented
in the previous section into a practical algorithm. We have seen above that when building a
practical filtering procedure such as PSAS one of the main approximations is to avoid dealing
directly with the error covariance equations (1d)-(le). Analogously, when building a practical
implementation of the retrospective portion of the FLKS we want to calcula,té retrospective

increments

SWi_gi(0) = Wi_ge(P) = Wi_gp_1(P) = Ki—gle Vi, (15)

for lags £ = 1,2,---,min(k, L), without having to calculate the smoother cross-covariances
implicit in the retrospective gains Kj_; through (6) and (7). As it turns out, calculating these
cross-covariances can be avoided since the retrospective gain matrices Kj_x can be written as

k
_ f TAT Tp-1
Kk-flk - Pk—e[k—f—l H (I"Kj—llj—lﬂj—l) Aj,j—l H, I, (16)
Jj=k—£+1

(see appendix A), with the consequence that the retrospective increments in (15) become

k
a _ f T - T T
5Wk—elk(p) = Py gp—em1 H (I—Hj—lFj—llHi—lpf—lij—z)Aj,j—l Hixk, (17)
j=k—2+1

where we used (11) to replace I‘,:lwc with xz. We see from this expression that the lag-£ ret-
rospective increment is a linear combination of the columns of the forecast error covariance

123

k—tlf—t—1> 35 is the original filter increment. The advantage of the expression above is that
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it refers only to quantities used by the filtering portion of the FLKS: the (filter) forecast error

f :

covariance matrix P .
Jj=1l7-2?

the observation error covariance matrix R;_1; the linear (or lin-
earized) observation operator H;_; and its transpose (adjoint); and the adjoint of the Jacobian
A ;_; of the dynamics operator. The smoother error cross-covariances Pﬂ—f_’lk—l and PZ?k—E[k’

and smoother error covariance Py_,; do not appear in (17).

At a given analysis time ¢, the retrospective increments can be calculated through a succes-
sion of operations similar to the two-step PSAS operations (11) and (12). Defining an n-vector

ZE |k as
zye = HE Xk, (18)

corresponding to the PSAS conjugate gradient solution xj converted from the observation space
to the analysis space by HZ, the term in the square brackets of (17) can be calculated using the

following algorithm:

j=k

while 7 > 1 and j > max(1,k —£+1)

Z = ATz ' (192)
Ljoaxj_yp = Hj"lP;'r—llj—2Z§—1|k (19b)
Zj-1k = Z?-uk - H;‘F-1X§_1|k (19¢)
owi_yx(p) = ny‘—llj—zzj—llk (19d)
J=7-1

endwhile

for a maximum number of time lags £ = L. In this algorithm the n-vector Z?—l]k in (19a)is

the result of the adjoint dynamics evolution of the auxiliary n-vector zjjk, for each backward
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integration j. This backward-propagated vector z?_nk serves as the input to an equation (19b)
similar to the first step (11) of the regular PSAS analysis, but now with a different right-hand
side. The next step in the retrospective analysis loop is to update the n-vector z?—l]k with
the analysis-space projection of x;'—llk in (19¢). Finally, the n-vector z;_ 1k in (19c¢) is used to
calculate the retrospective analysis increment for each desired lag £ up to a maximum lag £ = L

through application of the forecast error covariance operator in (19d).

Notice that the entire retrospective analysis algorithm (18)-(19) works in the analysis space.
In particular, the propagation operator AZ,k-—l = Af’k'_l(p) in (19a) is defined in pressure
coordinates and it operates on geopotential heights, mixing ratio, zonal and meridional winds,
etc, that is, the analysis variables. In fact, the linearized dynamical operator Ak x_1(p) is given

by
Ak,k——l(p) = HkMk,k—l(U)H;:_l ) (20>

where My —1(0) is the m x m Jacobian matrix of the nonlinear operator M in‘(9),

oM

M(o) = aM , (21)

Y ly=y()
and II and IIT are given by

o = omly] ) (22a)
Y ly=y(e)

mt = _——"3“*[“’1‘ , (22b)
6W W=W(p)

and correspond to the m x m and m X n Jacobian matrices of TI and IIT, respectively, where
we recall that m is the dimension of a model state vector and n is the dimension of an analysis

state vector.

A few remarks can be made at this point.

e Currently in PSAS the analysis error covariance matrix PZ[}: is never referenced. Indeed,

the current implementation of PSAS parameterizes the forecast error covariance matrix in
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such a simple manner that none of the terms on the right-hand side of (1d) are taken into
account. However, Wheﬁ the expressions (7) for the smoother error cross-covariances are
bypassed and the retrospective increments are calculated using the gains in (16) there are
actually no approximations involved. The only consequence of not calculating the smoother
error covariances is that we get no estimates for the accuracy of the retrospective analyses
— which, in principle, can be extracted from P}_, . Expression (16) is exact for the linear

FLKS and its nonlinear EKF-based extension.

We see from (17) that an FLKS-based retrospective scheme allows future observations to
be used to correct previous filter and retrospective analyses impaired by the lack of obser-
vations over a particular region earlier on in the assimilation. That is, when at time fx_1,
say, there are no observations over a certain region, the filter analysis at this time will
essentially equal the first-guess over that region — aside from possible contributions by
farther away regions through the forecast error correlations. If at time tx, say, observations
become available over the region in question, or information from observations at nearby
downstream regions get propagated through the adjoint of the tangent linear dynamics
A;{,kq into the region in question, this new information will be used to calculate a cor-
rection to the filter analysis at time tz_; as the lag-1 retrospective analysis represented in
(17). In these cases, it is the first term in the square bracket of (17) that mostly contributes

to the correction to the filter analysis.

Notice that the linear system (19b) solved within the retrospective analysis algorithm
involves exactly the same operators required to calculate the sensitivity of forecasts to
observation changes, as measured by some pre-specified cost function, as in the approach
of Baker and Daley [2000; compare with their eq. (2.7a)]. Furthermore, (19c) involves
exactly the operator required to examine forecast sensitivity with respect to changes in
the backgrouhd. It has been pointed out elséwhere that some of the operations in 4D-var

are closely related to operations required to study forecast sensitivity; the same is true of
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the operations in FLKS-based retrospective analysis schemes.

e A simple approximation to the retrospective analysis portion just described is to replace
the adjoint operator in (19a) by the identity. Sincé in the current implementation of
PSAS the forecast error covariance is not dynamically determined, and even with its slowly
‘varying forecast error variances it can be thought of as having a time-independent forecast
error covariance, one might expect that replacing the adjbint by the identity operator in
(19a) would result in a reasonable retrospective analysis approximation consistent with the
current underlying PSAS statistics. Todling (2000) has experimented with this idea using

an identical-twin configuration setup for GEOS and has found a significant improvement

in the mean error due to lag £ = 1 and even to lag £ = 2 retrospective analyses.

(c) The GEOS lag-1 retrospective-based iterated analysis

When the system is nonlinear, the idea to feed the filter estimate back into the analysis
equation is particularly attractive, since we expect the filter analysis to be a better estimate of
the state of the system than the first-guess provided by the model. Indeed, filtering strategies
making use of such feedback procedures are commonly found in the literature. For instance,
Jazwinski (1970, Theorem 8.2) introduces the so-called iterated EKF, which is suitable for non-
linear observation opérators. Cohr; (1997) proposes a similar procedure as an extension tolPSAS
for such operators. Iterative procedures aimed at dealing with nonlinearities of the observation
operator are sometimes referred to as locally-iterated methods, since the iterations are per-
formed at a single time. Jazwinski (1970, Theorem 8.3) also presents an iterative procedure
that is aimed at correcting errors due to the dynamical linearizations required by the EKF.
This procedure involves integrating the model with a newly estimated trajectory at each iter-
ation and for this reason it resembles a smoother procedure referred to as the iterated linear

filter-smoother algorithm. Combining ideas of filtering and smoothing leads to the possibil-

ity of developing globally-iterated procedures in which the filter analyses may be revised by a
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backward-filter integration within a certain time interval. Most of these iterative procedures are
inspired by Newton-type methods for solving systems of nonlinear equations (see Navon and

Legler 1987, and Zou et al. 1993, for reviews of Newton-type methods).

Motivated by these methods we introduce here a procedure to use the retrospective analysis
to improve the overall GEOS IAU-based assimilation. At first, the algorithm is based only
on the lag-1 retrospective analyses. At any given time t;, when a lag-1 retrospective analysis

WElk+1 (p) is available we can construct a model-space lag-1 IAU retrospective increment as

SY klk+1 (o) = H+[W2|k+1 (p)] - YIbc[k—1(U) ] (23)
whichbis similar to (14), but is constructed using observations one lag ahead of time . This lag-
1 retrospective increment can now be used to integrate the GCM over an IAU integration period
already covered before. This is illustrated schematically in Fig. 2. The diagram resembles the
regular IAU procedure presented before in Fig. 1. In fact, the top part of the diagram, above
the horizontal dotted line, is identical to the regular IAU procedure. However, now at, say, time
t = 127 we calculate a retrospective analysis by first integrating the transformed PSAS solution
vector in (18) back in time using the adjoint operation (19a); this is represented in the diagram
by the southwestward-pointing dashed arrow. A new PSAS-like linear system probvlem can then
be solved as in (19b) with the corresponding update (19c), and the lag-1 retrospective analysis
constructed; using (19d), as represented in the diagram by the box tagged “Retro ANA”. In the
end, a lag-1 retrospective increment at ¢ = 6Z is constructed as indicated in (23), and the GCM
is integrated for 6 hours using this increment as the tendency term in (9). From this point on,
the procedure follows the regular IAU schematic until it is time to process the observations at
¢t = 187 when the lag-1 retrospective analysis at t = 12Z can be calculated and the whole cycle
repeated. The thin blue arrows in Fig. 2 correspond to the retrospective trajectory. In the RIA
scheme we concentrate on the iterated filter-smoother trajectory represented in the figure by the
thick solid arrows. At a given analysis time, the relevant iterated PSAS analysis is represented

in the diagram as the analysis from the lowest PSAS box in a column of the diagram (see thick
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vertical dashed lines).

From the diagram in Fig. 2 we see that the retrospective-based iterated aﬁalysis results in a
considerable increase in computational requirements when compared with the regular procedure
in Fig. 1. Each iteration of the iterated analysis scheme requires one extra 9-hour GCM
integration and two extra PSAS analyses. Such an increase in the compufational cost can only
be justified if the procedure results in considerably improved analyses. One way to reduce
the computational burden is by calculating some of the steps in (19) at different resolutions.
Similarly to the strategy of incremental 4D-var of Courtier et al. (1994), we can for example
integrate the adjoint of the tangent linear GCM in (19a) at lower resolution \than the actual
model integration (9). Also, the retrospective PSAS-like linear system (19b) can be solved at
lower resolution than the regular linear system (11) solved in the first step of PSAS. For that
_matter, the calculations in (19a) and (19b) do not even have to be performed at the same

resolution. This type of approach to reduce computational cost involves the development of l

additional interpolation 6perators and their corresponding adjoints.

- Independently of the IAU, in the linear case when the filter portion is actually the Kalman
filter, it can be shown that to feedback the lag-1 retrospective analysis at, say, tx—1 to calculate a
revised filter analysis at time #; cannot result in an improved filter analysis. In our iterated pro-
cedure, an optimal analysis could be calculated using the first-guess from the lag-1 retrospective
analysis if the cross-covariance between the revised first-guess and the observations were prop-
erly taken into account. In fact, since the retrospective-based iterated analysis procedure here
amounts to a modified filtering procedure, the optimal gains in this case are similar to the usual
modified filter gains when the forecast and observations are correlated (e.g., Jazwinski 1970,
Example 7.5). Since in practice it would be quite difficult to calculate this cross-covariance, we

choose to neglect the cross-covariance terms all together.
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4 GEOS experimental results

(a) Configuration and experimental setup

The retrospecfive analysis procedures of the previous section were implemented as an ex-
tension to GEOS DAS. The retrospective portion of the GEOS software is compatible with the
first operational version of GEOS DAS, designed to support NASA’s Earth Observing System
mission and its Terra satellite. We refer to this earlier operational version a;s GEOS-3’ to avoid
possible confusion with the considerably upgraded version of GEOS-3 operational at the time of
this writing. The GEOS-3' GCM operates at a resolution of 1° latitude by 1° longitude and 48
vertical sigma levels, with a dynamical core essentially like that of Suarez and Takacs (1995). At
the synoptic hours, PSAS calculates the analysis at a resolution of 2° latitude by 2.5° longitude
on 20 pressure levels. Details on the implémentation of PSAS can be foﬁnd in da Silva and Guo
(1996), Guo et al. (1998), and Larson et al. (1998). As we have mentioned in the previous sec-
tion, GEOS-3’ uses the IAU procedure of Bloom et al. (1996) to generate a time-continuous state
trajectory referred té as the assimilation. For expediency, the experiments performed for the
present article used both the GCM and PSAS at the coarse horizontal resolution of 4° latitude
by 5° longitude; the GCM and PSAS vertical resolutions were kept unchanged. We also simpli-
fiy the experimental configuration by updating the GCM trajectory needed during the adjoint
integrations only every 6 hours. Except for sea-wind sa;cellite observations, all observation data
types used in GEOS-3’ are included in our experiments. Conventional observations from ships,
environmental and drifting buoys, surface stations, winds from pilot balloons, aircraft reports,
and radiosonde stations are used. Cloud track wind retrievals and TOVS geopotential height
retrievals are used as well. Furthermore, the Wentz (1997) SSM/I-derived total precipitable
water retrievals are assimilated, though not through PSAS but rather by using the method of

Hou et al. (2000).
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Four new components are required to implement the retrospective capability in GEOS DAS:
the adjoint of the tangent linear GCM; the additional PSAS-like operators involved in (19b);
the linear operator (22a) taking; model-space variables into analysis-space variables; and the
linear operator (22b) taking analysis-space variables into model-space variables. Presently, the
adjoint of the GCM includes only the hydrodynamics adjoint and the adjoint of a simple diffu-
sion scheme. Most modifications required to PSAS were quite simple since they only required
rearranging operators already available in the original PSAS software. Some effort was devoted
to derive the proper tangent linear and adjoint operators for thé transformations (10) and (13),
because we strove to make sure that the back and forth operations would render minimal error.
Some of this: work wé,s dc;ne by hand, and some was done using the automatic differentiation

tool of Giering and Kaminski (1998).

In the present article, only results for the lag-1 (6-hour) retrospective analysis are discussed.
We compare the results of three experifnents conducted over the month of January 1998. To
minimize possible differences due to spin-up issues, the experiments are actually started on 14
December 1997, but the results are ignored during this half-month period. Our first experiment
is taken as the control and it uses the reduced resolution GEOS-3" data assimilation system
mentioned abqve. The control is referred to as the CTL experiment. In the second experiment,
referred to as the RA experiment, we also calculate lag-1 (6-hour) retrospective analyses for the
entire month of January 1998. Since there is no feedback in this experiment, it uses the same
background fields and OMF time series of the control experiment. The third experiment is aimed
at evaluating the lag-1 (6-hour) retrospective-based iterated analysis procedure introduced in

the previous section, and is referred to as the RIA experiment.

We evaluate the RA and RIA experiments mainly by examining the time-series statistics
of their corresponding residuals. That is, depending on the case, we calculate time root-mean-

square (RMS) bias and standard deviation from the differences of the observations with either
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the forecast, or the analysis, or the retrospective analysis, or the retrospective forecast (see
below). To ease comparisons, we grid the residuals over 4° latitude by 5° longitude cells on the
20 pressure levels of the analysis space before calculating any statistics. We calculate statistics
only from grid-boxes containing 15 or more reports during the month. In the discussion that

follows, we concentrate on results obtained in the troposphere.
(b) Evaluation of the 6-hour retrospective analysis

We start by comparing the results of the CTL and RA experiments using the set of obser-
vations assimilated in the CTL experiment. If the 6-hour retrospective analyses are indeed an
improvement over the regular control analyses we should see that in some mean sense the RA
observation-minus-analysis (OMA) residuals are reduced in comparison to the OMA residuals
of the control experiment. As a matter of fact, one can show that in the linear optimal case,

i.e., when the filter gain is the Kalman gain,
E{(WE = Hkwipyy) (WE — Hewfypy )T} < E{(wg — Haowfy,) (wi — Hiwi) T} (24)

Although there is no guarantee of this holding in general for the suboptimal nonlinear case under
study, we would like to examine the extent to which it does. In practice, short of perturbing
the observational data, to assess this quantity we rriust make the usual ergodic assumption and -
- replace the expectation by a time average. Examination of the time RMS biases and standard
deviations of the OMA residuals when the analyses are either the regular filter analyses of the
CTL experiment or the lag-1 retrospective analyses of the RA experiment has shown them to
be virtually identical (results not shown). Therefore, from this point of view we might be led to

think that there is no payoff in calculating lag-1 retrospective analyses.

Another way of comparing the quality of two sets of analyses is to compare the skill of
forecasts issued from them. We expect forecasts issued from retrospective analyses to be superior

to regular forecasts for at least their total lag period, 6 hours in the lag-1 case here, since their
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initial conditions have had the benefit of observations that far into each forecast. Hence, we
compare the OMF residual statistics of the regular filter forecasts of the CTL experiment and of
the éo—called'retrospective forecasts issued from the lag-1 retrospective analyses. Since the OMF
residuals from a regular GEOS DAS run, such as the CTL experiment, involve thour forecasts
that are produced from partly integrating the GCM with the IAU forcing for 3 hours and partly
integrating the GCM for ano;cher 3 hours without the influence of the IAU tendencies (see Fig.
1), we must use the retrospective analyses carefully when constructing OMF residuals from them.
To make a fair comparison, we calculate OMF residuals from the 6-hour retrospective analyses
following a forecastiné procedure based on IAU. For each available retrospective analysis for the
entire month of January 1998 a retrospective forecast is issued following the schematic shown in
Fig. 3. Asillustrated in the figure, the retrospective OMF residuals at, say, 127 are calculated by
converting the 6Z retrospective analysis ’_56 the model space and constructing the correspoyding
increment on the model space, following (23). This retrospective analysis increment is used as
a tendency term during a 6-hour GCM integration, started at 3Z. At the end of the 6-hour
integrati’on the retrospective tendency term is turned off, by setting & = 0 in (9), and the model
is left to run free for another 3 hours, after which the OMF residuals at 12Z can be calculated

using the observations at that time.

Using these retrospective forecasts, Fig. 4 shows the time RMS bias (top panels) and stan-
dard deviation (bottom panels) for the radiosonde geopotentiai height OMF residuals for the
CTL (solid curves) and RA (dashed curves) experiments averaged over the western (left) and
eastern (right) quadrants of the Northern Hemisphere, for latitudes higher than 20N. These
two domains are chosen because they represent the largest concentration of radiosondes over
the globe. We see from the top panels that, in the RMS bias sense, the forecasts from the
lag-1 retrospective analyses correépond ‘to a considerable improvement over the regular GEOS
DAS analyses. However, the bottom-left panel shows that for the RMS standard deviations the

retrospective forecasts are considerably degraded compared to the regular forecasts over what
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is mostly North America; results are roughly neutral over most of Europe and Asia, as seen
from the bottom-right panel. Figure 5 displays similar quantities but now for the zonal wind
radiosonde OMF residuals. Except in the Northwestern region between pressure levels 700 hPa
and 400 hPa, the RMS bias for the zonal wind radiosonde OMF residuals is improved when fore-
casts are issued from the lag-1 retrospective analyses. In this same region, the zonal wind OMF
standard deviation [panel (b.1)] shows a minor deterioration at levels below 400 hPa, much less
than that seen in the OMF heights in Fig. 4b.1; minor improvement in the standard deviations
are seen above 400 hPa. Over the Northeastern region a minor but consistent improvement is

observed in both the RMS bias and standard deviation, as indicated in the panels on the right.

The statistics of OMF residuals for other variables and other observing systems can also be
examined. Figure 6 shows the time RMS biases (top panels) and standard deviations (bottom
panels) for the TOVS geopotential height OMF residuals. Since TOVS provides global coverage
in the course of a single day, the spatial averages now cover the entire Northern Hémisphere
(left panels) and Southern Hemisphere (right panels). We see considerable improvement in the
OMF biases and standard deviations from the retrospective forecast residuals. Interestingly,
the standard deviation results over the Northern Hemisphere [panel (b.1)] contradict the dete-
rioration observed in the radiosonde geopotential height OMF residuals [panel (b.1) of Fig. 4]:
We attribute this contradiction over North America to contradictions between the geopotential
height observations from the radiosondes and the TOVS retrievals themselves and not to the

retrospective analysis procedure.

Another qgantity we have studied is simply the spatial average of the residuals time mean.
Though we expect considerable cancellation of errors in this quantity, it still serves as an indicator
of the overall behavior of the residuals and of the underlying procedure used to produce them.
Figure 7 shows the time mean OMF residuals for the CTL 6-hour first-guesses (forecasts) and

the lag-1 retrospective forecasts. The globally-averaged time means for TOVS and radiosonde
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geopotential height OMF residuals are displayed in panels (a) and (b), respectively. We see
mostly a reduction in the time mean residuals when the retrospective forecasts are used instead
of the regular forecasts, with some overshooting at levels below 700 hPa for the TOVS residuals.
The zonal and meridional wind components of the radiosonde OMF residuals are displayed in
panels (c) and (d), respectively, and again we see an overall reduction when the retrospective

forecasts are used, with some overshooting of the mean meridional wind around 150 hPa.

In terms of the metrics presented here for the nonlinear suboptimal case of the GEOS applica-
tion, we see clear benefit in producing the 6-hour forecasts from the lag-1 retrospective analyses
over the regular GEOS DAS forecasts. This serves to indicate improved analysis quality with
the RA scheme. This also serves as further motivatiqn to consider the iterated retrospective
analysis procedure proposed in the previous section, since it makes direct use of the retrospective

forecasts (see Fig. 2).
(¢) Evaluation of the 6-hour retrospective-based iterated analysis

We now evaluate the performance of the 6-hour (lag-1) retrospective-based iterated analysis
scheme. We start by comparing the OMA residuals between the CTL and the RIA experiments.
Figure 8 shows the globally-averaged time RMS bias for TOVS and radiosonde geopotential
height OMA residuals [panels (a) and (b), respectively], and for the zonal and meridional com-
ponents of the radiosonde winds [panels (c) and (d), respectively]. Although small, we now
actually see improvement in the OMA residuals due to the iterated analysis. To the extent that
the expectation can be replaced by the RMS time mean, the inequality (24) holds when wzl ka1
corresponds to the iterated analysis, at least in a globally-averaged sense. We have examined
the time RMS standard deviations of the OMA residulas of both the CTL and RIA experiments

and have found it to change very insignificantly.

Even though small, the improvement due to the RIA scheme seen in Fig. 8 is also visible
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directly from the time series of the globally-averaged OMA residual RMS bias. Furthermore,
this improvement is seen not only for TOVS and radiosonde OMA residuals, but for other
instruments as well. An illustration is presented in Figure 9 by displaying the globally-averaged
RMS bias of the zonal (top) and meridional (bottom) cloud-track wind OMA residuais af 200
hPa. The thin curves correspond to the OMA residual time series from the CTL experiment
and the thick curves are for the RIA experiment. The global reduction in the RMS bias can be
as much as 1 m s~! at times. This confirms the reduction in the globally-averaged time RMS
Bias of the radiosonde OMA residuals observed in panels (c) and (d) of Fig. 8 around the same

pressure level.

Frequently, changes made to assimilation syétems are evaluated and validated by making
comparisons with independent observations, that is, observations which are not assimilated
by the system. Data withholding experiments are commonly used to assess the impact of a
particular observing system and can also be used to evaluate the impact of system changes (e.g.,
Bouttier and Kelly 2001, and references therein). Here we choose to validate the change in
the 200 hPa winds of Figs. 8 and 9 by using wind observations from the Global Aircraft Data
Set (GADS) of the British Airways Boeing 747-400 flights, and by using further aircraft wind
observations from the Aircraft Communications, Addressing, and Reporting System (ACARS).
Neither of these observation types were used in our assimilation experiments and therefore they

provide independent checks.

The GADS wind observa;cions have been shown by Rukhovets et al. (1998) to be of value
to GEOS DAS if used regularly in the PSAS analyses. This suggests that any changes made to
GEOS that show its analyses to draw more closely to these observations, even when they are
not assimilated, should be considered an improvement. With that in mind, we used a dataset
of the January 1998 GADS observations to construct OMA residuals for the analyses of both

the CTL and RIA experiments. Figure 10 shows maps of the time RMS standard deviation
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of the zonal (top) and meridional (bottom) GADS winds OMA gridded residuals for the CTL
experiment subtracted from the same quantity for the RIA experiment (RIA-minus-CTL). The
color scheme in the figure indicates that blue (negative values) corresponds to improvements
due to the RIA procedure. Though we see areas where the impact of RIA is neutral or negative,
in most places the GADS observations are closer to the analyses of the RIA experiment than to

those of the CTL experiment.

Similarly, Fig. 11 shows the differences of Fig. 10, but now for the ACARS wind OMA
residuals. The maps are focused over North America since that is where the majority of the
observations are concentrated in this case. Relatively neutral results are seen in the meridional
component of the wind (bottom map), but undeniable improvement due to the RIA scheme is

seen in the zonal component of the wind (top map).

Ultimately, as emphasized by CST94, one of th;a main motivations for performing retrospec-
tive analysis is to produce the best possible dataset for climate research. As such, it is important
to examine the climatological impact of changes induced by the RIA procedure. Since the results
of the experiments discussed here are still preliminary we do not want to dwell too much on the
significance of performing RA and RIA for the pﬁrposes of improving the climatological aspects
of the assimilation strategy — recall that our experiments are for a very low resolution version
of GEOS-3'. Still, we cannot avoid looking more closely to see what is the climatological impact
of changes such as those observed in the wind field. In fact, the significance of the RIA impact
on the upper-level winds can be seen more clearly by looking directly at the monthly-averaged
winds. For instance, Fig. 12 shows the zonally-averaged January 1998 monthly mean merid-
ional wind (top) for the RIA experiment and its difference from the CTL experiment (bottom).
The bottom panel shows a distinct tropical wind strengthening at the upper levels and a slight

weakening at the mid- to lower levels when the RIA scheme is used.

This change in the tropical meridional wind affects the Hadley circulation. To see the
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meridional circulation, we calculate the mass stream function % by integrating the zonally-

averaged monthly mean meridional wind using the expression

__ 2mRcos¢ [?

[0] dp’, (25)
g ’ Ptop

(0

Wherev v stands for the meridional wind, the operator ® represents the time mean, the operator
[#] represents for the zonal average, R is the mean radius of the earth, g is the gravity constant, 103
is the latitude, and the integral is from p;o, = 10 hPa to a pressure p down to the surface. Figure
13 shows the January 1998 mass stream function for both the CTL (top) and RIA (bottom)
experiments. We see a clear enhancement of the Hadley circulation when the RIA procedure is
used, with the mass stream function peaking at about 16 x 10° kg s~ in contrast to the weaker
peak of 12 x 10'° kg s™! for the circulation of the CTL experiment. Although we do not expect
the circulatio‘n to be well-represented at the coarse resolution we use in our éxperiments here, it
is much closer to the circulation pattern of the full-resolution, 1° latitude by 1° longitude GEOS
DAS (not shown), with its tropical circulation pe./aking at 18 x 1010 kg s~1. This suggests that

the RIA scheme has the potential for improving climatologically relevant features.

Finally, we compare the skill of 5-day forecasts issued from the CTL and the RIA analyzed
fields. These are initialized as in Fig.3. Since our experiments are confined to the single month of
January 1998, we have few independent samples for this comparison. We issued 5-day forecasts
starting from 2 January 1998 every 3 days until 26 January 1998, to have a small sample of 9
5-day forecasts. We verified that the overall conclusions and skills calculated from this small
ensemble were not affected by the size of the sample by reducing the size of the sample to 5
members and performing cross-validation. As a measure of forecast skill we calculated a,nomalyl
correlations and RMS errors [e.g., von Storch and Zwiers 1999, Egs. (18.17) and (18.18)]. Both
the CTL and RIA forecasts were verified against their own analyses. Anomalies were calculated
using a 10-year climatology obtained from ECMWTF operational analyses for the period of 1988
to 1997, and interpolated to the resolution of our experiments. We should say that the scores

shown below are not representative of the scores of the operational GEOS-3 data assimilation
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system, which operates at higher resolution than that of the experiments here.

Figure 14 shows the anomaly correlat.ions for the 500 hPa geopotential height field calculated
over four diﬁ‘eren-t regions for the 5-day forecasts issued from the CTL (solid curves) and RIA
(dashed curves) analyses. We see that over the Northern Hemisphere extratropics (top-left
panel) forecasts from RIA analyses are of similar skill as forecasts from the control analyses,
at least up to day 4. Over North America (bottom-left panel) the forecast skill from RIA
analyses show some deterioration when compared against the skill of the CTL forecasté. As when
studying the OMF residuals obtained from the retrospective foreéasts using the RA analyses,
this deterioration over North America might be related to contradictions in the observing sys.tem>
over this area (see Figs. 4b.1, 6b.1). In fact, this seems to be an issue confined to this region
since, for example, over the Southern Hemisphere (top-right panel) and Europe (bottom-right

panel) we see improvement in skill when the 5-day forecasts are issued from the RIA analyses.

As a final illustration comparing the 5-day forecast skill from the CTL and RIA experiments
we examine the RMS error of the tropical wind fields at 850 hPa and 200 hPa. Figure 15 disblays
these quantities for both the zonal (left panels) and meridional (right panels) components of the
wind. The RMS errors at 850 hPa are virtually identical, while at 200 hPa we see a slight
improvement when using foreca,stsvfr(‘)m the analyseé of the RIA experiment. Although these
are small improvements they serve as further confirmation of what we have seen previously when

comparing the analyses of the CTL and the RIA experiments with independent observations.
5 Conclusions

A central purpose of atmospheric data assimilation is to produce the best possible estimate
of the the state of the atmosphere at any single time. In theory this can be accomplished by

using smoothing techniques since they are aimed at maximizing data usage through inclusion of

30



observations in the past, present, and future of the time an estimate is sought. In the context
of sequential data assimilation, the fixed-lag Kalman smoother (FLKS) provides a particularly
attractive framework. The FLKS formulé,tion is based fully on the underlying filtering strategy.
Its standard formulation requires no error covariance information beyond what is required by the
filtering approach. Indeed, the FLKS can be separated into a filter portion and a retrospective
analysis (RA) portion and this separation renders practical implementation of FLKS-based

procedures a relatively simple extension of an already existing (filter) analysis scheme.

Two different types of retrospective procedures are investigated in the present work. The
first is the original FLKS-based formulation referred to simply as RA. The second is an iterated
version of the original algorithm, referred to é,s RIA, in which lag-1 retrospective analyses are
used to revise the previously calculated filter analysis. Both these procedures are implemented
as an extension of the Goddard Earth Observing System (GEOS) Data Assimilation System
(DAS). The new components required for implementing a retrospective capability in GEOS
DAS are the adjoint of the tangent linear model of the GEOS general circulation model (GCM);
the rearrangement of a few operators already available .in the physical-space statistical analysis
system (PSAS) of GEOS DAS; and the development of the tangent linear and adjoint operators
responsible for transforming between model-space variables and analysis-space variables as well
as the adjoint of the operator transforming analysis-space variables into observables. The adjoint
of the tangent l;mear GCM used in the present work includes the adjoint of the tangent linear
hydrodynamics and the adjoint of a simple diffusion term; the adjoint of the physics is not

included.

Only results for the 6-hour (lag-1) retrospective analysis were studied here. Although close
examination of the observation-minus-analysis (OMA) residuals seemed to suggest a rather
neutral benefit from the lag-1 retrospective analysis, we saw improvement in the 6-hour forecasts

issued from these lag-1 retrospective analyses: these so-called retrospective forecasts are a closer
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match to the observations than the regular GEOS DAS forecasts. This imprbved 6-hour forecast
skill motivated the investigation of the RIA scheme since this scheme makes explicit use of the
retrospective forecasts. Evaluation of the analyses from the RIA procedure iﬁdicated them to be
closer to the observations than the usual PSAS analyses. The OMA residuals for independent '
observations not used during the assimilation further confirmed some of the improvements due
to the RIA scheme. More significant improvements were seen when examining climatologically
important fields such as the mass stream function describing the meridional wind circulation.
Lastly, anomaly correlations and root-mean-square errors from a small sample of 5-day forecasts
indicated: a mild improvement in skill scores when analyses from the RIA procedure were used
for the 5-day forecasts instead of the regular GEOS analyses. Although the skill scores were not

improved everywhere over the globe, they were improved generally.

Much work remains to be done to show that retrospective analysis is a worthwhile extension
to the usual PSAS analysis of GEOS. The present work used only a reduced-resolution version
of GEOS DAS and a study with a higher resolution version is necessary. Just as in four-
dimensional variational procedures, one of the main features of the retrospective analysis is
its capability to incorporate backward-propagated information into the retrospective analyses
via the model adjoint. This should, in particular, result in improved representation of synoptic
features. Synoptic evaluation has not been explored in the present work and awaits full-resolution
experimentation. Furthermore, it is evident that instead of windowing the observlations in 6-
hour batches, as is commonly done in 3D-var systems, much can be gained by assimilating
observations at their proper time, as is done in 4D-var. An alternative rapid update cycle
strategy is being considered for this purpose at the DAO and it will be important to investigate
the impact of retrospective analysis in this cor;text. These studies will be done primarily in the
context of the newly developed finite-volume data assimilation ‘system. In any case, the results
presented here show promise for the development of retrospective analysis capabilities in this

new assimilation system.
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APPENDIX A

Retrospective gains as a function of filter variables only

The purpose of this appendix is to derive the alternative expression (16) for the retrospective

gain matrix (see also Zhu et al. 1999). Using (6) and (7) with £=1,2, ...,J we have

Kiap = 2_1‘k_1A£k_1HfI‘;1
= Pi—l]k—Z [(I - Kk—llk—lHk—l)TAZ,k—l] Hfl“? ] (A.la)
aa T T TH-1
Kipp = (Pk—l,k—2|k—-1> Apr1Hp Ty

= Pz-21k—2A£—1,k—2 [(T- Kk—l]k—1Hk—1)TA£k_1} HIT;!
= P£_2|k_3 [(1- K app—oHr—2) AT 4o [(I- Kk—llk—lHk—l)TAz:,k—l]
xHIT', © (A.1b)
Ki—jix = <P2‘11,k—j1k—1>T AT, HIT
= Pi—jlk—j—l [(I - Kk—jlk-jHk—j)TAg—jﬂ,k—j] [(I - Kk—llk—in—l)TAik—l]

xHIT!. | (A.lc)

This can be written generally as in (16) or, making explicit use of (1c) for the filter gain matrix,

we can also write
k
— pf T p-1 7. f T Tp-1
Kk-ﬁlk - Pk—elk—z-l H (I_ Hj—lrj—lHJ—lpj—llj—Z)Aj:j—l Hkrk ’ (A'2)
j=k—£+1

which shows that, as pointed out in the main text, the retrospective gains depend only on filter
quantities. Todling et al. (1998) have pointed out that the retrospective portion of the FLKS
implicitly accounts for model error. The equation above serves to re-emphasize that remark as

it shows that the retrospective gains depend directly on the forecast error covariance matrix,

which is the filter quantity containing model error covariance information.
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Figure 1: Schematic representation of the incremental analysis update (IAU) procedure. The
dashed arrows represent the 3-hour GCM integration that provides the first-guess (forecast) to
PSAS. At each analysis time PSAS uses observation-minus-forecast (OMF) residuals to calculate
an updated state estimate (analysis; vertical dotted lines). The analysis-minus-forecast difference
is converted to a model-space tendency term used to force the GCM during a 6-hour integration
around the analysis time; this is the IAU period represented by the solid thick arrows. The
cycle is repeated with a 3-hour GCM integration, without the IAU tendency term, to provide
the first-guess for the next analysis time. The line formed by the solid arrows represents a
time-continuous IAU trajectory, referred to as the assimilation. (Similar to Fig. 1 of Bloom et
al. 1996).
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Figure 2: Schematic representation of the lag-1 iterated retrospective data assimilation pro-
cedure. Dashed north-eastward pointing arrows represent GCM first-guess integration; solid
eastward-pointing arrows represent GCM integration forced by IAU (thick) and retrospective
IAU increment (thin). Dashed south-westward-pointing arrows represent 6-hour adjoint model
integrations. The boxes labeled “Retro ANA” stand for the PSAS application in (19b). The
retrospective assimilation is used to provide a revised first-guess that is further used to revise
the filter analysis at each synoptic time.



Figure 3: Schematic of the procedure to issue forecasts from retrospective analyses using the
IAU framework. Arrows are similar to those in Fig. 1. The main purpose of the retrospective
forecast is the calculation of the OMF residuals indicated by the “Retro OMF” box.
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Figure 4: Time root-mean-square (RMS) bias (panels a) and standard deviation (panels b) for
the radiosonde geopotential height OMF residuals for the control experiment (solid curves) and
for forecasts from the lag-1 retrospective analyses from the RA experiment (dashed curves). -
Panels 1 on the left are for the Northwestern quadrant of the globe defined between longitudes
180W-0 and between latitudes 20N-90N; panels 2 on the right are for the Northeastern quadrant
of the globe between longitudes 0-180E and latitudes 20N-90N. Units are in meters on the
abscissa and hPa on the ordinate.
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Figure 5: As in Fig. 4, but for zonal wind radiosondes OMF residuals. Units on the abscissa

are now m s~ L.
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Figure 7: Globally-averaged time mean OMF residuals for the CTL experiment (solid curves)
and for the retrospective forecasts (dashed curves). Panel (a) is for the geopotential height
TOVS retrievals residuals; panels (b)-(d) are for the geopotential height, zonal wind, meridional
wind radiosondes residuals, respectively.
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Figure 10: Maps of the 200 hPa time RMS standard deviation of the GADS winds OMA residuals
of the CTL experiment subtracted from the same quantity for the RIA experiment. The top
map is for the zonal wind and the bottom map is for the meridional wind. Units are in m s™!.
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Figure 11: Same as in Fig. 10, but for the ACARS wind OMA residuals. Only North America
is displayed since it corresponds to the area where the bulk of these observations are.
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Figure 14: Anomaly correlations for 500 hPa geopotential heights for CTL (solid curves) and
RIA (dashed curves) experiments.
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