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Abstract

The BFS method for alloys is applied to the study of the Cu-Pd system. A variety of issues are

analyzed and discussed, including the properties of pure Cu or Pd crystals (surface energies, surface

relaxations), Pd/Cu and Cu/Pd surface alloys, segregation of Pd (or C'u) in Cu (or Pd), concentration

dependence of the lattice parameter of the high temperature fcc CuPd solid solution, the formation

and properties of low temperature ordered phases, and order-disorder transition temperatures.

Emphasis is made on the ability of the method to describe these properties on the basis of a mini-

mum set of BFS universal parameters that uniquely characterize the Cu-Pd system.

PACS: 61.43.Bn, 61.66.Dk, 61.72.Bb, 64.60.Cn, 64.75.+g, 68.35.-p, 68.55.-a

Keywords: Copper, Palladium, Surface energies, Segregation, Surface relaxation, Surface alloys,
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1. INTRODUCTION

In the last few years, there has been an increasing demand for precisely designed materials with

very specific properties. The current method for developing new materials, based on a painstaking

empirical approach, is both time-consuming and extremely costly. While the virtual design of new
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materials through complex computer simulations is still many years away, they already play a sig-

nificant role in materials design, and offer several advantages over a strictly laboratory style

development program. Their success depends on the availability of a unified approach that pro-

vides the same level of simplicity and accuracy for any possible application, whether it is directed

to surface and/or bulk analysis. The trend to incorporate atomistic simulations as a standard tool

in the analysis of complex systems has imposed high expectations on the range of applicability of

such methods, their computational efficiency, their ease of implementation, and the type of output

that they provide. While it seems possible that no new approach will be widely accepted until it is

shown to work reliably in the broadest sense, it is important to understand that the starting point

is, in itself, the strongest requirement imposed: materials design is a very complicated issue

involving many variables, including time, temperature, pressure, and all the possible combina-

tions of elements in the periodic table [1].

With these requirements in mind, efficient quantum approximate methods (QAM's) [2-6] have

been developed, each offering a fresh outlook on important issues commonly unavailable experi-

mentally or too demanding, computationally, for accurate first-principles methods. Almost inde-

pendently of their foundation and formulation, QAM's rely on simplifications which, as a result,

inevitably require the introduction of parameters. This is a common feature to all methods,

besides any other assumption on the mathematical expressions for potentials or any other function

that might appear in the theory as a result of an approximation. Additional restrictions generally

apply, resulting in limitations on the efficiency or accuracy of the method in terms of type of lat-

tice structure, number and type of element. More important than these common restrictions, one

basic limitation shared by all these methods consists of the ability of these parameters to repro-

duce physical properties of the system at hand regardless of the particular feature under study. For

example, it is not unusual that most methods rely on parameters derived from experimentally

determined bulk properties. While this fact alone is not a limitation, it becomes one when the

underlying formalism does not support the use of these same parameters for the study of, for

example, surface problems. In some other cases, the parameters have a low level of transferability,

in the sense that parameters determined for a specific element from a specific source might require

an adjustment when that same element is in a different chemical or structural environment. New

fitting or adjustment is then required, thus particularizing the resulting parameters for the one spe-

cific application at hand. As a result, and in order to keep the delicate but necessary balance
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betweenaccuracyandefficiency,differentmethodsarethereforegenerallyusedto dealwith bulk

crystals,surfacesor interfaces,defects,temperatureeffects,etc.,or, as is sometimesthe case,

changesin theformulationof a givenmethodareneededwhendealingwith onetypeof problem

or anotheraremade.Oneway to solvetheproblemof tr_ansferabilityis to developtheoperational

equationsof themethods,andtheunderlyingconceptsfrom which theyarederived,in awaysuch

thattheparametersentertheseequationswithout anyparticulardependenceonanyspecificsitua-

tion, whether it involvesstructuralor chemicaldefects.To that effect, a new QAM, the BFS

methodfor alloys [4], wasrecentlyintroduced,providing analternativeapproachfor performing

atomisticsimulations,by overcomingmostof the limitationsmentionedabove,asnothing in its

formulationimposesrestrictionson thenumberandtypeof elementsor thestructureunderstudy.

TheBFSmethodovercomesthesedifficulties simplybecauseof its interpretationandmodel-

ing of the alloy formationprocess[4]. While a mathematicaldescriptionof themethodwill be

givenin the next section,in this sectionwe concentrateon the underlyingconceptsand their

meaning.In BFS,anygivensystem,regardlessof its compositionandstructureis alwaysmodeled

in termsof two independentvirtual processeswhich, properlycoupled,aremeantto resultin the

final statethatis beingstudied.Oneof thesevirtual processesrelatesto the structuralchangesin

the environmentof anygivenatom(strain),andit consistsof defining,for everyatom,a virtual

(perfect)monatomicequivalentcrystalof its own speciesin a stateof isotropiccompressionor

expansionwith respectto equilibrium.Theamountof compressionor expansionisdefinedsothat

theelectrondensityin thevicinity of theatomin therealcrystalresembles,in average,thecorre-

spondingonein theexpandedor compressedperfectequivalentcrystal [5]. The availabilityof a

universalbinding energyrelationship(UBER) [5,7] to describesuch isotropic transformations

ensuresan accurateand energeticallycorrectdescriptionof the process,particularlyfor small

departuresfrom equilibrium.Theothervirtual processaccountsfor changesin thechemicalenvi-

ronmentof thatsameatom(chemical).Onceagain,anothervirtual perfectcrystal, in a stateof

isotropiccompressionor expansion,isassigned.Todecouplestructuralandchemicaleffects,it is

necessaryto introduceadditionalrestrictionsin thedefinitionof theseprocesses.In thefirst case,

all atomssurroundingagivenreferenceatomareconsideredasbeingof thesameatomicspecies

asthereferenceatom,thusfreezingcompositionaldegreesof freedomin thedeterminationof the

equivalentcrystalassociatedwith structuralchanges.In the secondcase,the surroundingatoms

retaintheir chemicalidentity,butareforcedto occupyequilibrium latticesitesof a latticecharac-



teristic of thereferenceatom.More detailson thenature,characteristics,and modelingof these

processes,will beprovidedin thefollowing section.Here,it is just worth notingthat,regardless

of the details,bothprocessesshareoneparticularfeature:any system is described in the same

way, i.e., by means of virtual, ideal bulk crystals. Whether the system involves the presence of

surfaces or other extended defects, or a varying chemical composition, etc., the modeling of the

formation process is done by means of these virtual crystals which, in their definition (their com-

position and structure), account for the particular features of the real system that they represent.

The environment seen by an atom in the real crystal is translated into an equivalent, perfect crys-

tal. The parameters used in the BFS method describe the virtual processes and the properties of

these virtual crystals. As such, they are somewhat blind to the otherwise different systems that

they describe, as they are always applied to the energetics of perfect, virtual, crystals, in all cases

they describe deviations from an equilibrium state of the equivalent crystal, thus eliminating a

direct correlation with the nature of the actual situation which they are meant to represent. For

example, the formation of a single vacancy is, in terms of the parameters used, no different from

the substitution of a neighboring atom for one of a different species, or a surface defect. There-

fore, it is expected that if the theory allows for an unequivocal definition of these virtual crystals,

properly endowed with the necessary information on the real crystals that they represent, the

parameters will then have the same level of reliability, or be able to extract the same amount and

quality of information via the equations of the method, in any kind of situation.

It is also worth noting that the parameterization of the BFS method implies a somewhat differ-

ent approach for the interaction between different atoms. In general, most approaches deal with

this issue by introducing some sort of interaction potential with any parameter describing each

constituent remaining unchanged. In BFS, it is precisely the set of parameters describing the pure

element what is perturbed in order to account for the distortions introduced by the nearby pres-

ence of a different element or defect. In doing so, an additional advantage is thus introduced in the

methodology, as the number of parameters is reduced to a minimum and their transferability is

therefore guaranteed. It is, however, an additional burden on the method, as too much critical

information must then be carried by a very small number of parameters. From a practical stand-

point, however, it is obviously a matter of balance between the advantages and disadvantages

what ultimately translates into an efficient and accurate method with a maximum range of appli-

cability.

4



Meantasa contributionto theprocessof linking modelingto experimentalanalysis,thepur-

poseof thiswork is to illustrate,with a thoroughapplicationof BFS to thestudyof a binarysys-

tem,thepoweraswell asthelimitationsof procuringsuchbalancebetweenphysicalaccuracyand

flexibility in the spectrumof possibleapplications.At the sametime, this work is meantto pro-

vide ageneralview of thevarietyof issuesthatcanbe tackledwith quantumapproximatemeth-

ods. In what follows, we will show that the implementationof a simple and straightforward

unifiedapproachto singlecrystals,alloys,surfacesandbulk properties,ispossibleand,to a great

extent,agreeablewith currentavailableexperimentalevidence.

Taking thebinary Cu-Pdsystemas anexample,andrepresentingthe basicfeaturesof the

binarysystemsby meansof its phasediagram,thisarticlecoversa largenumberof them,includ-

ing: !) applicationto theanalysisof singlecrystalsandtheir bulk andsurfaceproperties,includ-

ing surfaceenergies, surface structure, and multilayer relaxation, 2) identification of the

segregatingspecies,3) applicationto the formationof surfacealloysfor arbin'arycoverage,thin

film growthpatterns,and interdiffusion,4) descriptionof orderedphases,their bulk structure,

symmetry,defectstructure,surfaceenergiesandsegregationpatterns,analysisof order-disorder

transitionsand determinationof critical temperatures, 5) prediction and analysis of metastable

structures and their alternative ordering patterns, and 6) description of the physical properties of

the solid solution. In a schematic way, Fig. 1 summarizes the applications studied in this work, as

well as other applications that can also be modeled, in the framework of the accepted phase dia-

gram for the Cu-Pd binary system.

The paper is organized as follows. Section 2 describes the BFS method for alloys [4], includ-

ing a brief description of Equivalent Crystal Theory (ECT) [5], the methodology used for the cal-

culation of pure element properties. With the purpose of validating the single element parameters

used as input in BFS, Section 3 deals with a brief review of ECT calculations of single element

properties, including surface energies, surface structure and relaxation. Section 4 presents the

main results of this paper, covering the different aspects of the Cu-Pd system listed above.

2. THE BFS METHOD

The BFS method has been applied to a variety of problems, ranging from bulk properties of

solid solution fcc alloys [9] and the defect structure in ordered bcc alloys [I0,11] to more specific



applicationsincludingdetailedstudiesof thestructureandcompositionof alloy surfacesandsur-

facealloys[12].Thesestudiesprovideconfidencein themethodfor applicationto theproblemof

sitesubstitutioninorderedB2 compounds[13]. In whatfollows,weprovideabrief descriptionof

the operationalequationsof BFS. The readeris encouragedto seekfurther details in previous

paperswhereadetailedpresentationof thefoundationof themethod,its basisin perturbationthe-

ory andadiscussionof theapproximationsmadeareclearlyshown[9-13].

TheBFS methodprovidesa simplealgorithmfor thecalculationof theenergyof formation

AH of anarbitraryalloy (thedifferencebetweentheenergyof thealloy andthat of its individual

constituents).In BFS,theenergyof formationis writtenasthesuperpositionof elementalcontri-

butionsof all theatomsin thealloy

AH = _e/ (1)

For each atom, we partition the energy into two parts: a strain energy, EiS, and a chemical

energy, ti c , contribution. The first specifically relates to the atomic positions of the neighboring

atoms to atom i, regardless of their chemical identity. For its calculation, we use the actual geo-

metrical distribution of the atoms in the alloy surrounding atom i, computed as if all of its neigh-

bors were of the same species as atom i. The BFS strain energy differs from the commonly

defined strain energy in that the actual chemical environment is replaced by that of a monoatomic

crystal. Its calculation is then straightforward, even amenable to first-principles techniques.

The chemical environment of atom i is considered in the computation of the BFS chemical

energy contribution, where the surrounding atoms maintain their identity but are forced to occupy

equilibrium lattice sites corresponding to the reference atom i. A straightforward approach for the

calculation of the chemical energy is defined, properly parameterizing the interaction between

dissimilar atoms.

Thus defined, the BFS strain and chemical energy contributions take into account different

effects, i.e., geometry and composition, computing them as isolated effects. A coupling function,

gi, restores the relationship between the two terms. This factor is defined in such a way as to prop-

erly consider the asymptotic behavior of the chemical energy, where chemical effects are negligi-



blefor largeseparationsbetweendissimilaratoms.Summarizing,thecontributionto theenergyof

formationof atomi is then

S C

Ei = Ei + gi8i (2)

2.1 CALCULATION OF THE BFS STRAIN ENERGY

The BFS strain energy can be computed by any method appropriate for the calculation of pure

element crystals. As in previous applications of BFS, however, we use Equivalent Crystal Theory

(ECT) [5] for its computation, due to its proven ability to provide accurate and computationally

economical answers to most general situations. ECT is based on an exact relationship between the

total energy and atomic locations and applies to surfaces and defects in both simple and transition

metals as in covalent solids. Lattice defects and surface energies are determined via perturbation

theory on a fictitious, equivalent single crystal whose lattice parameter is chosen to minimize the

perturbation. The energy of the equivalent crystal as a function of its lattice constant, is given by a

universal binding energy relationship [7]. ECT is based on the concept that there exists, for each

atom i, a certain perfect equivalent crystal with its lattice parameter fixed at a value so that the

energy of atom i in the equivalent crystal is the BFS strain energy contribution Eis. This equivalent

crystal differs from the actual ground state crystal only in that its lattice constant may be different

from the ground state value. We compute ei s via perturbation theory, where the perturbation arises

from the difference in the ion core electronic potentials of the actual defect solid and those of the

effective bulk single crystal. The simplified perturbation series for Eis is of the form [5]

= E c F[al
* * l 4

(i)]+_.F[a2(i,j)]+_F[a_(i,j,k)]+ _._F[a4(i,p,q)]l = ___ _n
j j,k p,q n=l

(3)

where

Fix] = 1-(1 +x)e -x (4)



andE c is the cohesive energy of element i. Four different contributions to the energy of atom i,

which find their origin in four different perturbations, are singled out. The linear independence

attributed between these four terms is consistent with the limit of small perturbations which is

assumed in the formulation of ECT. The first term, crI = Ecf[a_(i)J , contributes when average

neighbor distances are altered via defect or surface formation (i.e., changes in coordination). It

can be thought as representing local atom density changes, In most cases, this "volume" term is

the leading contribution to E;i and in the case of isotropic volume deformations, it gives ei s to the

accuracy of the UBER [7], given by Eq. 4. The higher order terms are relevant for the case of

anisotropic deformations [4]. The second term, _2 = EcF[a;(i,J)], is a two-body term which

accounts for the increase in energy when N bonds are compressed below their equilibrium value.

The third term, % = EcF[a;(i,j,k)], accounts for the increase in energy that arises when bond

angles deviate from their equilibrium values of the undistorted single crystal, and the fourth term,

_Y4 = EcF[a4( i, P, q)], describes face diagonal anisotropies (see Ref. 5). In all cases considered in this

work, a rigorous application of ECT is reduced to that of its two leading terms, which describe

average density contributions and bond-compression anisotropies. We neglect the three- and four-

body terms dealing with the bond angle and face-diagonal anisotropies, except for one single

example (surface energy and relaxation of monatomic crystals), where it will be shown that, for

metals, their contribution is exceedingly small [5].

We now apply this formalism to the calculation of the BFS strain energy contribution, ei s, of

atom i. To do so, the ECT perturbation equation [5] is written in terms of the distances i) between

atom i and its NN and NNN,

• ,,,p, ,c-, pl -(c_i+ S(ri))r j
NRfie -_RI + zel t_2 e = 2--. rj e (5)

where N and M are the number of NN and NNN respectively, and where p, l, o_ and _. are ECT

parameters that describe element i, r denotes the distance between the reference atom and its

neighbors, S(r) describes a screening function [4] and the sum runs over all NN and NNN. R 1 and

R 2 denote the NN and NNN distances in this equivalent crystal. This equation determines the lat-

tice parameter of a perfect equivalent crystal where the reference atom i has the same energy as it

has in the geometrical environment of the alloy under study.



Oncethelatticeparameterof the(strain)equivalentcrystal,a s, is determined, the BFS strain

energy contribution is computed using the UBER [7], which contains all the relevant information

concerning a single-component system:

c( s*,as = E 1-(l+a i )e ) 6)

S*

where the scaled lattice parameter a i is given by

s* (aSi -a_)

ai = q l
(7)

where q is the ratio between the equilibrium Wigner-Seitz radius and the equilibrium lattice

parameter ae _. When ECT is applied to the study of surfaces of monatomic crystals (Cu and Pd),

all four terms should be included in the calculations. However, when considering rigid surfaces

(i.e., no interlayer relaxation) all bond lengths and angles retain their bulk equilibrium values, thus

F[a2] = F[a3] = F[a4] = 0. The rigid surface energy is therefore obtained by solving for the "vol-

ume" term represented by F[al] only. If we consider a rigid displacement of the surface layer

towards the bulk, as is the case in most metallic surfaces, the higher-order terms become finite:

some bonds are compressed, contributing to F[a'zl, the bond angles near the surface are distorted

as well as the difference in length between face diagonals in some cases, generating an increase in

energy via F[a3] and F[a4], respectively. For the cases studied in this paper, those additional

contributions to ei s are generally small, usually representing 1% to 2% of the total energy• The

corresponding energy contribution _2 is directly computed using [14]

N s M. VOrnn

(Y2 = ECn_= lm= lZ-_mnF(amn ) (8)

where N s is the number of atoms in the solid, %. = 1 if a_. _<o and %. = o otherwise, M n is the

number of NN of atom n, Lmn is the number of NN of atom m or n, whichever is smaller, and a_,.

is given by



emn

- r WSE

* ¢1 (9)
a'n" = l

where Rmn is the distance between atoms m and n, and c 1 is the ratio between the equilibrium NN

distance and the equilibirum Wigner-Seitz radius•

2.2 CALCULATION OF THE BFS CHEMICAL ENERGY

The BFS chemical energy is obtained by a similar procedure. As opposed to the strain energy

term, the surrounding atoms retain their chemical identity, but are forced to be in equi!ibrim, n lat-

tice sites of an equilibrium (otherwise monoatomic) crystal i. The BFS equation for the chemical

energy is given by

-(o_ik+l]r:'_

p,-o_,R, MRI_2,e-(a'+_) ,,_.,..,r_,,, p,-cqkr, ,,. p,, "'u'.
-- IVI ik r2 e )NR 1 e + +_lvikrl e +

(10)

where Nik and Mit are the number of NN and NNN of species k of atom i in the actual alloy• The

chemical environment surrounding atom i is reflected in the parameters O_ik,given by

O_ik _= O_i + Aki (11)

where the BFS parameters A (a perturbation on the single-element ECT parameter o_i) describe the

changes of the wave function in the overlap region between atoms i and k. Once Eq. 10 is solved

for the equivalent chemical lattice parameter ai C, the BFS chemical energy is then

c i( c*, -af"_e i = YiEc 1-(l+a i )e ) (12)

• C* C*
where Yi = 1 if a i > 0 and 7i = -1 if ai < 0 and where the scaled chemical lattice parameter is

given by
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(13)

It is worth noting that the BFS parameter Aki is, in a sense, as much a single-element parame-

ter that describes element i as any of the parameters previously introduced. It describes changes in

the electron density in the vicinity of atom i due to the presence of atom k. It is, figuratively, a con-

ditioned response of atom i to the presence of atom k and it does not depend on the relative loca-

tion of these two atoms, as would be the case in the context of a traditional potential approach,

where there would be a distance-dependent interaction. The definition of the chemical defect, rep-

resented by the r.h.s of Eq. 10, requires all atoms to be located at equilibrium nearest-neighbor

distance a i.

Finally, as mentioned above, the BFS chemical and strain energy contributions are linked by a

coupling function gi which describes the influence of the geometrical distribution of the surround-

ing atoms in relation to the chemical effects and is given by

gi = exp(-af*) (14)

where the scaled lattice parameter ai S* is defined in Eq. 7.

In this work we used the BFS perturbative parameters A determined following the procedure

outlined in Ref. 9. The pure element parameters ae, E c, l, Or, _, and the BFS parameters ApdCu and

AcuPd used in this study are listed in Table 1.

3. DESCRIPTION OF SINGLE ELEMENT PROPERTIES

The accuracy of the BFS method relies heavily on the few parameters that describe each sin-

gle element (including the perturbative parameters ,5 necessary in the description of the alloys).

With the objective of validating these parameters, we devote this section to review the perfor-

mance of the method in a number of applications regarding the surface structure of single element

crystals of Cu and Pd. The rest of the paper is devoted to examine the behavior of the BFS param-

eters ACuPd and AedCu through several applications to Cu-Pd alloys.

3. I SURFACE ENERGIES AND SINGLE CRYSTAL SURFACE RELAXATION
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The energyof a free surfaceplays an importantrole in severalphysical and chemicalpro-

cessessuchasfracture,catalysis,etc.Experimentalmeasurementsof thesurfaceenergyareusu-

ally at oraboveroomtemperatureandaresubjectto errorsdueto surface-activecontaminantsand

thushavea degreeof uncertainty.Lately,therehasbeenan increasingeffort on first-principles

calculations[15-21]aswell asin theareaof quantumapproximatemethods.Both EAM [6] and

ECT havebeenappliedto this and othersurfaceproperties,with the latter methodproviding

excellentagreementwith availableexperimentaldata[5,14].

Table2 lists, for the low roughnessfaces,thedifferent contributionsto the surfaceenergyas

definedby ECT.Theseresultsarecomparedwith severalexperimentalestimates[28,29]aswell

cmculauOII_ _i 7,_.:-.:7j.as the surface energies obtained by other approaches and first-principles -'" ' ": - ' "" "

The 'rigid' results contain only one contribution, cy1. This 'volume' term decreases substantially

once the top layers are allowed to relax, but some of the decrease in energy is balanced by the

finite contributions of the anisotropic terms 62, (Y3and c_4. Of these three terms, the largest contri-

bution is provided by the bond-length anisotropy term represented by cy2, which arises from the

contraction of the first interlayer spacing. In all cases, the many-body terms due to bond-angle and

face-diagonal anisotropies are very small compared to the leading terms and have no effect on the

overall behavior of the relaxation patterns as well as the resulting surface energies [5,30].

Multilayer relaxation means that planes in the surface region display shifts perpendicular to

the surface, directed both inward and outward, with or without distortion of the two-dimensional

mesh cell. In most cases the relaxation pattern is of an oscillatory character, with the alternating

compressions and expansions following trends that depend on the stacking (ABAB ....

ABCABC ..... etc.) and whose magnitude decreases in approaching the bulk. The results shown in

this section indicate that a quantitative comparison with experiment is often difficult, in that there

is a substantial range of results for a given material and surface, even regarding the sign of the

change. Similarly, quantitative comparisons with first-principles calculations suffer from a spar-

sity of results. Therefore, the bulk of our assertions about success in predicting surface relaxation

is based mostIy on agreement with the magnitude and sign of the changes. Several experimental

and theoretical studies have concentrated on the Cu and Pd low index surface relaxations

[6,23,31-56]. Table 3 summarizes the experimental [31,41,50-52] and theoretical

[6,22,23,40,41,44,45] results for low-index faces of Cu and Pd. The agreement between the ECT
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predictions and other theoretical and experimental results [31,35-39,42,43,50-52] is consistent for

all faces of Cu and Pd.

It is important to address the issue of uncertainties in the prediction of multilayer relaxation.

All quantum approximate methods used for simulations of surface structure (ECT, EAM, etc.)

[3,4,22] rely either on input data (generally experimentally determined) or on certain approxima-

tions for some of the variables of relevance. First principles methods have been used to provide

input data when experimental results are inaccurate or unavailable. Either way, the uncertainties

in the experimental data used or the choices made in the implementation of first-principles calcu-

lations should translate into some degree of uncertainty in the results obtained with the chosen

quantum approximate method. In order to estimate the impact of such experimental or theoretical

uncertainties in the parameterization of the quantum approximate methods, we will attach an esti-

mate of the possible errors due to any of the reasons mentioned above. Although there is no cer-

tain way to determine such errors (after all, the predictions are, within their own framework,

exact), we will see that even small changes, of the order of 1%, in the surface energy can generate

quite interesting variations in the relaxation schemes predicted. In particular, within the frame-

work of ECT (I [5,14] or II [4]), such small changes in the surface energy can be easily obtained

by changing any of the input parameters (lattice constant, cohesive energy, bulk modulus) by

comparable amounts, well below the usual experimental errors in the determination of such quan-

tities.

We thus define 'error bars' in such a way that all the intermediate values so obtained predict

variations in surface energies within a certain tolerance. As an example, we set the tolerance at

i% of the equilibrium surface energy, (re. This defines a 'surface' cy(Ad12,Ad23) and the allowed

values for these parameters are such that 0.99cy e < cy(Ad12,Ad23) < 1.0I_J e, where Adnr n denotes

the change in separation between planes n and m. We take, as an example, the case of Cu for

which there is a consistent agreement between experiment, ECT and other theoretical approaches.

In Table 4, we compare results for the multilayer relaxations of the first two interlayer spacings

for those cases for which data are available [33,38,42]. The inclusion of the theoretical 'error bar',

as mentioned above, allows for a better comparison with experiment as it shows that for most

cases, small changes in the input parameters of the method may account for the whole range of

possible experimental results.
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For completeness,and due to the considerableexperimentalinterestin steppedandkinked

surfaces,we include predictionson multilayerrelaxationsfor Cu(210)and Cu(311), including

bothperpendicularandparallel relaxations,aspercentagesof thecorrespondingbulk spacingsin

Table5, includingrecentexperimentalresults[57].

4. BFSANALYSIS OFTHE Cu-PdSYSTEM

HavingestablishedthevaIidityof theparameterizationof Cu andPdbymeansof a detailedanal-

ysis of the surfacepropertiesof purecrystals,wenow proceedto studytheCu-Pd systemusing

BFS.It shouldbenotedthateverysingleapplicationof BFSto theinteractionof CuandPdatoms

relieson just onepair of parameters,listed in Table 1, andthat no correctionor adjustmentis

madewhendealingwith different typesof applications.

4.1HEAT OFSEGREGATIONOFSINGLESUBSTITUTIONAL ADDITIONS

Surface and interracial segregation are phenomena with great technological importance

[58,59] as they affect both the chemistry of surfaces and the strength of interfaces. In addition to

the considerable experimental effort devoted to segregation [60-71], theoretical studies covering a

wide range of techniques [6,22,72-76] have been applied to seek further understanding on the

driving mechanisms for segregation. A thorough review of experimental and theoretical results for

the surface composition and structure for a large number of binary alloys can_ be found in Ref. 77.

The heat of segregation is defined as the difference between the heat of formation of a semi-

infinite A crystal with an impurity of atomic species B located at a lattice site on plane p (p--0 is

the surface plane) parallel to the surface and the same structure, but with the atom B located in a

lattice site in the bulk (p = b). For the derivation of an analytical result, we ignore relaxation

effects around the impurity as well as surface relaxation of the host crystal, as detailed in the pre-

vious section. This is clearly unrealistic, but it is justified in that it allows for the derivation of

simple expressions describing the fundamental process. We consider a cell containing the impu-

rity atom such that the host atoms on the boundary of this cell are 'insensitive' to the presence of

the impurity (i.e., the distance is large enough to exceed the range of interactions included in the

BFS calculation of the energy). The cell is a sufficiently large piece of the crystal which includes
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the impurity atom in layer p, its surrounding neighbors, and several other atoms located in inter-

mediate layers q (q = 0, I ..... p ..... p_ ). The heat of segregation can then be understood as the

exchange of an impurity atom in layer p with a host atom in the bulk. If this exchange lowers the

energy, then the impurity does not segregate to the surface.

ff AE[p,X ] denote the energy of formation of the computational cell when the atom X is located

in layer p, then the heat of segregation is

AE(s p) (15)= AE[p, B] - AE[p, A]

After some algebra, an expression which depends only on individual strain and chemical

..... gy :,r_ntr';hnt_nrte oan h,_ r_ht_inort

S*

p -aa _" p C" C" C"AE ) = aB,s _EBBS_eaeS + __e '[fPE_,+gqeA ]-NEAb-Me& +
P

S _ S*

e-aBp_c -aBb C (16)
v..,Bp -- e EBb

s (Ec) is the strain (chemical) energy of an atom X in layer p, f_ (gP) denotes the num-where Ex,

c" (_%') is the chemicalbet of NN (NNN) than an atom in layer p has in layer q and where _x,

energy of an atom X in layer p that is a NN (NNN) of the impurity atom B. The scaled lattice con-

stant a s* is given by

s* (aSp-aXe)

ax, - lx (17)

Including relaxation would render this expression unmanageable, as it would include every

atom in the cell as well as a substantial number of variables (interplanar spacings for the surface

planes and interatomic relaxations around the impurity in the bulk). It is interesting to examine

this simplified result as it provides a simple, analytical way to isolate the different mechanisms

involved in segregation and their influence in the heat of segregation. Eq. 16 shows that two dis-

tinct contributions are responsible for segregation: a strain term,

AS(sP) s s s= _B, - E2_b-- ea. (18)
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and a chemical term

AC(sP) = AEIP)_AS (p) (19)

both defined in the context of BFS. One immediate conclusion regarding the driving mechanism

is drawn from the predictions from these last two equations, which are summarized for a large

number of host-impurity systems in Table 6: the strain energy contribution consistently has the

same sign as the whole quantity, indicating that the segregation trends obtained from Eq. 16 are

dictated by the relative value of the strain energy, as one would expect. Moreover, two different

s s

conmbutions can be _,_._.,.,o_I_*_"_¢.._.,,._ the different terms that make up the strain energy: _8,- ebb,

directly related to the structural strain induced by the presence of the impurity, and _8,s_ _A,S,which

indirectly reflects the difference in surface energies of the two participating species (note that, as

defined, these are not competing mechanisms). The first quantity does not follow the correct trend

for the total BFS energy in all cases, although it tends to do so as the lattice mismatch between

species A and B increases. We then conclude that only when the lattice mismatch is sufficiently

large so as to make AS(s°) < 0 this effect can be taken as the one responsible for identifying the seg-

regating species. The 'surface energy' s sterm, eB,-eap , consistently reproduces the same trends as

AE S as a whole, as well as experimental trends. These results are displayed in Table 6: the first

column shows typical experimental predictions [76] for the sign of aE(s°) . The second column dis-

plays the corresponding results obtained from Eq. 16 and the last three columns show the sign of

aS(s0) , es0s_ _,s and eB0s_ _aoS.A negative sign in the first two columns indicates that the impurity

atom segregates to the surface. It should be noted that as we move down to planes below the sur-

face, one would expect chemical effects to dominate as the influence of the surface is lessened,

resulting into a more delicate balance between AS and AC, which could translate into segregation

patterns where certain layers are enriched and other are not, sometimes in an oscillatory fashion.

Unlike most other systems for which theoretical or experimental evidence is available, Cu-Pd

is inherently uncertain: theory and experiment are equally divided with respect to the choice of the

segregating species. A recent theoretical study even finds a segregation reversal where for

CuxPdl_ x disordered alloys, the segregating species varies with composition [60]. However, the

overall agreement between BFS and experiments for other systems suggests that further experi-
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mentalwork might confirm the theoreticalpredictions.It shouldbe noted,however,that small

variationsin the inputparametersAABandABA are sufficient, in some cases when the heat of seg-

regation is small, to reverse the predicted behavior. For the particular case of Cu-Pd studied in this

work, the BFS parameters were obtained by fitting to the experimental heat of solution in the

dilute limit, which is directly related to the physical phenomenon represented by the heat of segre-

gation. We then suggest that when the heat of segregation predicted by BFS is small, uncertainties

in the experimental input used (and thus AAB and ABA ) must be questioned, before those predic-

tions are accepted.

4.2 SURFACE ALLOYS

The emerging field of surface alloys, i.e., alloys that form only on a surface typically including

from one to a few layers, provides a wealth of new and unexpected phenomena where atomistic

modeling can be of help in understanding the experimental observations [78-83]. The level of

detail needed to properly describe the observed features, or to predict the behavior of unknown

systems, imposes a severe requirement not only on the strength of the theory, but also on the

parameters used. Beyond the ability of any given method to properly describe surfaces with the

same accuracy with which it describes bulk features, it is also necessary that the method has

enough resolution to be able to successfully distinguish the complex patterns observed in surface

alloys, which clearly includes surface phenomena as well as the interactions between two or more

different elements. In this section, we focus on the deposition of Pd on Cu(100) and Cu(110), and

Cu on Pd(110), highlighting the fact that in spite of the nature of the problem, no changes or

adjustments are made on the parameters used. These three surface alloys, for which there is abun-

dant experimental work [84-90], display substantially different patterns: (a) Pd/Cu(100) is charac-

terized by a c(2x2) structure for low Pd coverage [84-87]; (b) Pd/Cu(110) shows the formation of

Pd-Cu chains, resulting into a Cu3Pd one-layer surface alloy [88] and (c) Cu/Pd(110) features

monoatomic linear chains oriented in the [110] direction for low Cu coverage [89,90].

The results shown in this section were obtained from implementing a calculational procedure

based on the determination of 'catalogues' of atomic configurations describing a large portion of

the substrate and the adlayer [91,92]. The energy of each configuration is computed with the BFS

method and the surface alloy formation process is then reconstructed by linking the states with
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lower energy, as the coverage increases. As information on higher energy states is also available,

an advantage of this procedure lies in the insight that it provides on metastable states and therefore

on alternate ordering patterns. However, being that there is no specific set of rules for constructing

such catalogues, the effectiveness of this approach is directly related to our ability to include in

these catalogues all the relevant configurations.

A catalogue of configurations is built focusing on the symmetries of the substrate, but general

enough to include most of the possible growth patterns. For the sake of simplicity, these configu-

rations do not include individual or collective atomic relaxations, and all the calculations are per-

formed at zero temperature. Both conditions can be relaxed but, given the objective of this paper

(i.e., the transferability of the BFS parameters for Cu and Pd to any bulk or surface problem), a

full treatment of relaxations and thermal effects would disa'act from the main goal.

(a) Pd/Cu(tO0): A catalogue of configurations for Pd coverage up to 0.5 ML was built, includ-

ing states with Pd atoms in surface sites substituting for surface Cu atoms, as well as sites in the

overlayer [91]. Starting with low Pd coverage, it is seen that Pd atoms insert themselves in the

(100) surface layer in nearest-neighbor sites along the [010] and [100] directions, leading to a

c(2x2) structure at higher coverages. The ejected Cu atoms either migrate to nearby steps or

nucleate on top of alloyed areas resulting in subsurface Pd. The preference for the formation of a

Pd c(2x2) structure is highlighted by the fact that alternative ordering patterns (even those that

show a slight departure from the c(2x2) ordering) are much higher in energy and therefore

unlikely to occur. However, the low-lying energy states (all including c(2x2)-like patterns) also

include states where some Pd atoms interdiffuse below the surface layer, a trend enhanced for

higher Pd coverage. While this feature hints to the possibility of much more complex alloying pat-

terns for Pd coverage close to 0.5 ML, it also establishes a limit for the validity of the restrictions

imposed in the current calculation, as subsurface Pd penetration would require a full treatment of

collective atomic relaxations. In fact, experiment indicates a clock-rotated phase with the c(2x2)-

p4g symmetry [84], consistent with a substantial displacement of the subsurface atoms [84]. In

spite of the fact that these are static calculations, the motion of Cu islands or Cu atoms in the

adlayer can be modeled by analyzing configurations where Cu resides on top of surface Pd atoms,

attached to a nearby step, or somewhere in between. The results show that Cu migrates to nearby

steps, with decreased mobility for increasing Pd coverage (i.e., the difference in energy between
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alloyedspotsandstepsdecreases).Summarizingtheresultsfor Pd/Cu(100),theBFScalculations

successfullyreproduceall the featuresobservedexperimentallyup to 0.5 ML Pd coverage

[84,85]:thealloyingof Pdatomsin thesurfacein the[010]and[100] directions,thenucleationof

Cu isD_.dsontop of alloyedareas,thedecreasedmobility of Cu islandswith increasingPdcover-

age,theformationof a c(2x2)phaseasthechainsconverge,and theinterplaybetweenthec(2x2)

phaseandthe initiation of secondlayergrowthat increasingcoveragesbeforethec(2x2) is fully

completed.Fig. 2 illustratesthis last feature,by studyingtheevolutionof theenergyof formation

of selectedstates,namely,thec(2x2)groundstateandtheconfigurationscorrespondingto thePd

atomin thenear-surfacelayers.

(b) Pd/Cu(llO): Once again, it is seen that Pd atoms exchange sites with Cu surface atoms

[88-92]. However, the particular features of an fcc (i 10) surface turn this Pd surface atom into a

strong nucleation point for Cu atoms in the overlayer, which in turn stimulates the formation of

Cu chains in the overlayer, as opposed to Cu islands attached to alloyed surface regions. An

energy level diagram representing this process is shown in Fig. 3. Configurations with neighbor-

ing Pd atoms in surface sites are substantially higher in energy than those where Pd atoms interact

only through Cu adatoms. In agreement with experiment, no additional features, like Pd penetra-

tion in subsurface layers, are observed. For increasing Pd coverages the growth pattern remains

the same, resulting in the formation of Cu chains in the adlayer, coupled with alternating Cu-Pd-

Cu surface atoms. Not surprisingly, this experimentally observed pattern [88] corresponds to the

[010] direction in a (110) termination of an L12 Cu3Pd alloy. The lack of alternate ordering pat-

terns that compete energetically with the one observed, leads to the conclusion that for higher Pd

coverages, the Cu-Pd chains observed will eventually coalesce into what amounts to a Cu3Pd

(110) surface, with full coverage of Cu with a 2:1 Cu:Pd ratio, as observed experimentally.

(c) Cu/Pd(llO): Experimental results for this system clearly show that the observed growth

pattern is substantially different from the systems where Pd is deposited on a Cu substrate [89,90].

The energy level diagram shown in Fig. 4 indicates that Cu does not substitute for Pd surface

atoms. Instead, the state of minimum energy corresponds to the Cu atom attached to a Pd step

edge in the [110] direction, with the step edge acting as a nucleation center favoring the growth of

1D Cu chains. While this trend is also observed at higher coverages, the preference for separate

anchoring points in the step edge is diminished at higher coverages, suggesting a 2D growth of the

linear chains. Still, it is expected that a clear separation between 1D chains will dominate the low
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coverageregime.Theenergylevelsin Fig. 4 correspondto selectedconfigurationswith increasing

Cucoverage,clearlyshowingthatCuatomsarealwaystrappedby asubstrateedgeor existingCu

islands.TheCu fin_,ers in the [110] direction are observed experimentally for room temperature

and low (<0. ! ML) Cu coverage, as well as the fo_rmation of 2D islands for higher Cu coverages,

consistent with the modeling results.

4.3 CuPd SOLID SOLUTION

As shown in Fig. 1, a continuous solid solution is found at high temperatures. Measurements

of the lattice spacings of the solid solution date back to 1932 [93]. Lattice spacings were said to be

accurate to -0.05%. In order to obtain BFS predictions for the lattice parameter of rne solid solu-

tion, it is convenient to use a simple algorithm based on the cluster expansion method [94], which

allows for the calculation of finite temperature lattice parameter values from information describ-

ing certain zero-temperature ordered structures (regardless of the fact if these structures are found

in nature or not). In this approach, the equilibrium properties of Cu3Pd, CuPd and CuPd 3 in the

L12, L10 and L12 structures, respectively, are computed with the BFS method as a function of vol-

ume. Following the Connolly-Williams scheme [95], these results yield information of the differ-

ent many-body interactions that characterize the system. Once these potentials are known, it is

straightforward to obtain the energy vs. volume curve for the disordered solid solution.

We start by computing the formation energy of the five basis clusters needed, within the tetra-

hedron approximation (only clusters consisting of NN). These simple clusters are the building

blocks of the corresponding ordered fcc alloys AraB4. m. The formation energy is then

AErn = Em(r)+m__E4(a ea) _ (1 - 4)Eo(aBe) (20)

A B
where at and a t are the equilibrium lattice constants of pure A and B metals, E4(a A) = 4' and

n With these definitions, Em(r ) represents the binding energy curve of the ordered alloyEo(aBe ) = E c.

as function lattice spacing. The energy of formation of the disordered structures AxBI_ x as a func-

tion of the ordered ones [95] can be computed with
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mAEDr, x) = x (1 --X) 4 AEm(r )
m

=0

(21)

The lattice parameter for the disordered alloy AxBi. x is then given by the value of r which min-

imizes ,SJrD, and the energy of formation is the corresponding minimum value of Ari D. The values

for the lattice parameter as a function of composition are shown in Table 7. Table 8 shows the

energy of formation as a function of concentration.

4.4 ORDERED STRUCTURES

The wealth of experimental studies of surface relaxation on pure metallic surfaces is not

matched for alloys [97]. However, in spite of the small number of experimental studies [98-102],

there seems to be a slow but sure progress in the field, as the available theoretical tools for model-

ing become more accurate.

The Cu-Pd phase diagram shown in Fig. 1 exhibits an L12 ordered phase at low temperatures. In

this section, we apply BFS to the calculation of the surface structure of Cu3Pd.

4.4.1 Multilayer relaxation and surface structure of Cu3Pd

The lattice parameter of the Cu3Pd phase, as a function of composition, can be computed

from the BFS predictions for AEm(r), for m=3 (see Eq. 20). The calculation of the energy vs. vol-

ume curve is a straightforward calculation, as all Cu atoms are equivalent:

1

AEm(r ) = _(3ecu + eea ) (22)

where ecu and epd represent the contributions of Cu and Pd atoms, respectively, computed

using the formalism introduced in Sec. 2. By minimizing AE with respect to the lattice parameter,

the equilibrium spacing of the L12 phase is thus obtained.
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The Cu3Pd phase is simple enough to allow for a straightforward application of BFS for the

determination of surface energies and multilayer relaxation patterns. Previous studies using BFS

of A3B structures (Ni3A1, Cu3Au) [103] have shown that the methodology provides reliable

results for the calculation of surface st_nacV_e in comparison with experiment, in particular, the

determination of the individual displacement of surface atoms of different sizes in mixed-compo-

sition surfaces.

There are two possible terminations for the (100) L12 structure of a certain A3B alloy: a mixed

composition (1:1 A:B) plane alternating with a pure A (1:0 A:B) plane, giving an overall stoichi-

ometry (3:1 A:B), and a pure A plane alternating with mixed-composition planes. These two pos-

sible bulk truncations are also possible for the (110) surface, whereas the (111) truncation is

always stoichiometric (3:1 A:B). We will assume that the lattice parameter a is the one previously

determined for a bulk ordered alloy A3B.

While no experimental data for Cu3Pd exist, we provide a foundation for the validity of our

predictions by discussing results for Ni3A1 and Cu3Au, which have a similar structure, in compar-

ison with other experimental or theoretical results.

For Cu3Au, relaxed surface energies are shown as obtained with Finnis-Sinclair many-body

potentials [ 104] and BFS. Both methods predict, as expected, lower surface energies for the mixed

composition (100) and (110) truncations. This feature has been experimentally proven via a low-

energy ion scattering study which detected equal parts of Cu and Au in the top layer [105]. BFS

and FS results also agree on the relative change in surface energy once the topmost layers are

allowed to relax, in spite of the fact that the FS values are 50% smaller than the BFS ones. As is

also to be expected, the surface energies of (100) 1:0 and (110) 1:0 faces are comparable to the

corresponding values for single Cu crystals. In what follows, the relaxations are indicated as the

percentage change in interlayer spacing from the unrelaxed case to the one measured from the

relaxed position to the unrelaxed location of the plane immediately below. For the Cu3Au(100)

1:1 Cu:Au case, the results imply a rippling of 0.148 +/- 0.025 _, which amounts to 3.97 % of the

lattice parameter determined for this alloy (3.73 ,_). This result compares very well with the

3.77% rippling obtained using FS potentials [104]. A similar situation is found for the (110) 1:1

Cu:Au surface, where we find the rippling to be 4.2% of the lattice parame!er, whereas FS poten-

tials predict a rather small change of 1.9%. For the mixed composition (111) 3:1 Cu:Au surface,

BFS predicts a rippling of 4.6%, thus agreeing with FS results and experimental evidence that the
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Au atomsare farther out than the neighboringCu atomsin mixed-compositionsurfaces.For

Ni3AI, thefollowing valuesfor thegapbetweenNi andA1atomsin themixedcomposition(100),

(110)and (111)surfacesis found:0.12A, 0.09/_ and0.16A, respectively.A similar trend,but

with somewhatsmallervaluesfor therippling areobtainedfrom EAM [106]" 0.09_, 0.06 2_ and

0.07 ]k, respectively. A different EAM calculation [ 107] predicts a 0.06 A separation between Ni

and A1 atoms in all three surfaces. Recent LEED data [99] predict a distance of 0.02 A between Ni

and A1 atoms for the (100) surface. Based on the ability of BFS to describe the surface structure of

the L12 Ni3A1 and Cu3Au, Table 9 lists similar predictions for Cu3Pd.

4.4.2 Order-disorder transition: Cu3Pd

For the study of order-disorder transitions, we make use of Monte Carlo - Metropolis large scale

simulations. Following the traditional algorithm, an initial, random, structure is generated by

assigning Ni, A1 and Fe atoms to rigid (i.e., no individual relaxations) lattice sites in a 1024-atom

computational cell with periodic boundary conditions in all three directions. The kinetics of

ordering with decreasing temperature are represented by the exchange of randomly chosen pairs

of atoms of different atomic species throughout the cell. The difference in energy of formation of

the cell before and after the exchange, AE, is used to determine the likelihood that this exchange

can take place. If AE < 0, the exchange is readily accepted. If not, it is assigned a probability

exp(AE/kT), where k is Boltzman's constant and T is the temperature. For a fixed value of T, the

cell is allowed to evolve until its total energy stabilizes. The process is repeated for decreasing

values of T, until a final, equilibrium, state is reached (i.e., every possible distribution of atoms is

considered until the one with the lowest possible energy is found). The algorithm favors the ideal

atomic distribution consistent with an infinite annealing time. We call this procedure all-swaps

(AS) [!08], as any atomic exchange is eventually considered and the actual ground state of the

system is reached.

For the purpose of this work, where simulations are only meant to illustrate and expand on the

results obtained from the spectral analysis, it is convenient to introduce an alternative approach to

aid in the understanding and interpretation of some features that characterize the results of the

standard Monte Carlo - Metropolis procedure. While traditionally used for the determination of

ground state properties, the AS approach does not necessarily provide the best means for compar-
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isonwith experiment,dueto its unrealistictreatmentof atomicinterdiffusion.Moreover,AS does

not constitutea properdescriptionof temperatureeffectsas T entersin the simulationsonly

throughtheprobabilityfactorkT.Thisresultsin anincorrectscalingbetweentemperatureandthe

observed -"_- _ _ _o_u_lmg.Theunlimitedrangeu, Lh,_atomicexchangesallowsfor orderingat veryhigh

temperatures,thusprovinghighly inefficientfor aproperanalysisof order-disordertransitions.

Theselimitations canbe avoided,within the frameworkof an approximatevariationof the

standardMonteCarlo- Metropolisalgorithm,solelydesignedto focuson themodelingof thelow

temperaturebehaviorof individualatoms.A second simulation approach is therefore introduced,

particularly designed to avoid these limitations [109]. In this algorithm, which we denote NN, we

limit the range of atomic exchanges to pairs of atoms located at nearest-neighbor distances. More-

over, we modi_ the probability criterion by defining it in terms of the ratio between the energy

necessary for the exchange, z32_,and the available thermal energy, given by

00

-"f" 3

Erh = 9NkT(T']3 f X_dx
_"OD) J e _- 1

o

(23)

where o o is the Debye temperature [110]. In this approach, the actual ground state of the system

is not necessarily reached, as different atoms could eventually get 'trapped' at low temperatures,

thus unable to reach their true equilibrium positions. Together, AS and NN simulations supple-

ment each other, providing insight not only on the nature of the thermodynamic ground state (AS)

but also on the most likely features observed experimentally (NN). We stress, however, that the

NN approach does not rely on a rigorous statistical mechanics foundation as AS does. It is, at

best, a simple but approximate way to model the evolution of the system and therefore illustrate

the consequences of the basic features of the energy spectrum that is obtained from the analytical

calculations (i.e., small energy gaps between the low-lying energy levels).

The results of simulations using the NN algorithm and the same parameters for fcc Cu and Pd

used throughout this paper are shown in Figs. 5-8. Four alloys were studied: CuToPd30 (Fig. 5),

Cu75Pd25 (Fig. 6), Cu82Pd18 (Fig. 7) and Cu88Pd12 (Fig. 8). Starting from a (high-temperature)

random distribution, all 1008-atom cells were given the same temperature treatment, namely,

descending 100 K steps to room temperature. A few selected views of the computational cell are

shown in Figs. 5-8, highlighting a) disorder at high temperature, b) an ordering trend usually in
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the range 700-900 K and c) the formation of specific ordered structures for different composi-

tions. For Cu70Pd30, hints of order are clearly visible at 800 K, leading to a fully ordered L12

structure at 400 K. It should be noted that, due to the relatively low influence of NNN interactions

in the energy of the cell, it is likely that the computational cell will display numerous 'antiphase

boundaries', separating regions of the cell with the same type of ordering, as is the case in Fig.

5.e. The intermediate steps in the cooling of a Cu75Pd25 alloy are shown in Fig. 6. Once again,

there is an order-disorder transition in the 800-900 K range, higher than that observed for the

Cu70Pd30 alloy. In this case, however, there is a strong ordering trend leading to a nearly perfect

L12 Cu3Pd alloy at 400 K. The phase field of the L12 structure extends to both sides of the 25 at.%

Pd alloy. Simulations for a Cu88Pd12 alloy were made and similar results were found in terms of

the transition temperature, in that it remains substantially constant in the 800 K range. Selected

steps in the cooling process of this Cus2Pd 18 alloy are shown in Fig. 7, showing the formation of a

perfect L12 phase. One last case, Cu88Pd12, at the edge of the L12 phase field (see Fig. 1), is

shown in Fig. 8. In excellent agreement with the experimental phase diagram, there is very little

evidence of ordering in this case.

4.4.3 Order-disorder transition: CuPd

In order to study order-disorder transitions, all possible ordered structures, for different com-

positions, should be evaluated. In doing so, the ordered structure with the lowest energy can be

determined for each composition. To achieve this goal a demanding computational effort is

required which, in spite of the simplicity of BFS, greatly exceeds the scope of this paper.

BFS requires that each atom has to be parameterized in the symmetry of the alloy in which it

is found. Until now, we have used fcc parameters for Cu and Pd as every study described in this

paper has dealt with the fcc phase of these elements. If we were to follow the brute force approach

mentioned above for the determination of the phase diagram, parameters for Cu and Pd should be

obtained for each and every possible symmetry. While this is certainly possible, we will restrict

our study to just two possible symmetries: fcc and bcc. For the bcc phase of Cu or Pd, there is no

experimental input that can be used to perform the appropriate parameterization, therefore, the

needed input parameters have to be obtained from a different source. This problem, similar to the

one encountered in previous studies of alloy phases different from those of the pure constituents
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[ 10] wassolvedby computingthenecessaryparametersfrom first-principlescalculations,using

theLinear-muffin tin orbital method(LMTO) [111] for bcc elements.Regardlessof what first-

principlesmethodisused,thereis noneedto useexperimentalinput at all, asall parameters-even

thosecorrespondingto the groundstateof theelement-can begeneratedby the samemethod,

thus introducinga high level of consistencyin termsof the sourcesfor input parametersfor the

method.However,while first-principlespredictionsof lattice parametersaregenerallyaccurate,

that isnot thecasefor thecohesiveenergiesandthebulk modulus.

Beingtheonly alternativeto beableto modelbcc Cu,Pdor Cu-Pdalloys,it is thennecessary

to replace the fcc Cu, Pd and the BFS parameters(ApdCu, ACuPd ) used in previous sections

(obtained from experimental input) with a new set purely derived from first-principles calcula-

tions. Otherwise, there would be no consistency in the comparison of bcc- and fcc-based alloy

structures. While this last statement seems to contradict the original claim in this paper, i.e., the

universality of the parameters used, it should be noted that nothing prevents from always using, in

every application, the parameters derived from first-principles instead of the ones obtained from

experimental input, as clone in all the previous sections in this paper. In fact, most of the recent

work using BFS for the study of high-temperature ordered intermetallic alloys has been done

solely with theoretical parameters.

To compute the input parameters for a single element (in any given symmetry), we will use the

approach used in Ref. 10, where the energy vs. volume curve is built from first-principles calcula-

tions, and then fitted to the UBER [7], from which the cohesive energy, equilibrium lattice param-

eter and bulk modulus can be extracted. To compute the BFS parameters AAB and ABA _ it is

necessary to build the binding energy curve for a given ordered structure and extract, as in the

case of the single element, the cohesive energy per atom, the equilibrium lattice parameter and the

bulk modulus. Once these quantities are known, using the resulting energy of formation and equi-

librium lattice parameter, the BFS chemical energies can be computed analytically. It is then pos-

sible to find the values of AAB and ABA that would result in those values of the BFS chemical

energies. This straightforward procedure is further simplified by the fact that in order to build the

binding energy curve for the ordered phase, it is not necessary to compute a large number of

points. It is actually sufficient to compute just two points on that curve, or as many points as non-

equivalent atoms are needed to describe the structure. For L1 o, L12 and B2 structures, for exam-
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pie, just two points are needed. To fix ideas, consider the B2 structure of CuPd. Being that all Cu

(and Pd) atoms are equivalent, the energy of formation can be simply written as

1

1

AHB2(a ) = _(Ecu(a) + Epd(a)) (24)

where ecu (el, d) is the BFS contribution of a generic Cu (Pd) atom as a function of the lattice

parameter of the ordered phase:

s c
EA(a ) = EA(a) +ga(a)EA (25)

The determination of the chemical energies (independent of volume) requires the knowledge

of two points only in the binding energy curve of the alloy, E'(al) and E'(a2):

1 A B 1 C S C

AH i = AH(ai) = E'(ai) - _(E C + E C) + _(E A + EB(a i) + gB(ai)EB)
(26)

for i = 1, 2, from which the chemical energies can be obtained. In terms of the alloy energies

E'(aA) and E'(aB) and the pure element parameters, the chemical energies are then:

C gB(a2)(2AH1 -- S1) - gB(al)(2AH2 - $2)
EA =

gA(al)gB(a2) - ga(az)gB(al)

(27)

and a similar expression for the chemical energy of atom B, where

S S
Si= (ea(ai) + eB(ai) ) (28)

It is then possible to determine the scaled lattice parameter of the (chemical) equivalent crystal

and from there, the values of ACuPd and Apdcu that are consistent with those results.
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Once the chemical energies are known, it is also possible to determine the equilibrium lattice

parameter of the ordered phase by minimizing the expression for the energy of formation of the

ordered structure, leading to the following transcendental equation for ao:

g * c
A, s--*'"' s-z )=0li _gca_

(29)

where

a i = (a O-ai) (30)

The energy of formation of the ordered phase, AH o, is then

AH 0 = AH(ao) (31)

Table 10 displays the pure element parameters (Cu and Pd in the bcc or fcc phase), as obtained

from first-principles calculations and, in the case of the fcc phase, from experiment. Table 11

compares the values of AH 0 and a o obtained from linearized-augmented plane wave method

(LAPW) calculations [112] for the L10 phase with those obtained experimentally. Also, the

LAPW parameters for the B2 phase of CuPd are shown. For completeness, LMTO parameters for

both phases are also included in all cases. The resulting values for the BFS interaction parameters

are ACuPd = -0.03248 _-1 and ApdCu -- 0.04073/_-I (for bcc alloys) and ACuPd = -0.02621/i_-1 and

ApclCu = -0.04916 A -1 (for fcc) alloys.

It is clear now that with the availability of bcc and fcc parameters for Cu and Pd, it is possible

to examine the competition between the B2 and the L10 phases of CuPd. Table 11 clearly shows

that the B2 structure has a substantially lower energy of formation. It is also possible to study the

transition order-disorder by means of Monte Carlo simulations

The analysis of the order-disorder transition for CuPd involves also the fact of a phase change,

from an fcc disordered solid solution to a bcc B2 ordered phase. Only in this situation, and for the

sake of consistency, we will compare results of NN simulations of bcc and fcc cells using, in both

cases, first-principles LAPW parameters. Using experimentally determined parameters for the fcc

case, as done for the L12 phase, and theoretically determined bcc parameters would not constitute
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apropercomparisondueto thenoticeabledifferencesin cohesiveenergies,whichwould translate

into an inaccuratedeterminationof theorderingprocess.This canbeseenin Fig. 9, which shows

theenergyof thefcc cell asafunctionof temperature(oncetheenergyof thecell is stabilizedfor

any giventemperature).ThecurveobtainedusingLAPW parameters(opensquares)predictsa

positiveenergyof formationof thedisorderedfccphase,while theoneobtainedusingtheexperi-

mentalparameters(opendisks)predictanegativeenergyof formationfor thewholerangeof tem-

peraturesconsidered,as expected.However,it is alsoclear that both curvesshare,overall, the

samefeatures(i.e., temperaturedependence).The transitiontemperaturesfor the Cu3Pdorder-

disordertransitionarecorrectlypredictedby thesimulationusingexperimentalparameters.The

correspondingtransitiontemperaturefrom the LAPW-basedsimulation is noticeably lower. A

similar situation occurs for "" "_ -" .... ":- "-- "_" '__.m pna_e 1. unt.c again _--'_'uut,curves uisptay_.u60ru40 fcc-"_- '"

similar features (open disks and squares in Fig. 13), with different predictions for the transition

temperatures.

Taking into account that there is a rather constant energy shift due to the difference between

experimental and theoretical cohesive energies, and the fact that vibrational effects are not

included in these calculations, we now examine the competition between a bcc and an fcc cell

subject to the same temperature treatment for Cu60Pd40 alloys. Fig. 14 shows the energy vs. tem-

perature curves for these cells, clearly showing that at high temperatures an fcc solid solution is

favored, while at low temperatures, the ordered B2 phase is energetically favored. The figure sug-

gests, however, that the transition from one regime (fcc, solid solution) to another (bcc, ordered

B2 phase) takes place at unrealistic high temperatures (3500 K). While this simulation proves that

there is a transition from a high temperature fcc solid solution to a low temperature bcc ordered

phase, it does not provide an accurate tool for determining transition temperatures.

5. CONCLUSIONS

The extensive range of application described in this paper prove that it is possible to attack

problems of different nature with a universal set of parameters, as long as the method breaks the

dependence of the parameters on a specific type of atomic distribution. With the same level of

accuracy, the BFS method was shown to provide the correct description of the bulk and surface

behavior of single monatomic crystals (Cu or Pd), as well as their alloys. The only unavoidable
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dependenceof theparametersis in terms of the crystal symmetry under consideration. However,

once the crystal symmetry is determined (bcc, fcc), it is not necessary to change the parameters

for specific applications. It is also shown that the use of first-principles methods provides an effi-

cient tool for determining the BFS input parameters when there is no experimental source. In gen-

eral, it is shown that the BFS method can be made independent altogether from experimental

input, by basing the calculation of its input parameters solely in terms of first-principles calcula-

tions.
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TABLE CAPTIONS

Table1: ECT andBFSparameters.The constantp is 2n-2,wheren is theatomicprincipal quan-

tumnumber,l (in ./_) is a scaling length [7], the screening length _, (in ,_) is defined as 2.81/[5]. E c

and a e are the cohesive energy (in eV/atom) and equilibrium lattice parameter (in/_) of the pure

crystal. The BFS parameters ACuPd and Apacu were determined following the procedure in Ref. 9.

Table 2: Unrelaxed and relaxed surface energies of [hkl] Cu and Pd faces. In each case, we add the

four ECT contributions to the total energy. Experimental and theoretical values of the surface

energy of different Cu and Pd surfaces. The experimental results (which generally correspond to

polyc_stalline surfaces) are (in _gmm---'_2,_ 1'""'_/_ut=8jr"1 and 1-,,,,-,_/_vt,:_'Jr"'_lx"--u_,_u'-""and 2000 L=8jr"1 for Pd.

Table 3: Interlayer relaxations for the low index faces of Cu and Pd as obtained by ECT and other

methods.

Table 4: Multilayer relaxation of the (100), (110) and (111) faces of Cu. Experimental and theo-

retical results are included. For ECT, two different sets of results are presented: (a) One-layer,

obtained by forcing the second layer to remain at its equilibrium position and (b) Two-layer,

where the top two planes are allowed to relax. The experimental results include the experimental

error, and the theoretical results include the variation in the predicted surface energies by 1% (see

text), quoted as a 'theoretical' error.

Table 5: Perpendicular (Ad) and parallel (_Sa) relaxations of Cu(210) and (311) surfaces expressed

as percentages of the corresponding bulk spacings.

Table 6: Segregation trends in several binary systems. (-) means segregation of the impurity and

(+) means that segregation does not occur. See text for the definition and interpretation of the

terms listed in the last three columns.

Table 7: Lattice spacings of the CuPd solid solution as a function of Pd concentration [96].
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Table8: Energiesof formation [8] for theCu-Pdsolidsolutionat 1350K.

Table9: Surfaceenergies(in ergs/cm2),planarrelaxations(aspercentagesof the rigid interplanar

spacing)of thetop two layersof severallow-indexfacesof theL12orderedstructure.Aij(X ) rep-

resents the relaxation between planes i and j of an atom of species X in layer i. The last column

indicates the difference in position (in A) of an atom A and an atom B in the top layer.

Table 10: Cohesive energy (in eV/atom), equilibrium lattice parameter (in/_) and scaling length

(in _) for the fcc and bcc versions of Cu and Pd, as obtained from first-principles calculations

(LMTO [111], LAPW[112]) and from experiment (in the fcc case only).

Table 11: Energies of formation (in eV/atom) and equilibrium lattice parameter (in ._) of the fcc

and bcc ordered phases of CuPd. For the latter, the experimental values are also included.

37



FIGURECAPTIONS

Fig. 1: Phasediagramof Cu-Pd[8]. Thearrowsindicateregionsof thephasediagramswherethe

listedissuesarereadilysubjectto modeling,someof which includetheBFSanalysispresentedin

thiswork.

Fig. 2: Summaryof theenergyspectraN Pdatoms(N = 1.....8). The lowestenergystateis indi-

catedwith a thick line. Thethick dashedline indicatesthe first configurationthat includesa Pd

atom below the surfacelayer.The dottedlines indicatethe first configurationthat includesPd

atomsin theoverlayer(thefact thatsuchstatesdonotappearfor N=I, 6and 8is becauseconfigu-

rationswith Pdin theoverlayerwerenot includedin thecatalogueof selecteddistributions(N =

6, 8)or becausetheyexceedthehighestenergyshown(0.90eWatom)).Thelowestenergyconfig-

urationfor eachvalueof N is alsoshown.

Fig. 3: 'Decay'chainsfor M = 0 throughM = 3 states,startingwith theseedstatebA,aPdatomin

aCu surfacesite(M denotesthenumberof Pd atoms).Subsequent configurations result from the

addition of Cu atoms in the overlayer. AE (in eV/atom) indicates the difference in energy between

any given configuration and the initial state in the chain (bA). The inset displays one of the config-

urations shown in the diagram, where a Pd atom is in a surface site and three Cu atoms occupy

adjoining sites in the overlayer. In this case, a larger value of the ECT parameter )_ was used (9_=

10/_) in order to account for the asymmetry of the surface.

Fig. 4: 'Decay' chain for Cu deposition on Pd(ll0) for increasing Cu coverage (N denotes the

number of Cu atoms). Open circles represent Cu atoms in an overlayer site, and solid squares rep-

resent Pd steps. Cu atoms attached to the right of the step represent Cu 'fingers' growing in the

[ 110] direction.Two consecutive fingers at more than nearest-neighbor distance are represented by

slightly separated circles. Consecutive fingers in contact with each other represent 2D Cu islands

attached to a Pd step edge. AE is the energy of formation (in eV/atom) of the computational cell.

A solid circle represents a Cu atom in a surface site, with the displaced Pd atom (in the overlayer)

represented by a solid square. The inset displays one of the configurations shown in the diagram,

where a 4-atom Cu atom cluster is attached to a Pd step.
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Fig.5: Intermediatestatesduringthecoolingprocessof a 1008-atomcell representinga Cu70Pd30

alloy.

Fig. 6: Intermediate states during the cooling process of a 1008-atom cell representing a Cu75Pd25

alloy.

Fig. 7: Intermediate states during the cooling process of a 1008-atom cell representing a Cu82Pd 18

alloy.

Fig. 8: Intermediate states during the cooling process of a 1008-atom cell representing a Cu88Pd12

alloy.

Fig. 9: Energy as a function of temperature for Cu60Pd40 cells with LAPW (solid squares) and

experimental (solid disks) parameters and Cu82Pd18 fcc cells with LAPW (open squares) and

experimental (open circles) parameters.

Fig. 10: Energy vs. temperature for an fcc (solid squares) and a bcc (open circles) cell, both calcu-

lated using LAPW-based BFS parameters.
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ECTparameters

P l c_ _, Ec ae

Cu 6 0.272 2.935 0.765 3.50 3.615

Pd 8 0.237 3.612 0.666 3.94 3.890

BFS parameters (_-1)

ACuPd = -0.0495 ApdCu = -0.0431

Table 1
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C n

Pd

hid Rigid Relaxed _] _2 (33 (J4

111 1813.9 1757.6 1735.8 20.5 0.0 1.3

100 2362.2 2301.7 2276.6 22.6 2.5 0.0

110 2443.4 2365.8 2335.6 28.3 0.0 1.9

31t 2432.6 2364.2 2335.1 25.7 1.1 1.3

331 2306.3 2237.4 2210.4 24.9 0.0 2.2

210 2617.9 2543.6 2514.3 27.3 0.3 1.7

211 2288.1 2227.9 2203.6 22.0 0.6 1.7

310 2598.2 2528.7 2500.6 26.1 0.9 1.1

111 1752.9 1695.6 1673.8 21.0 0.0 0.8

100 2303.3 2240.5 2215.2 23.3 2.0 0.0

110 2382.5 2303.4 2273.4 28.9 0.0 1.2

311 2368.4 2297.3 2269.2 26.3 0.9 0.8

331 2242.5 2172.2 2145.7 25.3 0.0 1.3

210 2553.1 2477.5 2448.8 27.4 0.3 1.1

211 2223.2 2157.2 2131.5 24.0 0.6 1.1

310 2533.7 2462.5 2434.3 26.8 0.7 0.7

Theoretical results

1170 [22] 1184 [23] 2100 [17] 839 [24]

1280 [22] 1367 [23] 2300 [25] 892 [24]

1400 [22] 1514 [23] 957 [24] 1471 [26]

1494 [23] 961 [24]

1460 [23]

1620 [23] 1544 [26]

1433 [23]

1510 [26]

1640127] 1220 [22] 1050123]

1860 [27] 1370 [22] 1249 [23] 2300[27]

1970 [27] 1490122] 1366123] 1708 [26]

1345 [23] 1312123]

1465 [23] 1890 [26]

1291 [23]

1851 [26]

Table 2
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Cu

Cu(lO0)

C u( 110 )

Cu(ll 1)

Experiment

A12 A23 Ref.

- 1.1 + 1.7 [34]

-1.1 +/-0.4 +1.7+/-0.6 [31]

- 1.0 +/-0.4 +2.0 +/- 0.8 [31 ]

-1.2 +0.9 [32]

-2.1 +0.45 [33]

-10.0 +/- 2.5 0.0 +/- 2.5 [37]

-5.3 +/- 2.4 +3.3 +/- 1.5 [35]

-8.5 _-_.-,'" _ [351

-7.9 +2.4 [31 ]

-10.0 +1.9 [31]

-8.5 +/- 0.6 +2.3 +/- 0.8 [36]

-7.5 +/- 1.5 +2.5 +/- 1.5 [42]

-5.3 +/- i.6 +3.3 +/- 1.6 [43]

-0.3 +/- 1.0 [39]

-0.7 +/- 0.5 [38]

Pd(100) +3.0 -1.0 [40]

Pd(110)

Pd(111)

-4.0 +/- 1.5 +1.5 +/- 1.5 [50]

-6.0+/-2.0 +1.0+/-2.0 [41]

-5.7 +/- 2.0 +0.5 +/- 2.0 [51]

-5.1 +/- 1.5 +2.9 +/- 1.5 [52]

Theory

A12 A23 A34 A45 Ref

-3.7 +1.7 ECT [30]

+1.0 [44]

-1.4 -0.3 [22]

-3.79 -0.54 +0.02 0.0 [23]

-6.3 +0.2 ECT [30]

-4.9 +0.23 [22]

-8.73 +1.53 -1.20 +0.43 [23]

-3.1 +1.6 ECT [30]

-1.4 -0.04 [22]

-2.48 -0.04 0.0 0.0 [23]

-3.6 +1.7 ECT [30]

-4.4 -0.05 [22]

-4.94 +0.17 -0.05 -0.08 [23]

-0.6 [45]

-5.1 +0.2 ECT [30]

-11.3 +1.2 [22]

-11.2 +2.49 -1.18 +0.40 [23]

-5.3 [45]

-2.4 +1.3 ECT [30]

-3.2 +0.27 [22]

-3.17 +0.27 -0.08 -0.06 [23]

-0.1 [451

Table 3
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Face

(I00)

(110)

(t11)

Experiment

Adl2 Ad23 Ref

-2.1 +0.45 [33]

-7.5 +/- 1.5 +2.5 +/- 1.5 [42]

-0.7 +/- 0.5 [38]

ECT(One-layer)

Adl2

ECT(Two-layers)

Ad12 Ad23

-3.52 +/- 1.74 -3.81 +/- 1.70 +2.47 +/- 0.86

-6.31 +/- 2.46 -6.51 +/- 3.83 +0.29 +/- 2.44

-2.88 +/- 1.30 -3.10 +/- 1.25 +2.12 +/- 0.63

Table 4
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Cu(210) Cu(210) Cu(311)

[ECT] [57] [ECT]

Adl2

Ad23

Ad34

Ad45

Ads6

-4.48 +/- 5.07 --11.12 +/- 2.0 -5.54 +/- 3.27

-4.91 +/- 4.17 -5.68 +/- 2.3 -0.81 +/- 2.99

+0.96 +/- 4.38 +3.83 +/- 2.5 -1.75 +/- 4.33

-2.03 +/- 5.80 +0.06 +/- 3.0 +4.32 +/- 5.05

+3.20 +/- 6.80 -0.66 +/- 3.5 -1.60 +/- 5.02

Cu(210) Cu(311)

/_i12

Aa23

_a34

Aa45

An56

0.00 +/- 2.43 -1.83 +/- 3.0 +0.55 +/- 2.79

+0.05 +/- 2.55 -2.51 +/- 3.2 +0.50 +/- 3.12

+0.48 +/- 2.82 +1.68 +/- 3.5 -0.54 +/- 4.00

+0.11 +/- 3.49 -0.48 +/- 3.7 +0.50 +/- 5.08

-0.50 +/- 4.31 +0.06 +/- 4.0 -0.30 +/- 4.73

Table 5
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Host Impurity Experiment BFS S S

EBo - EAo

Cu

Pd

Cu

Ni

Ag

Cu

Ag

Pd

Au

Cu

Au

Pd

Ni

Pd

Pd

Cu

Ni

Cu

Cu

Ag

Pd

Ag

Cu

Au

Pd

Au

Pd

Ni

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Table 6
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at.% Pd a BFS [/k]

0 3.615 3.615

25.0 3.694 3.705

51.9 3.774 3.774 (50 at.% Pd)

78.4 3.839 3.834 (75 at.% Pd)

100 3.892 3.89

Table 7
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Xcu zX/-/(Exp) AH(BFS)

O.I -0.03920 -0.0395

0.2 -0.07216 -0.0719

0.3 -0.09141 -0.0842

0.4 -0.10503 -0.0921

0.5 -0.11088 -0.1010

0.6 -0.11365 -0.1052

0.7 -0.10581 -0.0871

0.8 -0.07935 -0.0793

0.9 -0.04358 -0.0324

Table8
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A3B Face 6 A12(A) A12(B) A23(A) A23(B) Ripple

(100)1:1 2341.92 -5.58 +/- 0.51 -6.83 +/- 0.62 +0.43 +/- 0.36 0.02328

(100)i:0 2259.46 -7.17 +l- 0.5t -5.89 +/- 0.75 +1.32 +/- 0.62

Cu3Pd (110)1:1 2520.31 -8.21 +/- 1.01 -12.02 +i- 0.84 +2.30 +/- 1.38 0:04985

(110)1:0 2517.05 -9.82 +/- 0.70 +1,34 +/- 2.28 -8.39 +/- 2.10

(11 I)3: I 1793.00 +3.90 +/- 0.33 -0.83 +[- 0.41 +7.38 +/- 0.28 +11.27 +/- 0.54 0.10104

Table 9
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Element Method

Cu-fcc

Experiment

LMTO

LAPW

Cu-bcc LMTO

LAPW

Pd-fcc

Ec ae l

3.50 3.615 0.2720

4.437 3.5522 0.2705

3.6683 3.6326 0.2786

4.438 2.8225 0.2710

3.6279 2.8891 0.2807

Experiment 3.94 3.89 0.2370

LMTO 4.788 3.9055 0.2487

LAPW 3.8033 3.9441 0.2474

Pd-bcc LMTO

LAPW

4.786 3.1069 0.2494

3.7476 3.1427 0.2516

Table 10
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Alloy Method

Cu-Pd LMTO

(Llo)
LAPW

Cu-Pd Experiment

(B2)
LMTO

LAPW

_/o ao

-0.0875 3.749

-0.0944 3.8107

-0.142 2.958

-0.146 2.9716

-0.165 3.0199

Table 11
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(Cu,Pd) Solid Solution
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Surface Energies
Surface Structure

Multilayer relaxation
High index faces

Ordered Cu-Pd phases

Phase structure and bulk properties
Order-disorder transition temperatures
Phase fields
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Surface energies
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Higher order phase diagrams
Precipitate formation
Site preference behavior

Fig. 1
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T=1000 K T= 900 K T= 800 K T= 700 K T= 400 K

(a) (b) (c) (d) (e)

Fig. 5
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T=1000K T= 900K T= 800K T= 700 K T= 400 K

(a) (b) (c) (d) (e)

Fig. 6
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T=1000K T= 900K T= 800K T= 700K T= 400K

(a) (b) (c) (d) (e)

Fig. 7
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T=1000K T= 900K T= 800K T= 700K T= 400K

(d) (e)(a) (b) (c)

Fig. 8
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