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Scientists studying the atmosphere typically rely on mathematical and computer mod-

els to try to make sound predictions about weather and climate change. By themselves,

these models are not enough to allow for very accurate predictions since not all natural

processes are known and accounted for in the models. Data assimilation is the vehicle

used by scientists to bring model predictions close to reality. Atmospheric data assimila-

tion consists of a series of mathematical steps that combine model predictions with actual

observations of the atmosphere to produce an estimate of the state of the atmosphere at

any given time. The estimates are commonly referred to as analyses. When all goes well,

the analysis is a better estimate of the state of the atmosphere than the estimate provided

by either the model or the observations alone. Usually, only observations before and at the

time of the analysis are used to calculate this "filter" estimate. The name filter comes es-

sentially from the fact that, in a manner of speaking, this assimilation procedure combines

the best of two worlds by filtering out their errors" the "observation-only world" and the

"model-only world". More sophisticated assimilation procedures known as smoothers are

capable of combining filter estimates with observations within a certain time interval to

produce refined estimates of the state of the atmosphere, within the desired time interval.

There are different smoother types. In the present work the so-called fixed-lag Kalman

smoother is used as a framework to construct a retrospective assimilation system for the

NASA/Goddard Earth Observing System (GEOS) Data Assimilation System (DAD). In

this type of smoother formulation, when observations up to 6 hours ahead of a regular filter

estimate are used to calculate the (refined) retrospective estimate we say we are calculating

the lag-1 retrospective analysis; when observations up to 12 hours ahead of a regular

filter estimate are used to calculate another (even more refined) retrospective estimate

we say we are calculating the lag-2 retrospective analysis; and so on. The results of our

experiments with GEOS DAD indicate that the lag,1 retrospective assimilation procedure

does indeed provide an overall improvement over the regular assimilation procedure. One

particular significant result, obtained by studying the skill of 5-day forecasts, indicates

that lag-1 retrospective analyses seem to consist of better initial conditions than those

normally provided by the filter analyses. Even though our results are obtained for a

slightly simplified version of GEOS DAD, they are quite promising and work is already in

progress to expand this research, including study of the impact of lags higher than one.

*Additional affiliation" Science Applications International Corporation, Beltsville, Maryland.
tAffiliation: Department of Mathematics and C.S.I.T, Florida State University, Tallahassee, FL 32306



Abstract

Thefixed-lagKalmansmoother(FLKS)hasbeenproposedasaframeworkto constructdata
assimilationprocedurescapableof producinghigh-qualityclimateresearchdatasets.Fixed-lag
Kalman smoother-basedsystems,referredto asretrospectivedata assimilationsystems,arean
extensionto three-dimensionalfiltering procedureswith the addedcapabilityof incorporating
observationsnot only in the pastandpresenttime of the estimate,but alsoat future times. A
variety of simplificationsarenecessaryto renderretrospectiveassimilationprocedurespractical.

In this article,wepresentanFLKS-basedretrospectivedataassimilationsystemimplemen-
tation for the GoddardEarth ObservingSystem(GEOS)DataAssimilationSystem(DAS).The
practicality of this implementationcomesfrom the practicalityof its underlying(filter) analysis
system,i.e., the physical-spacestatistical analysissystem(PSAS).Thebehaviorof twoschemes
is studiedhere.The first retrospectiveanalysis(RA) schemeis designed,simplyto updatethe
regularPSASanalyseswith observationsavailableat timesaheadof the regularanalysistimes.
Although our GEOSDASimplementationisgeneral,resultsareonly presentedfor whenobser-
vations6-hoursaheadof the analysistime areusedto updatethe PSASanalysesandtherebyto
calculatethe so-calledlag-1retrospectiveanalyses.Consistencytestsfor this RA schemeshow
that the lag-1retrospectiveanalysesindeedhavebetter 6-hourpredictiveskills than the pre-
dictionsfrom the regularanalyses.This motivatesthe introduction of thesecondretrospective
analysisschemewhich,at each'analysistime, usesthe 6-hourretrospectiveanalysisto replace
the first-guessnormallyusedin the PSASanalysis,and thereforeallowsthe calculationof a
revised(filter) PSASanalysis. Sincein this schemethe lag-1retrospectiveanalysesinfluence
the filter results,this procedureis referredto astheretrospective-basediterated analysis(RIA)
scheme.Resultsfrom the RIA schemeindicateits potential for improvingtheoverallquality of
the assimilation.



Introduction

L

The concept of retrospective data assimilation, as invoked in the present article, was introduced

by Cohn et al. (1994; CST94 hereafter) to refer to the calculation of the analyses from observa-

tions after the analysis time, as well as before and at the analysis time as is done in numerical

weather prediction. Retrospective data assimilation is possible when analyses are not required

in real time, such as in the production of reanalysis data sets for climate research.

In estimation theory, estimates of the state of a system produced from observations on both

sides of the analysis time are known as smoother estimates. In sequential data assimilation a

natural smoothing technique to employ is that of fixed-point smoothing. In this case, the usual

filter estimate obtained at a fixed time using observations before and at the analysis time is

sequentially updated as future observations became available. Future observations can be used

for as long as experimentation shows their impact to be useful. The idea of estimating the

state of a system at a fixed time over and over again as more observations become available can

be taken a step further by seeking fixed-point estimates at a series of consecutive fixed times.

This is what is accomplished by fixed-lag smoothing. Specifically, for linear systems under

the typical assumption of unbiased Gaussian-distributed errors the fixed-lag Kalman smoother

(FLKS) provides the best unbiased estimate of the state of the system at a sequence of given

times using observations in the past, present, and at a time lag-g ahead of the time of each

estimate.

The FLKS is composed of two major components- the Kalman filter (KF) portion and the

fixed-lag smoother portion. The FLKS is fully dependent on the KF as it is formulated on the

basis of the observation-minus-forecast residuals resulting from the KF. In general, when the

filter is not the KF, but rather some suboptimal implementation of it, we can still think of sub-

optimal implementations of FLKS-based retrospective data assimilation schemes as consisting



of a filter portion and a smoother(or retrospective)portion. Todling et al. (1998)usedthis

explicit separationbetweenfiltering and smoothingportionsto study the behaviorof a vari-

ety of combinationsof filter and smootherapproximationsto the linear FLKS. Oneparticular

approximationstudiedthere,namelythe adaptiveCCF-basedretrospectivedata assimilation

scheme,wasseenas having the potential for beingimplementedin practice. It replacesthe

filter portion of the FLKS by a constant forecast error covariance filter much like operational

three-dimensional variational analysis systems do. The spectral statistical-interpolation analysis

system of Parrish and Derber (1992) is an example of such a system; the U.S. Navy analysis

system of Daley and Barker (2001) is another; the European Center for Medium-Range Weather

Forecasts (ECMWF) system of Courtier et al. (1998) is yet another; and so is the physical-space

statistical analysis system (PSAS) of Cohn et al. (1998), which is also central to the work in

the present article.

To take forward the idea of developing a practical retrospective data assimilation system,

the linear FLKS formulation of CST94 has to be extended to handle nonlinear dynamics. Since

the retrospective portion of the algorithm relies completely on the filter, designing nonlinear

filters immediately results in designing nonlinear smoothers. Todling and Cohn (1996; TC96

hereafter) derived a nonlinear FLKS algorithm based on the traditional extended Kalman filter

(EKF).Similar derivations can be found elsewhere (e.g., Biswas and Mahalanabis 1973; Verlaan

1998). The way smoothers use future observations to calculate updates to state estimates is

by propagating information back in time using the adjoint dynamical model. For nonlinear

dynamics the adjoint of the tangent linear dynamics must be provided in principle. Four-

dimensional variational (4D-var) procedures such as that of Rabier et al. (2000) also require the

adjoint of the tangent linear dynamics. The need for the adjoint model can be avoided if the

retrospective assimilation strategy is based on ensemble techniques such as that of Evensen and

van Leeuwen (2000).
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In this article,westudytheperformanceofa PSAS-basedretrospectiveanalysis(RA) system

developedfor the GoddardEarthObservingSystem(GEOS)Data AssimilationSystem(DAS).

Sincethe forecasterror covariancematrix of PSASin GEOSDAS variesslowly in time we

can identify the suboptimalRA procedurestudiedherewith the CCFschemeof Todlinget al.

(1998).Our RA implementationin GEOSDASisgeneralandapplicableto anynumberof time

lags,but in the presentarticleweconcentrateon resultsfor the 6-hour,i.e. lag-l, retrospective

analysis. Motivated by someof the resultsobtainedwith this version,and by the ideasof

constructingso-cMlediteratedfilters _nd smootherscommonin the engineeringliterature, we

alsostudy herethe performanceof a retrospective-basediteratedanalysis(RIA) scheme.In the

RIA, the lag-1retrospectiveanalysisat agiventime tk-1 is used to produce a new first-guess at

time tk that is used to revise the filter (PSAS) analysis at the same time tk. In the RIA the final

analysis is the second (iterated) analysis calculated using the first-guess generated from the lag-1

retrospective analysis. This is a considerably different use of the -static,, retrospective analyses

proposed by CST94. Though a formal argument for the RIA procedure is not presented here,

the procedure is found to improve the overall quality of the analyses. This lag-1 RIA scheme

makes the retrospective procedure resemble a 4D-var cycle (e.g., Courtier et al. 1994; Rabier et

al. 2000, Li and Navon 2001).

Indeed, the original FLKS-based retrospective analysis formulation of CST94, and the RIA

here, can be viewed as alternative approaches to 4D-var. The FLKS framework is a natural

four-dimensional extension to three_dimensional procedures formulated sequentially rather than

variationally. Four-dimensional variational procedures are an extension of 3D-var that take

into account observations within a time interval. Mfinard and Daley (1996) have shown the

equivalence of 4D-var and fixed-interval smoothing. Similarly, for linear dynamics, the FLKS is

algebraically equivalent to 4D-var and can be derived from the 4D-var cost function by solving a

two-point boundary value problem (Zhu et al. 1999). The main distinction between 4D-vat and

the FLKS is in their computational approaches. The former involves an iterative optimization



procedureto arriveat the solution,whereasthe latter dealsdirectlywith the analyticalsolution

of the problem.Onepracticalconsequenceof this distinction relatesto howtheseprocedures

accountfor modelerror. As pointedout by Todlinget al. (1998),FLKS-basedassimilation

schemesdirectly inherit any modelerror covarianceparameterizationembeddedin the filter

portion. Varioustechniquesto accountfor modelerrorin 4D-varcanbe formulatedby usingthe

dynamicalmodelasa weakconstrainton theoptimizationproblem(e.g.,Derber1989;Bennett

et al. 1996;andZupanski1997).However,until a morecompleteunderstandingof modelerror

is acquired,andthe correspondingmodelerror covarianceparameterizationscanbereliedupon,

this distinctionbetween4D-varandFLKS-basedassimilationisrathermoot. Anotherimportant

point to makerelatesto whatnowseemsto be recognized(Fisherand Andersson2001)asone

of the main advantagesof 4D-varover3D-var-likeprocedures,namely,that the formerusesthe

observationsnearlyat their propertimes[asthecaseof theECMWF 4D-varimplementationof

Rabieret al. (2000)],whereasin the latter it is morecommonto bundlethe observationsinto

6-hourbatches.This canbe resolved,particularlyin sequential3D-varassimilationprocedures,

by usinga rapid updatecyclestrategy.Thoughthis is not exploredin the presentarticle, since

in GEOSDAStheobservationsarebundledinto 6-hourbatches,weshouldpoint out that there

is no intrinsic difficulty in buildinganFLKS-basedretrospectiveanalysissystemundera rapid

updatecyclefiltering strategy.

In the sequelwebriefly review,in section2, the theoreticalframeworkbehindretrospective

analysis.The presentationis basedon the EKF and the correspondingnonlinearextensionof

the FLKS. ,Insection3, we describethe frameworkof our practical implementationdirected

toward addinga retrospectivecomponentto GEOSDAS; here,both the RA andRIA schemes

arepresented.In section4, resultsof a preliminaryevaluationof theseretrospectiveschemes

arepresentedanddiscussed.Conclusionsaredrawnin section5.



2 Theoretical framework" the fixed-lag Kalman smoother

In this section we briefly recapitulate the formulations of the fixed-lag Kalman smoother of

CST94 and TC96. Following Todling et al. (1998) we separate the FLKS intoa filter portion and

a retrospective portion. The filter portion is based on the linear Kalman filter, or more generally

on any nonlinear extension of the KF; the retrospective portion is based on the linear fixed-lag

Kalman smoother, or any equivalent nonlinear extension compatible with the underlying filter.

As in TC96, the discussion below is based on the EKF.

(a) The filter portion

Using the notation of CST94, the filter portion of the FLKS formulation of TC96 can be

summarized by the usual EKF equations

w£,___ = A___(w; 11__1)

Wkl_ - w Ik-1 +K_lkvk'

-1Kkl_ -- P I_-_HTFk ,

pf a T_lk-1 -- Ak,k-lPk-llk-lAk, k-1 + Q_ '

P_I_ = (I--Kk,kHk)P_lk__

(la)

(lb)

(lc)

(ld)

(le)

The first two expressions refer to the state estimate evolution, which depends on the last three

expressions essentially related to error covariance evolution and update. At time tk, the forecast

n-vector WkYlk_l evolves through the nonlinear dynamical operator Ak,k-1 from the analysis n-

vector w___lk_l, according to (la f. The dynamical operator Ak,k-_ stands for, say, a general

circulation model, and possibly any transformationsnecessary to convert the model prognostic

variables into the filter state vector, and vice-versa.

The main difference in the EKF equations written above and the way they more commonly

appear in the atmospheric data assimilation literature (e.g., Miller et al. 1994) is in the time



subscripts. Here, the subscripts follow standard engineering notation developed in estimation

theory and which is mostly suitable to the development of smoothers. This subscript notation

is also particularly helpful in reminding us that for linear systems perturbed by Gaussian-

distributed noise the forecast wklk_If and analysis wklka state vectors are actually conditional

means of the true state n-vector w_, that is,

W_lk_ 1 = E{W_I o "'" ,Wk_l, W_}, (2a)

O

W a -- S{W_IW_, Wk-- 1, , ,klk .... (2b)

at time tk. The conditioning, represented by the vertical bar in the expectation operator g{ • ]o},

is on the time series'of observations w ° The forecast at time t_ is the expected value of the truek"

state conditioned on all observations prior to time tk; the analysis at time tk is the expected

value of the true state conditioned on all observations up to and including those at time tk.

The EKF, like the KF, depends on the residual p_-vector v_ in (lb) formed by the difference

between the pk-vector of observations w_ and the model-predicted "observations" _(w_lk_l )

at time t_, that is,

- -

The nonlinear observation operator _k stands for the transformations involved in converting

filter state vector quantities into observables. Optimality of the filter depends on the n ×

Pk weighting matrix K_I k given to this observation-minus-forecast (OMF) residual vector vk

through (lb). Although the expression for the weighting matrix Kklk in the EKF is similar in

form to its linear KF equivalent, contrary to the linear case, K_I k in (Ic) is now state-dependent

since the p_ × n Jacobian matrix Hk of the observation operator 7{k is linearized around the

forecast state vector w_l__ 1. Statedependence of the EKF weighting matrix K_I k also comes

from its dependence on the OMF residuals covariance matrix F_, given by

rk -- HaP_dl__IHT + R_, (4)



for uncorrelated observation and forecast errors. Here, Rk is the pk × Pk observation error

covariance matrix and P£1k-1 is the state-dependent n × n forecast error covariance matrix. The

dependence of the forecast error covariance matrix in (ld) on the state comes from the n x n

Jacobian matrix Ak,k-1 of the dynamics operator Ak,k-1 which is linearized about the model

trajectory initialized from the analysis vector W__llk_ 1. The forecast error covariance matrix

also depends on the model error covariance matrix Qk, which is normally assumed to be known.

Since the forecast error covariance matrix PkYlk_l evolves from the -n × n analysis error covariance

matrix pa it depends further on the accuracy of the previous estimate calculated by the

filter, i.e., through (.le) applied at time tk-1.

In the linear case, the dynamics and observation operators reduce to Ak,k-1 -- Ak,k-1 and

_k- Hk, respectively, and (1) reduces to the linear KF for known model and observation error

statistics. Moreover, as pointed out in TC96, in the linear Gaussian-distributed noise case, the

forecast and analysis error covariance matrices are the conditional mean error covariances. It

is when the observation errors are Gaussian and white in time, that the time series of residual

vectors vk can be identified with the innovation sequence (see for example, Anderson and Moore

1979, section 5.3)

(b) The retrospective portion

In the FLKS, the retrospective portion uses the OMF residual vector vk at time tk to

calculate corrections to filter analyses and retrospective analyses at previous times tk-e using

an update equation similar to the state update expression (lb) of the filter portion. The lag-g

FLKS retrospective analyses based on observations newly available at time tk are calculated by

O_ a

w__el k - w__elk_ _ + Kk-el_vk,

for £- l, 2,..., min(k, L), and a maximum desired lag g- L. They are analyses for times tk_z.

Each retrospective analysis for fixed time tk-e is also an "incremental" correction to an estimate



of the state calculated previously. For example, when k - s and _ -- 1, the lag-1 retrospective

is a correction to the most recently available state estimate at time t_-1, i.e., theanalysis w a

filter analysis w a based on the observations newly avail.able at time t_; when k - s + 1
_-iI_--I _

and _- 2, the lag-2 retrospective analysis w a_-iI_+i is a correction to the most recently available

state estimate at time t_-1 which is now the lag-I retrospective analysis w __-i;_; and so on up to

the desired lag _- L when the estimate at time t_-1 is given by the lag-L retrospective analysis

W a

_-ll_+L-I"

This example to illustrate the mechanism for correcting consecutive state estimates at a given

time with successive smoother calculations makes the FLKS algorithm resemble very much the

fixed-point smoother. This is simply because in this example we chose to fix the time at which

estimates are being sought, that is, time t__l. The resemblance between the fixed-lag and

fixed-point smoothers is no coincidence. The FLKS of CST94 and TC96 can be derived from a

fixed-point smoother formulation using, for example, the approach of state augmentation (e.g.,

Biswas and Mahalanabis 1973). Out point here is simply that the incremental corrections to

the state estimates at a fixed time t__l are calculated on the basis of the OMF residual vectors

v_, V_+l, and so on up to V_+L_ I. That is, each lag of the algorithm introduces corrections to

the state estimate by using observations at times further and further ahead of the retrospective

analysis time, up to the maximum desired lag L.

Because the retrospective analyses are based on the same OMF residual vectors used in

the filter portion of the algorithm, the retrospective n × p_ weighting matrix K___I_ depends

on the OMF residual covariance matrix F/_ in (4). Furthermore, K/_;el_ also depends on the

n × p/_ matrix HkT, the transpose of the Jacobian of the observation operator, and on the n × n

/_ through the EKF-based expressionforecast-analysis cross-covariance matrix P k,k-elk-_'

K___I__ (p/_ T T -i (6)_,k-elk-1) HkFk ,

as can be found in TC96 The forecast-analysis cross-covariance P/_ evolves from previ-
• _,,k-elk-1 _,



ously calculated analysis error covariances and analysis-analysis error cross-covariances through
..

the Jacobian Ak,k-1 of the dynamics operator. Its evolution equation and the update equations

for the retrospective analysis error cross-covariances are

P_ -- (I- KklkHk)P£;_elk_l,k,k-elk -- (7b)

Pk,k-tlk-1/_ -- Ak,__lp__l,__elk_l , (7c)

and the details of their derivation can also be found in TC96.

That retrospective analyses are built on the basis of future observations can be simply

understood by recalling the meaning of the time subscript notation used here. In the linear

Gaussian-distributed noise case the time subscript notation signifies that the retrospective anal-

ysis estimates are indeed estimates of the conditional means. In this case, the retrospective

analysis at time tk-e is

o ... (s)- C{w _elw ,Wk_ 1,wk__l k --

where now, in contrast to the filter estimates (2), the expectation is conditioned on all obser-

vations before, at and after time t/___ up to time tk. As mentioned previously, in the linear

optimal case, when the underlying filter is the KF and the sequence of OMF residual vectors is

actually the innovation sequence, the retrospective portion just described reduces to the optimal

FLKS. Independently of nonlinearities, in general, if the filter is suboptimal the corresponding

retrospective analyses are suboptimal as well. This is simply because both the filter and the

smoother are based on the same sequence of OMF residual vectors vk. Unfortunately, in the

suboptimal case, there is no guarantee that consecutive retrospective lagged estimates will repre-

sent improvements over estimates with smaller lag(s) or even over the filter results (see Todling

et al. 1998 for illustration).

As pointed out by Todling et al. (1998), one interesting feature of the FLKS that arises



directly from its being formulated on the basis of an underlying filter is that it incorporates model

error covariances naturally and automatically (see also appendix A, here). In fact, equations

(5)-(7) do not depend explicitly on the model error covariance. A variety of techniques exist

to incorporate model error in 4D-var (e.g., Derber 1989; Bennett et al. 1996; and Zupanski

1997). Since 4D-vat is algebraically equivalent to fixed-interval smoothing (see M_nard and

Daley 1996; and Zhu et al. 1999) and for all practical purposes we can always choose a lag L

in fixed-lag smoothing that accomplishes the same benefit as fixed-interval smoothing (Moore

1973), FLKS-based assimilation procedures present a potential alternative to 4D-var. Since we

currently lack the necessary knowledge to parameterize model error covariances this advantage
•

of the FLKS over 4D-vat is not very significant, but it may prove to be relevant in the future

3 Practical framework: GEOS DAS considerations

The algorithm described in the previous section serves mainly as a guide to help design suitably

feasible data assimilation procedures. It is well known that the computational cost of evolving

full covariances is excessive for filtering, let alone for smoothing as in (7), and likely not justifiable

because of our relative lack of knowledge of the required input model and observation error

statistics. This has motivated the study of a number of simplifications to both filtering (e.g.,

Cohn and Todling 1996, and references therein) and smoothing (e.g., Todling et _1. 1998, and
-.,.

references therein) procedures. Inthis section, we describe the details of our implementation of

the FLKS-based retrospective procedure for the GEOS DAS. Before describing the retrospective

analysis portion of the implementation we summarize the current GEOS DAS that approximates,

in principle, the filter portion of the algorithm.

(a) The GEOS analysis and data assimilation system

The DAO operational GEOS dat_ assimilation system consists of three major components"
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an atmospheric general circulation model (GCM); the physical-space statistical analysis system

(PSAS); and the incrementalanalysisupdate (IAU) procedure.At the so-calledanalysistimes,

the GCM provides a first-guess field to PSAS so it can process OMF residuals and generate the

analysis state. The physical-space statistical analysis system is an implementation of the EKF

equations (lb)-(lC), obtaining the analysis state as a correction to the model first-guess. The

error covariance evolution expressions (ld) and (le) are neglected and therefore PSAS functions

as a suboptimal filter, as in the case for other operational 3D--_ar systems. Each PSAS analysis

is used in the IAU procedure of Bloom et al. (1996) to construct a tendency term that is used to

force the GCM during a 6-hour period around the analysis time. The GCM trajectory obtained

during the IAU integration is known as the assimilated trajectory.

In GEOS DAS the state-space of the GCM is different than the state-space of the analysis

system and it is convenient to define a specific nomenclature for the purposes of the present

article. In what follows, we refer to background as the state-vector provided by the GCM and

to forecast or first-guess as the background field transformed to the analysis space. The model

and analysis spaces are different because their statevariables and grids are different. The GCM

state variables are surface pressure, potential temperature, specific humidity and the zonal and

meridional components of the wind, where all variables are defined on the Arakawa C-grid and

on a vertical sigma coordinate system. On the other hand, the analysis state vector is composed

of sea level pressure, the zonal and meridional components of the sea level wind, the zonal and

meridional components of the upper-air wind, mixing ratio, and geopotential heights, where all

variables are defined on the Arakawa A-grid and in pressure coordinates (see DAO 1996, for

details).

We designate an m-dimensional sigma-coordinate GCM state vector by y(cr) and an n-

dimensional pressure-coordinate analysis state vector by w(p), to emphasize explicitly the ver-

tical coordinate system these states are defined on. For our purposes, we can represent a GCM

11



integration as

dy( )
dt = M[y(a)] + a 6y_lk(Cr ) . (9)

Here, M is the nonlinear GCM operator and the second term on the right-hand side corresponds

to the constant IAU forcing term applied to the GCM during the IAU integration period. The

8parameter a controls when and how the model-space analysis increment yklk(cr) affects the

integrations. For 6-hours the IAU time interval [tk-1/2, tk+m/2] we set __i_ _ tk+l/2 -tk-i/2 and

a- 1/_ -_, and during the 3-hour GCM background integration time interval [tk+_/2, tk+l] we

set a - 0. At an analysis time tk, the GCM-provided background field Y_lk-l(Cr) is converted

into the analysis first-guess through the operation

, (10)

where for convenience we use similar time subscript notation as that used in the previous section.

The space conversion operator II is nonlinear since it represents not only simple interpolation

from one grid to another but also variable transformations such as conversion from potential

temperature to geopotential heights. This operator can be absorbed in the definition of the

state vector and become transperent in the description of the filter and smoother equations.

However, to make clear the connection between the mathematical description and the actual

implementation of these procedures we opt to refer to II explicitly.

The forecast vector w{ik_ L(p) is used to construct the OMF residual p-vector vk in (3).

Instead of calculating eXplicitly the weighting matrix (Ic), PSAS splits the calculation of the

last term in the analysis equation (lb) into two steps. The first step is to solve the linear system

of equations

I'kxk -- v_, (II)

for the variable x_, so that in a second step the analysis w_l k (p) can be calculated by

a T
Wklk(P) -- W_lk-1 (P) + P£ik-mHk x_.

19.



To keep notation simple, we denote the PSAS forecast error covariance with the same symbol

Pilk-1 used in the previous section. However, as mentioned above, PSAS does not use (ld) to

calculate the forecast error covariance matrix. Instead, the forecast error covariance in PSAS is

parameterized using simple dynamical constraints. Only its variance fields vary (slowly) in time;

its correlations are constant in time. A consequence of such simplification is that the forecast

w£1k_ 1 (p) and the analysis w_.lk (p) vectors in (12) are also distinct from those of the previous

section, even though they are designated with the same symbols as in the previous section.

Furthermore the forecast error covariance formulation of PSAS is for the analysis variables and,

in particular, in pressure coordinates. Moreover, the observation operator 7-tk in PSAS is linear,

that is, 7gk - Hk.

To proceed with the GEOS IAU assimilation, the analysis in (12) is converted back to the

model space, through a conversion operator 1-I+,

- n+[w l (p)]' (13)

which is then used finally to construct the IAU 6y lk(cr) increment to be used in (9),

(_y_[k((7) -- Y_[k((7) -- Y_[k-l((7)" (14)

The actual implementation of II + is such that it renders minimal the difference between a field

w(p) in the analysis space and the field resulting from transforming w(p) to the model space

using H + and subsequently transforming the resulting vector back to the analysis space using

H.

A schematic representation of the IAU assimilation procedure is showfi in Fig. 1. In GEOS

DAS observations are processed in 6-hour intervals, which in the IAU framework implies that

the GCM is integrated for 6 hours starting 3 hours before the analysis time. Going from the

left to right in the diagram, at an _nalysis time, say t -- 6Z, observations and a 3-hour model

first-guess (represented by the north-eastward pointing dashed arrow) are combined in PSAS



to calculatethe filter analysis.This analysisis usedto constructthe IAU increment(14)and

the modelis integratedforwardforcedby the IAU tendencystarting from t - 3Z up to t- 9Z.

Beyond this time, the IAU forcing is set to zero and the model runs "free" for the next 3 hours.

At the end of this free 3-hour integration the GCM provides the background to be used in the

PSAS analysis of the 12Z observations, and the cycle is repeated. The assimilated trajectory is

represented in the figure by the thick-solid eastward-pointing arrows.

(b) The GEOS retrospective analysis

We now have the challenge of converting the retrospective portion of the FLKS as presented

in the previous section into a practical algorithm. We have seen above that when building a

practical filtering procedure such as PSAS one of the main approximations is to avoid dealing

directly with the error covariance equations (ld)-(le). Analogously, when building a practical

implementation of the retrospective portion of the FLKS we want to calculate retrospective

increments

5w _ lk(p) -- w___[ k(p) - w_c_ei__l.(p) -- Kk-_lkv_, (15)

for lags g -- 1, 2,.-., rain(k, L), without having to calculate the smoother cross-covariances

implicit in the retrospective gains Kk-_lk through (6) and (7). As it turnsout, calculating these

cross-covariances can be avoided since the retrospective gain matrices Kk-elk can be written as

i ii I _1K_-elk -- Pk/-e[k-e-1 (I - Kj-IIj-IHj-1)TAT-1 HTr_ ,
j=k-e+l

(see appendix A), with the consequence that the retrospective increments in (15) become

a Aj,j_I5w_-_lk(P) -- P£-_lk-_-I (I- Hj_ITr;_lHj__pSj_llj_2) T T
j=h-g+l

where we used (ii) to replace r_ -1 v]_ with x]_. We see from this expression that the lag-g ret-

rospective increment is a linear combination of the columns of the forecast error covariance

P_-t[/_-_-l, as is the original filter increment. The advantage of the expression above is that



it refersonly to quantitiesusedby the filtering portion of theFLKS" the (filter) forecasterror

covariancematrix Pfj_llj_2; the observation error covariance matrix Rj-1; the linear (or lin-

earized) observation operator Hi-1 and its transpose (adjoint); and the adjoint of the Jacobian

' f_ and P_,_-el_Aj,j-1 of the dynamics operator. The smoother error cross-covariances P k,k-elk-1

and smoother error covariance P_-elk do not appear in (17).

At a given analysis time tk, the retrospective increments can be calculated through a succes-

sion of operations similar to the two-step PSAS operations (11) and (12). Defining an n-vector

zklk as

, T
z_lk Hkx_ ' (18)

corresponding to the PSAS conjugate gradient solution xk converted from the observation space

to the analysis space by H_, the term in the square brackets of (17) c£n be calculated using the

following algorithm"

while j> 1 and j>_ max(1, k-g+l)

z_ T zj (19a)3--1[k --- Aj,j -1 Ik

rj_lX _ lk_ Hj_lpf zp. (19b)-- j_llj_ 2 3-1lk

Z/_llk _ ZP. _ HT_lx__IIk (19c)3-11k

_'W2_ 1l k (p) -- P'fj_llj_ 2zj_ 11k

j--j-1

endwhile

(19a)

for a maximum number of time lags g - L In this algorithm the n-vector zp. in (19a)is• 3-11k

the result of the adjoint dynamics evolution of the auxiliary n-vector Zjlk, for each backward



integrationj. This backward-propagated vector zP3-11kserves as the input to an equation (19b)

similar to the first step (11) of the regular PSAS analysis, but now with a different right-hand

side. The next step in the retrospective analysis loop is to update the n-vector zPj-llk with

the analysis-space projection of x_j-1]k in (19c). Finally, the n-vector Zj_ll k in (19c) is used to

calculate the retrospective analysis increment for each desired lag _ up to a maximum lag _- L

through application of the forecast error covariance operator in (19d).

Notice that the entire retrospective analysis algorithm (18)-(19) works in the analysis space.

:r T (19a) is defined in pressureIn particular, the propagation operator Ak,k_ 1 = Ak,k_l(P) in

coordinates and it operates on geopotential heights, mixing ratio, zonal and meridional winds,

etc, that is, the analysis variables. In fact, the linearized dynamical operator Ak,_-i (P) is given

by

Ak,k-1 (P) -- YIkMk,_-I (20)

where Mk,k-_ (a) is the m × m Jacobian matrix of the nonlinear operator 34 in (9),

_---
y=y(_r)

(21)

and rI and II + are given by

II --

II + --

Oil[y]

OY y--y(cr)

0n+[w]

Ow w=w(p)

and correspond to the n × m and m × n Jacobian matrices of YI and 1-i+, respectively, where

we recall that m is the dimension of a model state vector and n is the dimension of an analysis

state vector.

A few remarks can be made at this point.

• Currently in PSAS the analysis error covariance matrix P_I_ is never referenced. Indeed,

the current implementation of PSAS parameterizes the forecast error covariance matrix in



sucha simplemannerthat noneof the termson theright-handsideof (Id) aretakeninto

account.However,whenthe expressions(7) for the smoothererror cross-covariancesare

bypassedandthe retrospectiveincrementsarecalculatedusingthe gainsin (16)thereare

actuallynoapproximationsinvolved.Theonlyconsequenceofnotcalculatingthesmoother

error covariancesis that wegetnoestimatesfor the accuracyof the retrospectiveanalyses

-- which,in principle,canbeextractedfrom P_-_Ik"Expression(16)isexactfor the linear

FLKS andits nonlinearEKF-basedextension.

• Weseefrom (17)that anFLKS-basedretrospectiveschemeallowsfuture observationsto

beusedto correctpreviousfilter andretrospectiveanalysesimpairedbythe lackof obser-

vationsovera particular regionearlieron in theassimilation.That is, whenat time tk-1,

say, there are no observations over a certain region, the filter analysis at this time will

essentially equal the first-guess over that region _ aside from possible contributions by

farther away regions through the forecast error correlations. If at time tk, say, observations

become available over the region in question, or information from observations at nearby

downstream regions get propagated through the adjoint of the tangent linear dynamics

T
Ak,k_ 1 into the region in question, this new information will be used to calculate a cor-

rection to the filter analysis at time tk-i as the lag-I retrospective analysis represented in

(17). In these cases, it is the first ter m in the square bracket of (17) that mostly contributes

to the correction to the filter analysis.

• Notice that the linear system (19b) solved within the retrospective analysis algorithm

involves exactly the same operators required to calculate the sensitivity of forecasts to

observation changes, as measured by some pre-specified cost function, as in the approach

of Baker and Daley [2000; compare with their eq. (2.7a)]. Furthermore, (19c) involves

exactly the operator required to examine forecast sensitivity with respect to changes in

the background. It has been pointed out elsewhere that some of the operations in 4D-vat

are closely related to operations required to study forecast sensitivity; the same is true of
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the operations in FLKS-based retrospective analysis schemes.

• A simple approximation to the retrospective analysis portion just described is to replace

the adjoint operator in (19a) by the identity. Since in the current implementation of

PSAS the forecast error covariance is not dynamically determined, and even with its slowly

varying forecast error variances it can be thought of as having a time-independent forecast

error covariance, one might expect that replacing the adjoint by the identity operator in

(19a) would result in a reasonable retrospective analysis approximation consistent with the

current underlying PSAS statistics. Todling (2000) has experimented with this idea using

an identical-twin configuration setup for GEOS and has found a significant improvement

in the mean error due to lag £- i and even to lag g- 2 retrospective analyses.

(c) The GEOS lag-1 retrospective-based iterated analysis

When the system is nonlinear, the idea to feed the filter estimate back into the analysis

equation is particularly attractive, since we expect the filter analysis to be a better estimate of

the state of the system than the first-guess provided by the model. Indeed, filtering strategies

making use of such feedback procedures are commonly found in the literature. For instance,

Jazwinski (1970, Theorem 8.2) introduces the so-called iterated EKF, which is suitable for non-

linear observation operators. Cohn (1997) proposes a similar procedure as an extension to PSAS

for such operators. Iterative procedures aimed at dealing with nonlinearities of the observation

operator are sometimes referred to as locally-iterated methods, since the iterations are per-

formed at a single time. Jazwinski (1970, Theorem 8.3) also presents an iterative procedure

that is aimed at correcting errors due to the dynamical linearizations required by the EKF.

This procedure involves integrating the model with a newly estimated trajectory at each iter-

ation and for this reason it resembles a smoother procedure referred to as the iterated linear

filter-smoother algorithm. Combining ideas of filtering and smoothing leads to the possibil-

ity of developing globally-iterated procedures in which the filter analyses may be revised by a
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backward-filter integration within a certain time interval. Most of these iterative procedures are

inspired by Newton-type methods for solving systems of nonlinear equations (see Navon and

Legler 1987, and Zou et al. 1993, for reviews of Newton-type methods).

Motivated by these methods we introduce here a procedure to use the retrospective analysis

to improve the overall GEOS IAU-based assimilation. At first, the algorithm is based only

on the lag-1 retrospective analyses. At any given time tk, when a lag-1 retrospective analysis

w_lk+ 1(p) is available we can construct a model-space lag-1 IAU retrospective increment .as

6Yklk+la (or) -- II+[wklk+la (p)] _ yklk_l(O.)b , (23)

which is similar to (14), but is constructed using observations one lag ahead of time tk. This lag-

1 retrospective increment can now be used to integrate the GCM over an IAU integration period

already covered l_efore. This is illustrated schematically in Fig. 2. The diagram resembles the

regular IAU procedure presented before in Fig. 1. In fact, the top part of the diagram, above

the horizontal dotted line, is identical to the regular IAU procedure. However, now at, say, time

t - 12Z we calculate a retrospective analysis by first integrating the transformed PSAS solution

vector in (18) back in time using the adjoint operation (19a); this is represented in the diagram

by the southwestward-pointing dashed arrow. A new PSAS-like linear system problem can then

be solved as in (19b) with the corresponding update (19c), and the lag-1 retrospective analysis

constructed using (19d), as represented in the diagram by the box tagged "Retro ANA". In the

end, a lag-1 retrospective increment at t - 6Z is constructed as indicated in (23), and the GCM

is integrated for 6 hours using this increment as the tendency term in (9). From this point on,

the procedure follows the regular IAU schematic until it is time to process the observations at

t- 18Z when the lag-1 retrospective analysis at t- 12Z can be calculated and the whole cycle

repeated. The thin blue arrows in Fig. 2 correspond to the retrospective trajectory. In the RIA

scheme we concentrate on the iterated filter-smoother trajectory represented in the figure by the

thick solid arrows. At a given analysis time, the relevant iterated PSAS analysis is represented

in the diagram as the analysis from the lowest PSAS box in a column of the diagram (see thick
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vertical dashed lines).

From the diagram in Fig. 2 we see that the retrospective-based iterated analysis results in a

considerable increase in computational requirements when compared with the regular procedure

in Fig. 1. _ Each iteration of the iterated analysis scheme requires one extra 9-hour GCM

integration and two extra PSAS analyses. Such an increase in the computational cost can only

be justified if the procedure results in considerably improved analyses. One way to reduce

the computational burden is by calculating some of the steps in (19) at different resolutions.

Similarly to the strategy of incremental 4D-var of Courtier et al. (1994), we can for example

integrate the adjoint of the tangent linear GCM in (19a) at lower resolution than the actual

model integration (9). Also, the retrospe.ct.ive PSAS-like linear system (19b) can be solved at

lower resolution than the regular linear system (11) solved in the first step of PSAS. For that

matter, the caJculations in (19a) and (19b) do not even have to be performed at the same

resolution. This type of approach to reduce computational cost involves the development of

additional interpolation operators and their corresponding adjoints.

Independently of the IAU, in the linear case when the filter portion is actually the Kalman

filter, it can be shown that to feedback the lag-1 retrospective analysis at, say, tk-1 to calculate a

revised filter analysis at time tk cannot result in an improved filter analysis. In our iterated pro-

cedure, an optimal analysis could be calculated using the first-guess from the lag-1 retrospective

analysis if the cross-covariance between the revised first-guess and the observations were prop-

erly taken into account. In fact, since the retrospective-based iterated analysis procedure here

amounts to a modified filtering procedure, the optimal gains in this case are similar to the usual

modified filter gains when the forecast and observations are correlated (e.g., Jazwinski 1970,

Example 7.5). Since in practice it would be quite difficult to calculate this cross-covariance, we

choose to neglect the cross-covariance terms all together
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4 GEOS experimental results

(a) Configuration and experimentalsetup

The retrospective analysis procedures of the previous section were implemented as an ex-

tension to GEOS DAS. The retrospective portion of the GEOS software is compatible with the

first operational version Of GEOS DAS, designed to support NASA's Earth Observing System

mission and its Terra satellite. We refer to this earlier operational version as GEOS-3 _ to avoid

possible confusion with the considerably upgraded version of GEOS-3 operational at the time of

this writing. The GEOS-3 _ GCM operates at a resolution of 1° latitude by 1° longitude and 48

vertical sigma levels, with a dynamical core essentially like that of Suarez and Takacs (1995). At

the synoptic hours, PSAS calculates the analysis at a resolution of 2 ° latitude by 2.5 ° longitude

on 20 pressure levels. Details on the implementation of PSAS can be found in da Silva and Guo

(1996), Guo et al. (1998), and Larson et al. (1998). As we have mentioned in the previous sec-

tion, GEOS-3' uses the IAU procedure of Bloom et al. (1996) to generate a time-continuous state

trajectory referred to as the assimilation. For expediency, the experiments performed for the

present article used both the GCM and PSAS at the coarse horizontal resolution of 4 ° latitude

by 5 ° longitude; the GCM and PSAS vertical resolutions were kept unchanged. We also simpli-

fly the experimental configuration by updating the GCM trajectory needed during the adjoint

integrations only every 6 hours. Except for sea-wind satellite observations, all observation data

types used in GEOS-3 _ are included in our experiments. Conventional observations from ships,

environmental and drifting buoys, surface stations, winds from pilot balloons, aircraft reports,

and radiosonde stations are used. Cloud track wind retrievals and TOVS geopotential height

retrievals are used as well. Furthermore, the Wentz (1997) SSM/I-derived total precipitable

water retrievals are assimilated, though not through PSAS but rather by using the method of

Hou et al. (2000).
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Fournewcomponentsarerequiredto implementthe retrospectivecapabilityin GEO$DAS"

the adjoint of the tangentlinear GCM; the additionalPSAS-likeoperatorsinvolvedin (19b);

the linear operator(22a)taking model-spacevariablesinto analysis-spacevariables;and the

linearoperator(22b)taking analysis-spacevariablesinto model-spacevariables.Presently,the

adjoint of the GCM includesonly the hydrodynamicsadjointandthe adjoint of a simplediffu-

sionscheme.Most modificationsrequiredto PSASwerequite simplesincethey only required

rearrangingoperatorsalreadyavailablein the originalPSASsoftware.Someeffortwasdevoted

to derivethe propertangentlinearandadjointoperatorsfor the transformations(10)and (13),

becausewestroveto makesurethat thebackandforth operationswouldrenderminimal error.
,,

Some of this_ work was done by hand, and some was done using the automatic differentiation

tool of Giering and Kaminski (1998).

In the present article, only results for the lag-1 (6-hour) retrospective analysis are discussed.

We compare the results of three experiments conducted over the month of January 1998. To

minimize possible differences due to spin-up issues, the experiments are actually started on 14

December 1997, but the results are ignored during this half-month period. Our first experiment

is taken as the control and it uses the reduced resolution GEOS-3 _ data assimilation system

mentioned above. The control is referred to as the CTL experiment. In the second experiment,

referred to as the RA experiment, we also calculate lag-1 (6-hour) retrospective analyses for the

entire month of January 1998. Since there is no feedback in this experiment, it uses the same

background fields and OMF time series of the control experiment. The third experiment is aimed

at evaluating the lag-1 (6-hour) retrospective-based iterated analysis procedure introduced in

the previoussection, and is referred to as the RIA experiment.

We evaluate the RA and PdA experiments mainly by examining the time-series statistics

of their corresponding residuals. That is, depending on the case, we calculate time root-mean-

square (RMS) bias and standard deviation from the differences of the observations with either
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the forecast,or the analysis,or the retrospectiveanalysis,or the retrospectiveforecast (see

below).To easecomparisons,wegrid theresidualsover4° latitude by 5° longitude cells on the

20 pressure levels of the analysis space before calculating any statistics. We calculate statistics

only from grid-boxes containing 15 or more reports during the month. In the discussion that

follows, we concentrate on results obtained in the troposphere.

(b) Evaluation of the 6-hour retrospective analysis

We start by comparing the results of the CTL and RA experiments using the set of obser-

vations assimilated in the CTL experiment. If the 6-hour retrospect'ive analyses are indeed an

improvement over the regular control analyses we should see that in some mean sense the RA

observation-minus-analysis (OMA) residuals are reduced in comparison to the OMA residuals

of the control experiment. As a matter of fact, one can show that in the linear optimal case,

i.e., when the filter gain is the Kalman gain,

o wo wo )r .o_ w o wo r}.g{(wk- Hk kl_+l)(w_- Hk klk÷l } < ${(wk Hk _lk)(wk-- Hk _lk) (24)

Although there is no guarantee of this holding in general for the suboptimal nonlinear case under

study, we would like to examine the extent to which it does. In practice, short of perturbing

the observational data, to assess this quantity we must make the usual ergodic assumption and

replace the expectation by a time average. Examination of the time RMS biases and standard

deviations of the OMA residuals when the analyses are either the regular filter analyses of the

CTL experiment or the lag-1 retrospective analyses of the RA experiment has shown them to

be virtually identical (results not shown). Therefore, from this point of view we might be led to

think that there is no payoff in calculating lag-1 retrospective analyses.

Another way of comparing the quality of two sets of analyses is to compare the skill of

forecasts issued from them. We expect forecasts issued from retrospective analyses to be superior

to regular forecasts for at least their total lag period, 6 hours in the lag-1 case here, since their
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initial conditions have had the benefit of observations that far into each forecast. Hence, we

compare the OMF residual statistics of the regular filter forecasts of the CTL experiment and of

the so-calledretrospective forecasts issued from the lag-i retrospective analyses. Since the OMF

residuals from a regular GEOS DAS run, such as the CTL experiment, involve 6-hour forecasts

that are produced from partly integrating the GCM with the IAU forcing for 3 hours and partly

integrating the GCM for another 3 hours without the influence of the IAU tendencies (see Fig.

I), we must use the retrospective analyses carefully when constructing OMF residuals from them.

To make a fair comparison, we calculate OMF residuals from the 6-hour retrospective analyses

following a forecasting procedure based on IAU. For each available retrospective analysis for the

entire month of January 1998 a retrospective forecast is issued following the schematic shown in

Fig. 3. As illustrated in the figure, the retrospective OMF residuals at, say, 12Z are calculated by

converting the 6Z retrospective analysis to the model space and constructing the corresponding
,..

increment on the model space, following (23). This retrospective analysis increment is used as

a tendency term during a 6-hour GCM integration, started at 3Z. At the end of the 6-hour

r

integration the retrospective tendency term is turned off, by setting a -- 0 in (9), and the model

is left to run free for another 3 hours, after which the OMF residuals at 12Z can be calculated

using the observations at that time.

Using these retrospective forecasts, Fig. 4 shows the time RMS bias (top panels) and stan-

dard deviation (bottom panels) for the radiosonde geopotential height OMF residuals for the

CTL (solidcurves) and I{A (dashed curves) experiments averaged over the western (left)and

eastern (right) quadrants of the Northern Hemisphere, for latitudes higher than 20N. These

two domains are chosen because they represent the largest concentration of radiosondes over

the globe. We see from the top panels that, in the RMS bias sense, the forecasts from the

lag-i retrospective analyses correspond to a considerable improvement over the regular GEOS

DAS analyses. However, the bottom-left panel shows that for the RMS standard deviations the

retrospective forecasts are considerably degraded compared to the regular forecasts over what
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is mostly North America; results are roughly neutral over most of Europe and Asia, as seen

from the bottom-right panel. Figure 5 displays similar quantities but now for the zonal wind

radiosonde OMF residuals. Except in the Northwestern region between pressure levels 700 hPa

and 400 hPa, the RMS bias for the zonal wind radiosonde OMF residuals is improved when fore-

casts are issued from the lag-1 retrospective analyses. In this same region, the zonal wind OMF

standard deviation [panel (b.1)] shows a minor deterioration at levels below 400 hPa, much less

than that seen in the OMF heights in Fig. 4b.1; minor improvement in the standard deviations

areseen above 400 hPa. Over the Northeastern region a minor but consistent improvement is

observed in both the RMS bias and standard deviation, as indicated in the panels on the right.

The statistics of OMF residuals for other variables and other observing systems can also be

examined. Figure 6 shows the time RMS biases (top panels) and standard deviations (bottom

panels) for the TOVS geopotential height OMF residuals. Since TOVS provides global coverage

in the course of a single day, the spatial averages now cover the entire Northern Hemisphere

(left panels) and Southern Hemisphere (right panels). We see considerable improvement in the

OMF biases and standard deviations from the retrospective forecast residuals. Interestingly,

the standard deviation results over the Northern Hemisphere [panel (b.1)] contradict the dete-

rioration observed in the radiosonde geopotential height OMF residuals [panel (b.1) of Fig. 4J-

We attribute this contradiction over North America to contradictions between the geopotential

height observations from the radiosondes and the TOVS retrievals themselves and not to the

retrospective analysis procedure.

Another quantity we have studied is simply the spatial average of the residuals time mean.

Though we expect considerable cancellation of errors in this quantity, it still serves as an indicator

of the overall behavior of the residuals and of the underlying procedure used to produce them.

Figure 7 shows the time mean OMF residuals for the CTL 6-hour first-guesses (forecasts) and

the lag-1 retrospective forecasts. The globally-averaged time means for TOVS and radiosonde
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geopotentialheightOMF residualsaredisplayedin panels(a) and (b), respectively.We see

mostlyareductionin the time meanresidualswhentheretrospectiveforecastsareusedinstead

of theregularforecasts,with someovershootingat levelsbelow700hPafor theTOVSresiduals.

The zonalandmeridionalwind componentsof the radiosondeOMF residualsaredisplayedin

panels(c) and (d), respectively,andagainweseean overallreductionwhenthe retrospective

forecastsareused,with someovershootingof the meanmeridionalwind around150hPa.

In termsofthemetricspresentedherefor thenonlinearsuboptimalcaseofthe GEOSapplica-

tion, Weseeclearbenefitin producingthe6-hourforecastsfrom the lag-1retrospectiveanalyses

overthe regularGEOSDASforecasts.This servesto indicateimprovedanalysisquality with

the RA scheme.This alsoservesasfurther motivationto considerthe iterated retrospective

analysisprocedureproposedin the previoussection,sinceit makesdirectuseof the retrospective

forecasts(seeFig. 2).

(c) Evaluation of the 6-hour retrospective-based iterated analysis

We now evaluate the performance of the 6-hour (lag-l) retrospective-based iterated analysis

scheme. We start by comparing the OMA residuals between the CTL and the RIA experiments.

Figure 8 shows the globally-averaged time RMS bias for TOVS and radiosonde geopotential

height OMA residuals [panels (a) and (b), respectively], and for the zonal and meridional com-..

ponents of the radiosonde winds [panels (c) and (d), respectively]. Although small, we now

actually see improvement in the OMA residuals due to the iterated analysis. To the extent that

the expectation can be replaced by the RMS time mean, the inequality (24) holds when w_lk+ 1

corresponds to the iterated analysis, at least in a globally-averaged sense. We have examined

the time RMS standard deviations of the OMA residulas of both the CTL and RIA experiments

and have found it to change very insignificantly.

Even though small, the improvement due to the RIA scheme seefl in Fig. 8 is also visible
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directly from the time seriesof the globally-averagedOMA residualRMS bias. Furthermore,

this improvementis seennot only for TOVS and radiosondeOMA residuals,but for other

instrumentsaswell. An illustration ispresentedin Figure9 bydisplayingthe globally-averaged

RMSbiasof the zonal (top) andmeridional(bottom)cloud-trackwind OMA residualsat 200

hPa. The thin curvescorrespondto the OMA residualtime seriesfrom the CTL experiment

andthe thick curvesarefor the RIA experiment.Theglobalreductionin the RMSbiascanbe

asmuchas 1 m s-1 at times. This confirmsthe reductionin the globally-averagedtime RMS

biasof the radiosondeOMA residualsobservedin panels(c) and (d) of Fig. 8 aroundthe same

pressurelevel.

Frequently,changesmadeto assimilationsystemsareevaluatedand validatedby making

comparisonswith independentobservations,that is, observationswhich are not assimilated

by the system. Data withholding experimentsarecommonlyusedto assessthe impact of a

particularobservingsystemandcanalsobeusedto evaluatethe impactof systemchanges(e.g.,

Bouttier and Kelly 2001,and referencestherein). Herewe chooseto validate the changein

the 200hPa windsof Figs. 8 and 9 by usingwind observationsfrom the GlobalAircraft Data

Set (GADS) of the British AirwaysBoeing747-400flights, and by usingfurther aircraft wind

observationsfrom the Aircraft Communications,Addressing,andReportingSystem(ACARS).

Neitherof theseobservationtypeswereusedin our a;ssimilationexperimentsandthereforethey

provideindependentchecks.

The GADS wind observationshavebeenshownby Rukhovetset al. (1998)to be of value

to GEOSDASif usedregularlyin thePSASanalyses.This suggeststhat anychangesmadeto

GEOSthat showits analysesto draw morecloselyto theseobservations,evenwhenthey are

not assimilated,shouldbeconsideredan improvement.With that in mind, weuseda dataset

of the January1998GADS observationsto constructOMA residualsfor the analysesof both

the CTL and RIA experiments.Figure 10showsmapsof the time RMS standarddeviation
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of the zonal (top) and meridional (bottom)GADS windsOMA griddedresidualsfor the CTL

experimentsubtractedfrom thesamequantity for the RIA experiment(RIA-minus-CTL).The

color schemein the figure indicatesthat blue (negativevalues)correspondsto improvements

dueto the RIA procedure.Thoughweseeareaswheretheimpactof RIA isneutralor negative,

in mostplacesthe GADSobservationsarecloserto theanalysesof theRIA experimentthan to

thoseof the CTL experiment.
..

Similarly, Fig. 11 shows the differences of Fig. 10, but now for the ACARS wind OMA

residuals. The maps are focused over North America since that is where the majority of the

observations are concentrated in this case. Relatively neutral results are seen in the meridional

component of the wind (bottom map), but undeniable improvement due to the RIA scheme is

seen in the zonal component of the wind (top map).

Ultimately, as emphasized by CST94, one of the main motivations for performing retrospec-

tive analysis is to produce the best possible dataset for climate research. As such, it is important

to examine the climatological impact of changes induced by the RIA procedure. Since the results

of the experiments discussed here are still preliminary we do not want to dwell too much on the

significance of performing RA and RIA for the purposes of improving the climatological aspects

of the assimilation strategy _ recall that our experiments are for a very low resolution version

of GEOS-3/. Still, we cannot avoid looking more closely to see what is the climatological impact

of changes such as those observed in the wind field. In fact, the significance of the RIA impact

on the upper-level winds can be seen more clearly by looking directly at the monthly-averaged

winds. For instance, Fig. 12 shows the zonally-averaged January 1998 monthly mear/ merid-

ional wind (top) for the Pda experiment and its difference from the CTL experiment (bottom).

The bottom panel shows a distinct tropical wind strengthening at the upper levels and a slight

weakening at the mid- to lower levels when the RIA scheme is used.

This change in the tropical meridional wind affects the Hadley circulation. To gee the
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meridionalcirculation,we calculatethe massstreamfunction _bby integrating the zonally-

averagedmonthlymeanmeridionalwind usingthe expression

_ 2_Rcos¢ fpP
@,, (25)

g top

where v stands for the meridional wind, the operator i represents the time mean, the operator

[-] represents for the zonal average, R is the mean radius of the earth, g is the gravity constant, ¢

is the latitude, and the integral is from prop - 10 hPa to a pressure p down to the surface. Figure

13 shows the January 1998 mass stream function for both the CTL (top) and RIA (bottom)

experiments. We see a clear enhancement of the Hadley circulation when the RIA procedure is

used, with the mass stream function peaking at about 16 × 101° kg s -1 in contrast to the weaker

peak of 12 x 101° kg s -1 for the circulation of the CTL experiment. Although we do not expect

the circulation to be well-represented at the coarse resolution we use in our experiments here, it

is much closer to the circulation pattern of the full-resolution, 1° latitude by 1° longitude GEOS

/

DAS (.not shown), with its tropical circulation peaking at 18 x 101° kg S -1. This suggests that

the I_IA scheme has the potential for improving climatologically relevant features.

Finally, we compare the skill of 5-day forecasts issued from the CTL and the RIA analyzed

fields. These are initialized as in Fig.3. Since our experiments are confined to the single month of

January 1998, we have few independent samples for this comparison. We issued 5-day forecasts
..

starting from 2 January 1998 every 3 days until 26 January 1998, to have a small sample of 9

5-day forecasts. We verified that the overall conclusions and skills calculated from this small

ensemble were not affected bythe size of the sample by reducing the size of the sample to 5

members and performing cross-validation. As a measure of forecast skill we calculated anomaly

correlations and RMS errors [e.g., von Storch and Zwiers 1999, Eqs. (18.17) and (18.18)]. Both

the CTL and RIA forecasts were verified against their own analyses. Anomalies were calculated

using a 10-year climatology obtained from ECMWF operational analyses for the period of 1988

to 1997, and interpolated to the resolution of our experiments. \¥e should say that the scores

shown below are not representative of the scores of the operational GEOS-3 data assimilation
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system,whichoperatesat higherresolutionthan that of the experimentshere.

Figure14showsthe anomalycorrelationsfor the500hPageopotentialheightfieldcalculated

overfour differentregionsfor the 5-dayforecastsissuedfrom the CTL (solidcurves)andRIA

(dashedcurves)analyses. We seethat over the Northern Hemisphereextratropics(top-left

panel)forecastsfrom RIA analysesareof similar skill asforecastsfrom the control analyses,

at leastup to day 4. Over North America (bottom-left panel) the forecastskill from RIA

analysesshowsomedeteriorationwhencomparedagainsttheskill oftheCTL forecasts.AsWhen

studyingthe OMF residualsobtainedfrom the retrospectiveforecastsusingthe RA analyses,

this deteriorationoverNorth Americamightberelatedto contradictionsin the observingsystem

overthis area(seeFigs. 4b.1,6b.1). In fact, this seemsto bean issueconfinedto this region

since,for example,overthe SouthernHemisphere(top-right panel)and Europe(bottom-right

panel)weseeimprovementin skill whenthe 5-dayforecastsare issuedfrom the PdAanalyses.

As a final illustration comparingthe 5-dayforecastskill from the CTL andRIA experiments

weexaminetheRMSerrorofthe tropicalwindfieldsat 850hPaand200hPa.Figure15displays

thesequantitiesfor both the zonal(left panels)andmeridional(right panels)componentsof the

wind. The RMS errorsat 850 hPaare virtually identical,while at 200 hPawe seea slight

improvementwhenusingforecastsfrom the analysesof the PdA experiment.Although these

aresmallimprovementsthey serveasfurtherconfirmationofwhat wehaveseenpreviouslywhen

comparingthe analysesof the CTL andthe RIA experimentswith independentobservations.

5 Conclusions

A central purpose of atmospheric data assimilation is to produce the best possible estimate

of the the state of the atmosphere at any single time. In theory this can be accomplished by

using smoothing techniques since they are aimed at maximizing data usage through inclusion of
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observationsin the past,present,andfuture of the time anestimateis sought.In the context

of sequentialdataassimilation,the fixed-lagKalmansmoother(FLKS) providesa particularly

attractiveframework.TheFLKS formulationis basedfully on the underlyingfiltering strategy.

Its standardformulationrequiresnoerrorcovarianceinformationbeyondwhat isrequiredby the

filtering approach.Indeed,the FLKS canbeseparatedinto a filter portion anda retrospective

analysis(RA) portion and this separationrenderspractical implementationof FLKS-based

proceduresa relativelysimpleextensionof analreadyexisting(filter) analysisscheme.

Two differenttypesof retrospectiveproceduresare investigatedin the presentwork. The

first is the originalFLKS-basedformulationreferredto simplyasRA. The secondis an iterated

versionof the originalalgorithm,referredto as RIA, in which lag-1 retrospective analyses are

used to revise the previously calculated filter analysis. Both these procedures are implemented

as an extension of the Goddard Earth Observing System (GEOS) Data Assimilation System

(DAS). The new components required for implementing a retrospective capability in GEOS

DAS are the adjoint of the tangent linear model of the GEOS general circulation model (GCM);

the rearrangement of a few operators already available in the physical-space statistical analysis

system (PSAS) of GEOS DAS; and the development of the tangent linear and adjoint operators

responsible for transforming between model-space variables and analysis-space variables as well

as the adjoint of the operator transforming analysis-space variables into observables. The adjoint

of the tangent linear GCM used in the present work includes the adjoint of the tangent linear

hydrodynamics and the adjoint of a simple diffusion term; the adjoint of the physics is not

included.

Only results for the 6-hour (lag-l) retrospective analysis were studied here. Although close

examination of the observation-minus-analysis (OMA) residuals seemed to suggest a rather

neutral benefit from the lag-1 retrospective analysis, we saw improvement in the 6-hour forecasts

issued from these lag-1 retrospective analyses: these so-called retrospective forecasts are a closer
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matchto theobservationsthan theregularGEOSDA$ forecasts.This improved6-hourforecast

skill motivatedthe investigationof the t_IAschemesincethis schememakesexplicit useof the

retrospectiveforecasts.Evaluationof theanalysesfromtheRIA procedureindicatedthemto be

closerto the observationsthan the usualPSASanalyses.The OMA residualsfor independent

observationsnotusedduring the assimilationfurther confirmedsomeof the improvementsdue

to the RIA scheme.Moresignificantimprovementswereseenwhenexaminingclimatologically

important fieldssuchasthe massstreamfunctiondescribingthe meridionalwind circulation.

Lastly, anomaly correlations and root-mean-square errors from a small sample of 5-day forecasts

indicated a mild improvement in skill scores when analyses from the RIA procedure were used

for the 5-day forecasts instead of the regular GEOS analyses. Although the skill scores were not

improved everywhere over the globe, they were improved generally.

Much work remains to be done to show that retrospective analysis is a worthwhile extension

to the usual PSAS analysis of GEOS. The present work used only a reduced-resolution version

of GEOS DAS and a study with a higher resolution version is necessary. Just as in four-

dimensional variational procedures, one of the main features of the retrospective analysis is

its capability to incorporate backward-propagated information into the retrospective analyses

via the model adjoint. This should, in particular, result in improved representation of synoptic

features. Synoptic evaluation has not been explored in the present work and awaits full-resolution

experimentation. Furthermore, it is evident that instead of windowing the observations in 6-

hour batches, as is commonly done in 3D-var systems, much can be gained by assimilating

observations at their proper time, as is done in 4D-var. An alternative rapid update cycle

strategy is being considered for this purpose at the DAO and it will be important to investigate

the impact of retrospective analysis in this context. These studies will be done primarily in the

context of the newly developed finite-volume data assimilation system. In any case, the results

presented here show promise for the development of retrospective analysis capabilities in this

new assimilation system.
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APPENDIX A

Retrospective gains as a function of filter variables only

The purpose of this appendix is to derive the alternative expression (16)for the retrospective

gain matrix (see also Zhu et al. 1999). Using (6) and (7) with g- 1, 2, ...,j we have

T T -1H_rPk-llk-lAk,k-1 k

T T 1]HTF-1= P_-llk-2 [(I- Kk_llk_lHk-1) A_, k_ k ,

( )T T T -1-- P_ Hk r k

__ A T T T -_ H_F k

_ )T T-- Pf [(I Kk_21k_2Hk-2)TA T 2] [(I-Kk_ [k-lHk-1 Ak,k-1]
-- k-2[k-3 1,k- 1

(A.la)

" (A.lb)T -1
xH k r_ ,

( )TAT T -1a_ H k rP k-l,k-jlk,1 ]¢,]¢--1 k

" T T

P]k-jIk-j-1 [(I- Kk_jlk_jHk-j)TAT_j+l,k_j] "'" [(I- Kk_llk_lHk-1) Ak,k_l]

xHTFk .

This can be written generally as in (16) or, making explicit use of (lc) for the filter gain matrix,

we can also write

f hAT. T -1
Kk-gIk -- P_-g[k-f-1 H (I-tIT1FT-lxHJ-IPj-Ilj -2 3,2--1 H_rk

j=k-g+l

which shows that, as pointed out in the main text, the retrospective gains depend only on filter

quantities. Todling et al. (1998) have pointed out that the retrospective portion of the FLKS
_

implicitly accounts for model error. The equation above serves to re-emphasize that remark as

it shows that the retrospective gains depend directly on the forecast error covariance matrix,

which is the filter quantity containing model error covariance information.

Rzt



References

Anderson, B. D. O., and J. B. Moore, 1979" Optimal Filtering, Prentice-Hall, 357 pp.

Baker, N. L., and R. Daley, 2000" Observation and background adjoint sensitivity in the

adaptive observation-targeting problem. Q. J. R. Meteorol. Soc., 126, 1431-1454.

Bennett, A. F., B. S. Chua, and L. M. Leslie, 1996" Generalized inversion of a global numerical

weather prediction model. Meteor. Atmos. Phys., 60, 165-178.

Biswas, K. K., and A. K. Mahalanabis, 1973" Suboptimal algorithms for nonlinear smoothing.

IEEE Trans. Aerosp. Electron. Syst., 9, 529-534.

Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 4996" Data assimilation using

incremental analysis updates. Mon. Wea. Rev., 124, 1256-1271.

Bouttier F., and G. Kelly, 2001" Observing-system experiments in the ECMWF 4D-Var data

assimilation system. Quart. J. Roy. Meteor. Soc. 127, 1469-1488.

Cohn, S. E., 1997" An introduction to estimation theory. J. Meteorol. Soc. Japan, 75, No.

1B, 257-288.

Cohn, S. E., and R. Todling, 1996" Approximate data assimilation schemes for stable and

unstable dynamics. J. Meteorol. Soc. Japan, 74, 63-75.

Cohn, S. E., N. S. Sivakumaran, and R. Todling, 1994" A fixed-lag Kalman smoother for

retrospective data assimilation. Mon. Wea. Rev., 122,. 2838-2867.

Cohn, S. E., A. da Silva, J. Guo, M. Sienkiewicz, and D. Lamich, 1998: Assessing the effects of

data selection with the DAO physical-space statistical analysis system. Mon. Wea. Rev.,

126, 2913-2926.

Courtier, P., J.-N. Thepaut, and A. Hollingsworth, 1994: A strategy operational implementa-

tion of 4-D VAR using an incremental approach. Q. J. R. Meteorol. Soc., 120, 1367-1387.



Courtier,P.,E. Anderson, W. Heckley, J. Pailleux, D. Vasiljevic, M. Hamrud, A. Hollingsworth,

F. Rabier, and M. Fisher, 1998" The ECMWF implementation of three dimensional vari-

ational assimilation (3D-Vat). Part I: Formulation. Q. J. R. Meteorol. Soc., 124, 1783-

1808.

Daley, R., and E. Barker, 2001" NAVDAS: Formulation and diagnostics. Mon. Wea. Rev.,

129, 869-883.

da Silva, A. M., and J. Guo, 1996" Documentation of the physical-space statistical analysis

system (PSAS). Part I" The conjugate gradient solver version PSAS - 1.00. DAO Office

Note 96-2, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.

DAO, 1996: Algorithm Theoretical Basis Document Version 1.01. Data Assimilation Office,

NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.

Derber, J. C., 1989: A variational continuous assimilation technique. Mon. Wea. Rev., 117,

2437-2446.

Evensen, G., and P. J. van Leeuwen, 2000" An ensemble Kalman smoother for nonlinear

dynamics. Mon. Wea. Rev., 128, 1852-1867.

Fisher, M., and E. Anderson, 2001" Developments in 4D-var and Kalman filtering. ECMWF

Tech. Memo. 347, 36 pp.

Giering, R., and T. Kaminski (1998)" Recipes for adjoint code construction. ACM Trans.

Math. Software, 24, 437-474.

0

Guo, J., J. W. Larson, G. Gaspari, A. da Silva, and P. M. Lyster, 1998" Documentation

of the physical-Space statistical analysis system (PSAS). Part II" The factored-operator

formulation of error covariances DAO Office Note 96-04, NASA/Goddard Space Flight

Center, Greenbelt, MD 20771, USA.

2_



Hou, A. Y., D. V. Ledvina, A. M. da Silva, S. Q. Zhang, J. Joiner, tZ. M. Atlas, G. J. Huffman,

and C. D. Kummerow, 2000: Assimilation of SSM/I-derived surface rainfall and total

precipitable water for improving the GEOS analysis for clim/_te studies. Mon. Wea. Rev.,

128, 509-537.

Jazwinski, A.H., 1970" Stochastic Processes and Filtering Theory_ Academic Press, 376 pp.

Larson, J. W., J. Guo, G. Gaspari, A. da Silva, and P. M. Lyster, 1998" Documentation of the

physical-space statistical analysis system (PSAS). Part III: The software implementation.

DAO Office Note 98-05, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
.:-:

Li, Z., and I. M. Navon, 2001" Optimality of 4D-Var and its relationship with Kalman filter

and Kalman smoother. Quart. J. Roy. Meteor. Soc., 127, 661-684.

Mgnard, R., and R. Daley, 1996: The application of Kalman smoother theory tothe estimation

of 4DVAR error statistics. Tellus, 48A, 221-237.

Miller, R. N., M. Ghil, and F. Gauthiez, 1994" Advanced data assimilation in strongly nonlinear

dynamical systems. J. Atmos. Sci., 51, 1037-1056.

Moore, J. B., 1973" Discrete-time fixed-lag smoothing algorithms. Automatica, 9, 163-173.

Navon, I. M., and D. M. Legler, 1987" Conjugate gradient methods for large scale minimization

in meteorology. Mon. Wea. Rev., 115,1479-1502.

Parrish, D. F. and J. C. Derber, 1992" The national meteorological Center's spectral statistical-.

interpolation analysis system. Mon. Wea. Rev., 120, 1747-1764.

Rabier, F., H. Jarvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons, 2000: The ECMWF oper-

ational implementation of four dimensional variational assimilation. Part I: Experimental

results with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 1143-1170.

Rukhovets L., J. Tenenbaum, and M. Geller, 1998: The impact of additional aircraft data on

the Goddard Earth Observing Sys_)em analyses. Mon. Wea. Rev., 126, 2927-2941.



L

Suarez, M., and L. L. Takacs, 1995" Documentation of the At_IES/GEOS Dynamical Core,

Version 2. NASA Tech. Memo. 104606, Vol 5, 45 pp. [Available from Data Assimilation

Office, NASA, Code 910.3, Greenbelt, MD 20771.]

Todling, R. 2000" Retrospective data assimilation schemes: fixed-lag smoothing. Proc. Second

Intl. Syrup. Frontiers of Time Series Modeling: Nonparametric approach to knowledge

discovery, Nara, Japan, December, 155-173.

i

Todling, R. and S. E. Cohn, 1996" Some strategies for Kalman filtering and smoothing. Proc.

ECMWF Seminar on Data Assimilation, 91-111.

Todling, R., Cohn, S. E. and N. S. Sivakumaran, 1998" Suboptimal schemes for retrospective

data assimilation based on the fixed-lag Kalman smoother. Mon. Wea. Rev., 126, 247-

259.

Verlaan, M., 1998: Efficient Kalman filtering algorithms for hydrodynamics models.

thesis, Technische Universiteit Delft, The Netherlands, 201 pp.

Ph.D.

von Storch, H., and F. W. Zwiers, 1999" Statistical Analysis in Climate Research. Cambridge

University Press, 484 pp.

Wentz, F. J. (1997)" A well calibrated ocean algorithm for SSM/I. J. Geophys. Res., 120,

8703-8718.

Zupanski, D., 1997" A general weak constraint applicable to operational 4DVAR data assimi-

lation systems. Mon. Wea. Rev., 125, 2274-2292.

Zhu, Y., R. Todling, and S. E. Cohn, 1999: Technical remarks on smoother algorithms. DAO

Office Note 99-02, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.

Zou, X., I. M. Navon, M. Berger, M. K. Phua, T. Schlick, and F. X. LeDimet, 1993" Numeri-

cal experience with limited-memory, quasi-Newton methods for large-scale unconstrained

nonlinear minimization. SIAM J. Optimization, 3,582-608.

_Q



Figure 1" Schematic representation of the incremental analysis update (IAU) procedure. The

dashed arrows represent the 3-hour GCM integration that provides the first-guess (forecast) to

PSAS. At each analysis time PSAS uses observation-minus-forecast (OMF) residuals to calculate

an updated state estimate (analysis; vertical dotted lines). The analysis-minus-forecast difference

is converted to a model-space tendency term used to force the GCM during a 6-hour integration
around the analysis time; this is the IAU period represented by the solid thick arrows. The

cycle is repeated with a 3-hour GCM integration, without the IAU tendency term, to provide

the first-guess for the next analysis time. The line formed by the solid arrows represents a

time-continuous IAU trajectory, referred to as the assimilation. (Similar to Fig. 1 of Bloom et
al. 1996).



o_ Free GCM integration (background) .*
"'* _ GCM integration forced by lag-1

retrospective analysis mcrement

__. Iterated analysis
l

Adjoint integration (ADJ)

Relevant assimilation trajectory

Figure 2: Schematic representation of the lag-1 iterated retrospective data assimilation pro-

cedure. Dashed north-eastward pointing arrows represent GCM first-guess integration; solid

eastward-pointing arrows represent GCM integration forced by IAU (thick) and retrospective

IAU increment (thin). Dashed south-westward-pointing arrows represent 6-hour adjoint model

integrations. The boxes labeled "Retro ANA" stand for the PSAS application in (19b). The

retrospective assimilation is used to provide a revised first-guess that is further used to revise

the filter analysis at each synoptic time.



Figure 3" Schematic of the procedure to issue forecasts from retrospective analyses using the

IAU framework. Arrows are similar to those in Fig. 1. The main purpose of the retrospective
forecast is the calculation of the OMF residuals indicated by the "Retro OMF" box.
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and for the retrospective forecasts (dashe d curves). Panel (a) is for the geopotential height

TOV$ retrievals residuals; panels (b)'(d) are for the geopotential height, zonal wind, meridional

wind radiosondes residuals, respectively.
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Panels are arranged as in Fig. 7: panel (a) is for the TOVS geopotential height residuals; panels
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respectively.
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