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The accuracy of two grid adaptation strategies, grid redistribution and

local grid refinement, is examined by solving the 2-D Euler equations for the

supersonic steady flow around a cylinder. Second- and fourth-order linear

finite difference shock-capturing schemes, based on the Lax-Friedrichs flux

splitting, arc used to discretizc the governing equations. The grid refine-

mcnt study shows that for the second-order scheme, neither grid adaptation

strategy improves the numerical solution accuracy compared to that cal-

culated on a uniform grid with the same number of grid points. For the

fourth-order scheme, the dominant first-order error component is reduced

by the grid adaptation, while the design-order error component drasti-

cally increases because of the grid nonuniformity. As a result, both grid

adaptation techniques improve the nmnerical solution accuracy only on the

coarsest mesh or on very fine grids that are seldom found in practical appli-

cations because of the computational cost involved. Similar error behavior

has been obtained for the pressure integral across the shock. A simple

analysis shows that both grid adaptation strategies are not without penal-

tics in the numerical solution accuracy. Based on these results, a new grid

adaptation criterion for captured shocks is proposed.

Key Words: high-ordcr accuracy, grid adaptation, local grid refinement, grid redistribu-

tion, shock capturing, finite difference scheme.

1. INTRODUCTION

Wave propagation phenomena in computational fluid dynamics, computational

aeroacoustics, computational electromagnetics, and large eddy or direct numerical

simulation of turbulence are characterized by the presence of both a lot of struc

ture in the smooth part of the solution and strong discontinuities. For this class of

problems, attaining the design accuracy of high order shock capturing methods is

problematic. As has recently been shown for 1 D unsteady and 2 D steady shocked

flows, the first order error introduced by shock capturing can persist globally down
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stream [1, 2]. The result is that the numerical solution is just first order accurate

downstream of the discontinuity, regardless of the design accuracy of the discretiza

tion used. Similar degeneration in accuracy for captured discontinuities has also

been reported in [3].

One way of removing the first order error component from the numerical solu

tion is shock fitting. As shown in [1, 2], if a cell interface is aligned with the shock,

and a high order conservative essentially nonoscillatory (ENO) formulation based

on a Roe flux which satisfies the Rankine Hugoniot shock jump relations is used

to calculate the interface fluxes, then the design order of accuracy can be recov

ered. Despite its simplicity, this method has serious disadvantages. Detection and

localization of multidimensional complex shocks, generalization of this approach to

moving and interacting shocks, and use of ENO type approximations in singular

regions where the smooth interpolants cannot be constructed make this approach

unreliable, and, therefore, little used in real numerical applications.

An alternative strategy is to reduce grid spacing locally near a shock rather

than refine the grid globally. The idea of this method is based on an assumption

that the first order error is generated locally at the shock and then transported

downstream. This approach, known as a grid adaptation, has been extensively

used to improve resolution of captured discontinuities for at least twenty years,

e.g., see [4]. There are two basic strategies of grid adaptation: local grid refinement

and grid redistribution. In the first approach, grid nodes are added to locally enrich

the grid to achieve higher accuracy. In the second approach, the number of grid cells

is fixed and the position of grid points is adjusted to improve the numerical solution

accuracy. Until now, little attention has been paid to one of the most important

problems associated with the adaptive grid methods: the essential effect of the grid

points distribution on error in the numerical solution. It should be emphasized

that concentration of grid points in regions which most influence the numerical

solution accuracy may at the same time introduce additional error because of the

grid nonuniformity [5].

Most adaptive grid methods are based on the error equidistribution principle

developed in [6], [7], [8], which, in turn, is driven by one or another error estimation

technique. One of the widely used error estimators is gradient or local curvature of

the numerical solution [9, 10, 11]. An alternative method is to equidistribute the

local truncation error estimate or the finite element residual which is similar to the

finite difference truncation error [12, la]. Another class of error estimators is based

on evaluating the solution interpolation error [14]. For second order discretizations,

this method is reduced to estimation of the local curvature of the numerical solution.

Richardson extrapolation is also used to estimate error in the numerical solution

[15]. This procedure compares the solution obtained on the existing grid with one

computed on a grid that is twice as coarse in each spatial direction.

Although the error estimators mentioned above are quite different, all of them

rely on certain smoothness of the differential solution that is not the case for dis

continuous flows. In fact, most grid adaptation criteria that can be found in the

literature become singular at discontinuities. To remove this singularity and to

make the adaptive grid sufficiently smooth, a grid smoothing procedure must be

used. As a result, the grid adaptation near discontinuities is driven by the grid

smoothing procedure rather than the error estimate itself.
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If gridcellinterfacesarenotalignedwitha shock,thecaptureddiscontinuity
isalwayssmearedoverseveralgridpoints,whichleadsto theO(1) error near the

shock. Since the numerical solution is first order accurate away from the shock, the

true error and its estimates achieve their maximum values at the discontinuity. As a

result, any grid adaptation procedure based on either the true error or its estimate

leads to excessive clustering of grid points or local grid refinement near the shock.

This kind of a grid adaptation is intended to reduce the solution error in the vicinity

of discontinuities, but it does not necessarily guarantee improvement in accuracy in

regions where the solution is smooth. As shown in [16], the conventional adaptive

mesh refinement procedure based on gradient or local curvature of the numerical

solution can lead to large error in the shock location caused by insufficient accuracy

in smooth regions of flout ahead of and behind the discontinuity.

In the present paper, the accuracy of the grid redistribution and local grid refine

ment methods are studied. The 2 D test problem used is the supersonic flow around

a circular cylinder, for which a Chebyshev bow shock fitting spectral method is em

ployed to obtain a very accurate numerical solution [17]. This solution is used as

the %xact" solution in all subsequent refinement studies. The Euler equations are

approximated with second and fourth order linear shock capturing schemes based

on the Lax Friedrichs splitting of the flux vector. The refinement studies show that

for the second order scheme, neither grid adaptation strategy improves the numeri

cal solution accuracy compared to that calculated on a uniform grid with the same

number of grid points. For the fourth order scheme, the dominant first order error

component is reduced by the grid adaptation, while the high order error component

drastically increases, because of the grid nonuniformity. As a result, the grid adap

tation provides improvement in the solution accuracy only asymptotically. A simple

error analysis of the grid redistribution and local grid refinement methods reveals

the main reasons why the grid adaptation methods do not improve the accuracy

of captured discontinuities. Summarizing the numerical and theoretical results, we

propose a new grid adaptation criterion for captured discontinuities.

The paper is organized as follows. Section 2 presents the blunt body problem

and the spectral solution. Section 3 presents the finite difference methods used

in the studies. Section 4 presents the grid adaptation strategies, including grid

redistribution and local grid refinement. Section 5 presents the error analysis for

the effects of grid adaptation on solution accuracy. Section 6 presents the second

and fourth order results, Section 7 presents the new grid adaptation criterion for

captured shocks, and Section 8 presents the conclusions of the work.

2. SETTING OF A PROBLEM AND ITS "EXACT" SOLUTION

We consider the steady state supersonic inviscid gas flow around a circular cylin

der. This test problem is desirable because the bow shock is 2 D, rather than simply

a 1 D shock rotated into a 2 D reference frame. Furthermore, the problem is simple

enough to obtain an "exact" solution.

The conservation law form of the 2 D Euler equations written in Cartesian coor

dinates (x, y), as follows:

OU OF OG

+ + = o, (i)
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u pu pv
U = F = pu2 ÷ P G = pvu

pv ' pvu ' fly 2 + P '

pe u(pe + P) v(pe + P)

is used to describe the flowfield. The variables p, u, v, P, and e are the density, x

velocity, y velocity, pressure, and total specific energy, respectively. The governing

equations are closed with the equation of state for a perfect gas

]P=(v 1> _ _(u +v 2) ,

where V is the ratio of specific heats, which is assumed to have a constant value of

1.4.

To use different grid adaptation techniques, a differentiable one to one coordinate

transformation,

"/---t

= _(_, y) (2)
,j = ,(x, ,),

is applied to map a physical domain with curvilinear boundaries onto a unit square.

Note that the _ and _ coordinates do not depend on time and, therefore, moving

grids are not considered in the present study.

The Euler equations in the curvilinear coordinates (2) can be written in conser

vation law form as

oU oF aG
o_ + _ + G-, = 0, (a)

U=!u F= 1 1
J , 7(GF+_vG), G=7(,>F+,jvG),

where the Jacobian of the mapping is given by

O (_, ,)

J - o(x,v) - '_''_ 4:_,,jx.

To close the governing equations, boundary conditions should be specified. Be

cause of the symmetry along the body centerline, only half of the domain is con

sidered. The following boundary conditions are imposed along the symmetry line:

,=0 0P _1=0 _O_ ,l=0vl,=0-- 0, _ - G-, - -- 0. (4)

On the cylinder surface, the no penetration boundary condition.

uy_ vx_ I_=1 = O, (5)

is imposed. At the supersonic inflow, all flow quantities are prescribed. The out

flow boundary is chosen so that the outflow is fully supersonic and, therefore, no

boundary conditions are imposed.
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A spectrallyaccuratenumericalsolutionto thebluntbodyproblemdescribed
aboveisfoundbyusingaChebyshevbowshockfittingalgorithm[17].Theshock
positionalwayscoincideswith the inflowboundaryalongwhich theRankine
Hugoniotrelationsareused.Thephysicaldomainchangescontinuouslyasthebow
shockmovestoits steadystateposition,whilethecomputationaldomainremains
unchanged.TheChebyshevcollocationmethodisemployedinboththeradialand
circumferentialdirectionstodiscretizetheEulerequations.Theequationsarethen
marchedin timeuntila steadystatesolutionisreached.Furtherdetailsonthe
Chebyshevshockfittingtechniquecanbefoundin [17].Ashasbeenshownin
[2],thespectralsolutionisexactto at leasteightsignificantdigits.Thissolution,
whichis furtherreferredto asthe"exact"solution,isspectrallyinterpolatedto a
sequenceofuniformlyspacedgridsto evaluateerrorin finitedifferencesolutions.

3. SECOND-AND FOURTH-ORDERNUMERICAL METHODS
Secondorderfullyupwindandfourthorderupwindbiasedlinearfinitedifference

schemesbasedontheLaxFriedrichsfluxsplittingareusedtodiscretizetheEuler
equations.Theseapproximationscanbewrittenin asemidiscreteformas

dU
(/7-

1
1 (D_-F+ + D_-F-)+ (D_7 G+ + D_G-)-2 _ '

(s)

where D_- and D_ are linear finite difference operators in _ and rl, respectively.

The Lax Friedrichs fluxes are given by

F± = F±IA_ .... ItJ
G ± G-- ...... A= la, IU, (7)

where IA_I and Ik_;_l are the maximum values over the entire domain of the

contravariant eigenvalues lul + _ and I_1+ _, accordingly.
The following second and fourth order spatial operators, D_ and D4_, are used

in the present analysis:

(s)

= l_g( j-3 + 6uj-2 18Uj_l + 10uj + 3Uj+l)D4 W s u

= l_g( 3uj-1 10uj+lSuj+l 6uj+2+uj+3),

where h is a grid spacing either in { or in _l. For the second order scheme (8), the

second order boundary closure is employed at all boundary points. For the fourth

order scheme, the third order stencils used near the boundaries are the optimal

stencils derived from nearest neighbor information, biased where possible in an

upwind direction. These second and fourth order methods will be referred to as

"LF 2 2" and "LF 4 3", respectively.

All finite difference grids considered in the present study are constructed such

that a corner grid point coincides with the stagnation point. It has been found

that this finite difference formulation may lead to numerical instability if all the

boundary conditions on the symmetry line are imposed weakly through the flux.
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Thisinstabilityiscausedbytheweakformulationoftheboundaryconditionforthe
v component of the velocity vector. Imposing this boundary condition in the strong

sense eliminates the numerical instability. Numerical calculations have shown that

the present formulation is as robust as the staggered formulation typically adopted

by finite difference algorithms near stagnation points.

On the supersonic inflow, the entire state vector Ul_=0 is specified. On the

outflow boundary, the solution is calculated by using high order fully upwind ap

proximations, i.e., no boundary conditions are imposed, which is consistent with

the characteristic analysis for the supersonic outflow. On the impermeable wall,

the no penetration boundary condition is imposed weakly by solving the Riemann

problem approximately. Note that at steady state, the normal velocity at the wall

is nonzero, but converges to zero with an order property consistent with overall

formulation.

A three stage explicit Runge Kutta method is used to drive the solution to steady

state. To accelerate the convergence, the implicit residual smoothing method pro

posed in [18] is employed.

4. GRID ADAPTATION METHODS

The main purpose of the present study is to evaluate the influences of grid adapta

tion on overall solution accuracy, in the presence of the first order error component

resulting from shock capturing. The grid refinement studies presented in [1, 2]

show that high order shock capturing schemes are first order accurate downstream

of shocks. Hence, away from the shock, the pointwise error is proportional to the

grid spacing, and consequently decays like O(h) as the grid is refined. At the same

time, if a grid is not aligned with the discontinuity, any shock capturing numerical

scheme gives a discrete shock profile with at least one intermediate point in the

shock. Thus, on sufficiently fine grids, the true pointwise error achieves its global

maximum value of O(1) at the discontinuity. To demonstrate this error behavior,

the centerline pressure error distribution for the Mo_ = 3 blunt body problem cal

culated using the LF 4 3 scheme is shown in Fig. 1. As one can see in the figure,

the true pointwise error is singular at the shock located at x = 1.698. This con

clusion is based on the property of shock capturing schemes and does not depend

on grid spacing in the vicinity of the shock. As a result, any grid adaptation pro

cedure based on the error equidistribution principle and the true error will always

concentrate grid points or refine the grid near discontinuities of the solution.

It should be emphasized that the error equidistribution principle is not valid

for problems with strong discontinuities. Actually, this principle is based on the

minimization of the integral norm of the solution error or its estimate, which, in

turn, is obtained as the solution of the Euler Lagrange differential equation which

cannot be used for discontinuous functions.

Furthermore, all error estimators found in the literature, such as estimators based

on the truncation error, the finite element residual, recovery techniques, and the

extrapolation, require certain smoothness of the solution of the original differential

problem, which is not a property of discontinuous flows. As a result, these error es

timators are singular in regions where the solution is discontinuous. This singularity

corresponding to the singularity of the true error at the shock leads to excessive

grid refinement or clustering of grid points around the shock. Asymptotically, any



ACCURACY OF ADAPTIVE METHODS FOR SHOCKS 7

4.5

4

3.5

3

2.5

2
' 1.5

1

0.5

o

-o.5

I_

: I _li

1. , , I ,

-1.8

.... 33x33 grid

....... 65x65 grid

............................129x129 gdd

-- 257x257 grid

/\

I

/
, , -, I , , , , I , , , , I , , , , I

-1.6 -1.4 -1.2 -1
x

FIG. 1. Pointwise error for the 2Gr_ = 3 blunt body problem obtained with the LF-4-3

scheme on uniform grids.

grid generator based on the error equidistribution principle and one of the error

estimation procedures mentioned above would generate an adaptive grid such that

the ratio of the local grid spacing at the shock to the neighboring one, generated in

regions where the solution is smooth, approaches zero. This degeneration in grid

spacing occurs because these error estimators become singular at the discontinu

ity. In practical applications, this singularity is eliminated by excessive smoothing

of the error estimate function. As a result, the grid adaptation in the vicinity of

the shock is driven by the smoothing procedure rather than by the error estimate

itself. Therefore, instead of considering different error estimators and different grid

smoothing techniques, we generate C _ adaptive grids which are clustered or lo

cally refined near the shock. This kind of a grid adaptation is intended to reduce

the first order error component caused by the shock capturing procedure and to

increase the overall solution accuracy towards the design accuracy of the numerical
scheme used.

Because we know the exact solution, and consequently the exact shock location,

an adaptive grid can be generated analytically. Quasi one dimensional grid adap

tation can be employed, assuming that one family of grid lines is aligned with the
bow shock. It can be done because the numerical solution error in the circumfer

ential direction, which is aligned with the shock, is much smMler than that in the

radial direction. To demonstrate this property, we solve the blunt body problem

at M_ = 3 by using the LF 4 3 scheme on two sequences of uniform grids. The

first one is obtained by doubling the number of grid points in both the radial and

circumferential directions, as follows: 33 x 33, 65 × 65, 129 × 129, and 257 × 257.

The second one is generated by refining the grid only in the radial direction, while

the number of grid points in the circumferential direction remains fixed and equal

to 33 for all the grids considered. Figure 2 shows that the numerical solution errors

obtained on these grids are practically identical. It indicates that the discretiza

tion error in the direction parallel to the shock is several orders of magnitude less
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0
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Refined in xi and fixed in eta (Nora=33)
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FIG. 2. Grid refinement study at _I_ = 3, showing the pressure error obtained with the

LF-4-3 scheme on two sequences of grids: 1) uniformly refined in _ and rl, and 2) refined in _,
while the number of grid points in 0 is fixed and equal to 33.

than that in _he radial direction. Since the numerical solution error is strongly

dominated by the radial error component, we use 1 D grid adaptation with the

grid points constrained to move along one family of fixed radial coordinate lines,

such that the grid is always aligned with _he exact bow shock. Note that this grid

adaptation procedure does not produce skewed cells where the solution accuracy

may deteriorate because of small values of the Jacobian [4].

4.1. Grid Redistribution Method

Uniform meshes employed for finite difference calculations are constructed by

using polar coordinates:

;/I _ ?_ COS 0

y = rsin0. (10)

A mapping from the polar to the computational coordinates is given by

_=1 ......
_-o(O)-,-_ (]1)

, = 0/0 .....

where r0, rl, and 0 .... are the radius of the inflow boundary (which, in the case

of the exact solution, coincides with the bow shock), the radius of the cylinder,
and the maximum value of 0, respectively. Note that the inflow boundary has been

chosen so that the bow shock standoff distance is equal to 3/4(vo(0) rl) for all
meshes considered.

As mentioned above, an adaptive grid is constructed by redistributing grid points

in 1 D fashion along the fixed radial lines. The following coordinate transformation
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is used to generate the adaptive grid:

rl

f i(,-,O)d;

_-- r I

f i(,',O)d,"
%(0)

= OlO.....

(12)

with the monitor function f(r, O) defined as

1

d2-dl

d_3 = d_l + l+e_( ..... (o)),

(13)

where r_(O) is the bow shock radius, dl, d2, and 5 are parameters. Note that the

same monitor function Eq. (13) is used to generate all adaptive grids, independently

of the number of grid points. Such a choice of the monitor function provides that

the metric coefficients are C _ functions in the entire physical domain, which is

important for constructing high order accurate finite difference approximations on

nonuniform grids. The ratios of the adaptive grid spacing to the uniform one

corresponding to three sets of the parameters dl and d2 (d_1) -- 6.45 and d_1) -- 2.15,

d_2) -- 9.3 and d_2) -- 3.1, d_3) -- 12.6 and d_a) -- 4.2) used in the numerical

calculations are shown in Fig. 3. The figure shows that the adaptive grid spacing

achieves its minimum value at the shock, while away from the shock, it behaves

as a linear function. This linear dependence, which corresponds to the well known

exponential stretching, provides that in smooth flow regions, the leading truncation

error terms resulting from the grid nonuniformity and the approximation of F¢ are
of the same order.
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4.2. Local Grid Refinement Method

As shown above, for the blunt body problem in question, the radial error compo

nent is much larger than the circumferential one. Therefore, the local grid refine

ment method is also employed in a 1 D manner. The resulting computational grid

is obtained as 8 sequence of structured quadrilateral nested grids that are aligned

with the shock and arranged in block structures, such that each of them has the

same family of radial lines, _1 = const. This local grid refinement procedure en

sures that there are no "hanging" nodes on the embedded interfaces and that the

smoothness of the original background grid is maintained. Taking into account that

the maximum pointwise error occurs at the shock and that the exact shock position

is known a priori, a family of the nested grids is generated only in the vicinity of

the exact shock location, while the original uniform grid is used in the rest of the

domain. The width of the region where the grid is locally refined is an adjustable

parameter that is chosen to be larger than a stencil of the numerical scheme used.

This local grid refinement procedure is consistent with the error equidistribution

principle which says that the grid point distribution is asymptotically optimal if

some error measure is equally distributed over the field. However, for problems with

shocks, the error cannot be equidistributed, because the error function is singular at

the discontinuity. In this case, the stopping criterion for the local grid refinement is

not trivial. In the present analysis, the adaptive mesh refinement method is used to

recover the design accuracy of a high order shock capturing scheme downstream of

the shock. This condition can be used as the stopping criterion, which determines

how many levels of refinement are required to guarantee that the numerical solution

error obtained on the adaptive grid is consistent with the design order of the scheme

employed. Using the heuristic model expressing the first order nature of any high

order shock capturing scheme [2], one can represent the total error in the numerical

solution as follows:

= clt_ + Gh _, (14)

where h is a grid spacing, c is the solution error, p is the design order of the

numerical algorithm, and Cx and @ are problem dependent constants. If the

solution smoothness is consistent with the order of the approximation used, then

C1 = 0 and @ is proportional to the (p + 1)th derivative of the solution. On the

other hand, if there are unresolved features in the flow such as shock waves and

contact discontinuities, the first order error component is generated by the shock

capturing procedure, so that (/1 @ 0. Note that the shock error component may

in general include not only the first order term, but also higher order terms in its

expansion. Asymptotically, the shock error component is dominated by the first

order term Clh, whereas the design order error component is dominated by the

leading truncation error term CphP. Therefore, only the leading shock error and

design order error terms are retained in Eq. (14).

As follows from Eq. (14), to obtain the pth order accurate solution, the local grid

spacing near the shock must be of the order of HP, where H is a grid spacing of the

background mesh. Despite the simplicity of this criterion, the total number of grid

points, and consequently the complexity of the algorithm, can increase significantly.

Actually, if a pth order scheme is used to discretize the governing equations on the
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backgrounduniformmeshwithagridspacingH, the local grid size in the vicinity

of the shock should be

= o(H,) (15)

to obtain a convergence rate of p.

Assuming that the local grid refinement procedure starts from the background

mesh and a nested grid at the next level is refined in the radial direction by a factor

of 2, the total number of levels of refinement needed to satisfy Eq. (15) is

1= (p 1)log H. (is)

Upon completion of this local grid refinement procedure, the total number of grid

points becomes

1

dVtotaI= 1 @ _ + 21Nw, (17)

where Nw is a halt'width of a region in which the background mesh is locally

refined. For example, if one uses a fourth order scheme on a 65 × 65 background

mesh, the locally refined grid satisfying condition (15) and corresponding to Nw = 8

has 353 grid points in the radial direction. Thus, the total number of grid points

is increased by a factor of 6. In practical applications, a grid is refined in both

and rl; therefore, the same increase in the number of grid points should be in each

spatial direction. Note that the time step At is also refined by the same factor

so that ratios At/A_ and At/Ar! are the same on all nested grids, ensuring the

stability with explicit finite difference schemes. As follows from the above example,

the local grid spacing near the shock would be of the order of O(2-24), which makes

the grid refinement study practically impossible. Therefore, instead of satisfying

Eq. (15), we perform three series of calculations on locally refined grids that have

a different number of levels of refinement. During the grid refinement study, the

background mesh is refined globally. From Eq. (15) it follows that the number

of levels of refinement is increased by one. For instance, if a locally refined grid

corresponding to a 33 × 33 background mesh has three levels of refinement, then

on the next 65 × 65 background grid, one level of refinement is added, so that the

total number of levels becomes four.

Remark 1. The grid adaptation procedures described above are based on the

fact that the exact shock location is known a priori. However, in practice, the

exact shock position is unknown, which may introduce an additional error in the

numerical solution. As has been shown in [16], traditional grid adaptation methods

can provide that shocks are well resolved, but their locations are highly inaccurate

due to the lack of resolution of smooth portions of the solution.

5. ANALYSIS OF THE ERROR CAUSED BY GRID

NONUNIFORMITY

5.1. Error Introduced by Grid Redistribution

Let us estimate the error in the smooth portion of the numericM solution, which

is introduced by concentrating grid points near the shock. Because grid points are



12 NAIL,K.YAMALEEVANDMARKH.CARPENTER

redistributed in a 1 D manner in the present study, we consider the following 1 D

scalar equation:

_ + fx(_) = 0, (18)

which can be treated as a 1 D analog of the hyperbolic portion of the 2 D steady

Euler equations (1). It can be shown by rewriting the Euler equations (1) in non

conservative form

cqU A0U
_+ 57=0, (19)

0G
where A = (_)-s (gg)" The type of the equations (19) is governed by the

eigenvalues of the A matrix, which are

t,

.h,2 = 7 (20)
-_3 4 ---- uv±c_v2--c2

, L_2--C 2

where c is the speed of sound. For the blunt body problem under consideration,

eigenvalues As and >,2 are always real, regardless of the local Mach number. There

fore, the first order error generated by the shock capturing procedure at the shock

propagates downstream along the streamlines v/u.

Assuming that the initial profile ,0(0, x) is discontinuous, the solution error of Eq.

(18) downstream of the captured shock consists of the first order error component

caused by the shock capturing and the design order truncation error component.

Thus,

= qA._ + T_(.), (21)

where C1 is a constant dependent on the solution, Ax is a local grid spacing, and Tp

is the leading truncation error term of a pth order shock capturing scheme used for

approximation of Eq. (18). Since our aim is to estimate the influence of the spatial

nonuniformity on the numerical solution accuracy, the temporal error component

is not considered. To the authors' knowledge, very little work has been done to

estimate the coefficient Cs. In the present analysis, it is assumed that the coefficient

C1 approaches a constant on sufficiently fine grids. This assumption is corroborated

by the numerical calculations presented in Section 6.

To evaluate the leading truncation error term on a nonuniform grid, a p+ 1 times

differentiable one to one coordinate transformation,

between the physical and computational spaces is considered. The nonuniform grid

in the physical space is generated as images of nodes of a uniform mesh in the

computational domain Q:

J
_5 = _(_5), _5= 7' j = o, J. (22)
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It is assumed that x(_) is a C _ function such that x¢ > 0 V_ C Q. Transferring

the x derivative in Eq. (18) to the computational space, Eq. (18) is rewritten as

_ + f¢(_) - 0. (2a)
x¢

Approximating f( and x¢ by some pth order finite difference formulas yields

j+r_2
2 °:r_fr_

LSf)(fx) = tz:J-l_ 1 (24)
j+m2
E

where Lh is a finite difference operator; _zx,rl.2, %_ and _7_1,_7_2, flr_% depend on

particular approximations used for evaluating f_ and x¢, respectively. It should

be stressed that the present analysis is performed in regions where the solution is

smooth, so it is assumed _hat all derivatives needed for the derivation are continuous

functions on 4 C [0, 1]. Expanding the numerator and denominator of Eq. (24) in

a Taylor series about {j and omitting the index j on the right hand side, we have

/_Lf F(p+l) ACPE _,_f_=f_+w_ _, +°(_ _+_)

j+m2

E _,,_,,_ = _¢ + cp_"+_)_ _ + o(_x_+b,
t)_ _j--t)% 1

OP-l-lx .fSP+ 1) oP+lf a_where x_P+l) = 0¢_+_, o_ - o{_+_, A{ = 1/g, and C[ and C_ are constants

dependent on a_ and fl,_, respectively. Substituting Eq. (25) into Eq. (24) and

taking into account that x¢ > 0, V4 C [0, 1], one can write

g-_J A_P f(p+l)

C _ a¢,, x(p+l)]

I_(P+_)/_ IIf A_ is chosen t.o be sufficiently small so _hat A¢_ ¢ ( << 1: gq. (26) can
be linearized as follows:

Lh(f_)= <1 (f<+C<ACpr(p+,>"_v s ,¢ ] (1 CfA(>x!P+'>_u._¢ _ j +O(A(p+_) (97)

Note that _he error introduced by the linearization is of the order of O(A(_>).

Neglecting higher order terms in Eq. (27), the leading truncation error term can

be recast as

Tp(x) L,,(f_) f,: C/Ae >f_p+')
X(P+ 1)

With the first order error component, the solution error downstream of the shock

becomes

f(p+_) i'p+F_
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Fromtheaboveequationit followsthattheerrorin thesmoothportionofthesolu
tionconsistsofthreeparts.Thefirstoneisdueto theshockcapturingprocedure.
Thesecondone,whichalsoexistsonuniformmeshes,arisesfromtheevaluation
of f_. The third one is caused by the grid nouuniformity. When the grid is clus

tered in the vicinity of the discontinuity, the metric coefficient x_ changes rapidly,

achieving its mininmm value at the shock. As has been shown earlier, any grid

adaptation technique based on the error minimization or the error equidistribution

principle concentrates grid points near discontinuities of the solution, because the

true error and its estimates reach their maximum values at the singularity. From

Eq. (29) it follows that this kind of grid adaptation reduces the first order error

component, but at the same time, the second and, especially, the last term of the

numerical solution error increase drastically in regions where the x_p+I) becomes

very large because of the strong grid nonuniformity. In other words, traditional grid

adaptation methods based on the grid redistribution technique transfer the error

from the first order term to the design order term. Although, asymptotically, the

solution error is dominated by the first order shock error, numerical calculations

show that the coefficient C1 in Eq. (29) may be very small. As will be shown in

Section 6, when the blunt body problem is solved by using the second order fully

upwind scheme based on the Lax Friedrichs flux splitting, the numerical solution

error downstream of the shock is dominated by the design order error component

fox" all the grids considered, i.e., IIClhll < IICphPlI. As a result, the first order error

reduction owing to the grid adaptation is much less than the high order error in

troduced by clustering grid points near the shock, which ultimately decreases the

overall solution accuracy.

5.2. Error Introduced by Local Grid Refinement

In contrast to the grid redistribution method, the local grid refinement approach

described earlier does not change the metric tensor of the mapping and, there

fore, the error component resulting from the high order derivatives of the metric

coefficients remains the same as on the nonadaptive background mesh. Despite

this advantage, the local grid refinement introduces additional error caused by an

abrupt change in grid spacing at interfaces between coarse and fine grids and by

interface boundary conditions.

To illustrate the main problems associated with the local grid refinement method,

we investigate wave propagation properties when there is a discontinuity in grid

spacing. A scalar linear equation,

• . + a% = 0, (30)

is considered as a model problem, where a is a positive constant representing tangent

of the angle between the freestream flow and the x axis. In the numerical calcula

tions, the parameter a was chosen to be 0.34. The model equation which can be

treated as a scalar analog of the Euler equations (19) is solved on a unit square

with the following boundary conditions: ¢)(0, y) = e I_ and ¢)(x, 0) = e -I_x. To

simplify the analysis, we seek the solution of Eq. (30) in the following form:

• (*, v) = (31)
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where I = _-. Substituting Eq. (31) in Eq. (30) yields

_,: + [a_, = 0. (32)

The above equation is approximated by using a second order fully upwind scheme in

the interior and a two point first order upwind approximation at the inflow bound

ary. First, we consider a uniform grid with grid spacing h. In this case, the

corresponding discrete equations are

and

_1 _o + Iawh#s = 0. (34)

Introducing a parameter a = awh, equation (33) becomes

+al _j 2_j_1+ :_j-2 = 0. (35)

Substituting the solution of the form

_j = e_J (36)

into the discrete equation (35) yields

+_I A2 2_+_=0. (37)

The quadratic equation can easily be solved to give

"_1,2 = 3 (38)

7+(_I

Thus, the general solution of Eq. (35) is given by

= + (39)

The unknown coefiCicients el and c2 are found by using the initial condition gl_=0 =

g0 and Eq. (34), as follows:

cl + c2 = _0 (40)
(_+ _I)(_A, +_2x_) e, _ = 0.

The exact discrete solution Eqs. (31, 38 40) has been derived under the assump

tion that the computational grid is uniform. However, the same approach can be

applied to construct the discrete solution on a locally refined grid. Without loss of

generality, only a two level locally refined grid with a factor of two refinement, i.e.,

hs/h2 = 2, is considered. The exact discrete solution on the locally refined grid can
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beconstructedasfollows.Assumingthatthecoarsegridwithgridspacinghi = h

covers the left half of the domain, and that the discontinuity in mesh size is located

at the midpoint x = 1/2, the solution at this point is

(1) ,J/2 ,J/2
)9.j/2 ---- CllAll @ C12A12 (41)

where cll = cl, c12 = c2, and All and _12 are roots of the characteristic polynomial

Eq. (37) corresponding to the background mesh hi = h. The above numerical

solution can be treated as an incident wave traveling from left to right, which

is then transmitted by the interface between the coarse and fine grids. For the

hyperbolic equation (30), the solution of the Riemann problem at the interface is

trivial _right ---- _left. Since the same fully upwind scheme Eq. (33) is used in the

right half of the domain, the discrete solution on the fine nested grid can be written

in the same form as Eq. (38 40). However, instead of the grid spacing hi = h,

one should use the grid spacing h2 = h/2, and the Direchlet boundary condition

at x = 0 should be replaced with the solution of the Riemann problem at the

midpoint, i.e., ulx=l/2 = _;/2, where P.]/2 is given by Eq. (41). Thus, the exact

discrete solution on the locally refined mesh is

c21A 1+ c22a 2, (42)

where ),21 and _22 are defined by Eq. (38) with a = a_h2, and the coefficients c21

and c22 are the solution of the following linear system of equations:

(1)
c21 + c22 = _)/2

(l+_Z)(c21a2_ + c22X22) c2_ c22 = 0.
(43)

The exact discrete solution Eqs. (42 43) calculated on the locally refined grid is

compared with the uniform grid solution at x = 1. To determine the influence

of the grid discontinuity on the numerical solution accuracy, we compare the error

obtained at x = 1 on both the locally refined and corresponding uniform grids. The

error is calculated as the absolute value of the difference between the discrete and

analytical solutions of the original differential equation (30), which is

• (x, y) = e-_% I_'. (44)

The ratio of the error obtained on the locally refined mesh to the uniform

grid solution error corresponding to four grid spacings of the background mesh

(h = 10 -2, 10 -a, 10 -4, and 10 -5) is plotted versus _8h2 in Fig. 4. Note that the

parameter _8h2 has been chosen so that it is proportional to the leading truncation

error term of the second order scheme used. Therefore, for small values of _3h2

corresponding to the fully resolved solution, the error ratios calculated on grids

with different background grid spacings are practically identical. The curves cot

responding to different mesh densities begin to diverge at a critical value of _3h2

that corresponds to the point where the error obtained on the locally refined mesh

becomes equal to the error obtained on the background mesh. Since this point

is asymptotically independent of the grid spacing, we can introduce the critical
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FIG. 4. Ratio of the error obtained o21 the two-level locally refined grid to the error obtained

on the corresponding background grid.
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If 0 < 5 < _ < _,, where _ is a small positive constant, then the locally refined grid

provides better accuracy than the corresponding background mesh. Note that the

constant in the formula (45) for the critical frequency w, depends on the numerical

scheme used, the angle between the freestream flow and the ,f axis, and the size

of the domain. Despite this dependence, for any stable second order scheme, the

qualitative behavior w, _ 57 213 always remains the same.

If the frequency of the exact solution exceeds the critical value w,, it cannot be

resolved on a uniform grid with the grid spacing h. As a result, the errors ratio

exhibits oscillatory behavior. Note, however, that for all the grids considered, there

exists the local maximum at _31z2 _ 15, corresponding to the frequency that is most

strongly amplified by the abrupt change in grid spacing, as is eviden_ in Fig. 4.

The main reason for such a behavior is the hyperbolic nature of Eq. (30). Actually,

if error has been introduced on the coarse grid, it propagates downstream along the

characteristic. In _he case of discontinuous solutions, such as shock waves, the cap

tured discontinuity involves all frequencies and, therefore, cannot be fully resolved

on any grid. The error component corresponding to these unresolved frequencies

propagates downstream along the characteristics and amplifies at interfaces. The

error amplification occurs because of the discontinuity in grid spacing and the ap

proximate interface boundary conditions. It should be emphasized that the error

amplification becomes stronger, if either the number of interfaces or the grid refine

ment factor increases, or the grid is globally refined.

As one can see in Fig. 4, there is a boundary layer at wah 2 _ 0. This deteriora

tion in accuracy for the lowest frequencies is caused by reducing by one the order of

approximation at the first point of the coarse and fine grids. To demonstrate this
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property, we estimate the ratio of the solution error obtained on the locally refined

mesh to one obtained on the corresponding uniform grid, when the exact solution

frequency is sufficiently small, i.e.,

<< h -2/a. (46)

If inequality (46) holds, then the truncation error analysis can be applied. Taking

into account the fact that the error of integration of Eq. (32) is proportional to the

length of the integration interval, the ratio of the truncation errors can be estimated
as follows:

_2
m z

Cxp_,ch 2 + C2_2_x_h 2 (1 h)

(47)

where C1 and 6/2 are constants dependent on the first and second order approxi

mations used, e.g., in our case Cx = 1/2 and C2 = 1/3. In Eq. (47), the first

term in the square brackets is the integration error on the coarse grid with grid

spacing h, and the second term is the integration error obtained on the fine grid

with grid spacing h/2. Note that the C_:h 2 and C_::_(h/2) 2 terms are due to

the first order approximation used at the first grid points of the coarse and fine

grids, respectively. With the exact solution Eq. (44), Eq. (47) is reduced to

_2
m z

C1 + IC2co (1 h)
(48)

Letting h > 0 yields

-- -- 2 9_1 4(C 2 + C2c0") +

From the above equation it follows that for the lowest frequency w , O, the trun

cation error calculated on the globally uniform grid is 5/4 times less than that ob

rained on the locally refined grid having one and a half times as many grid cells as

the corresponding uniform mesh. As the wave frequency increases, the errors ratio

tends to its asymptotic value of 5/8. Note that if the governing equation is approx

irnated with a second order scheme in the entire computational domain, then the

first order terms in Eq. (47) vanish, providing that e2/el = 5/8, Vw :w << h -2/3.

Remarlc 2. In solving the 2 D Euler equations, two additional sources of errors,

which are not present in the test example considered above, can arise. The first one

is due to an approximate solution of the Riemann problem at interfaces between

the coarse and fine grids. The second source of error is caused by the reflection

of waves going through interfaces. Note that in the above example, there is no

numerical reflection, because the fully upwind formulation, which is consistent with

the characteristic of Eq. (30), is employed.

6. RESULTS AND DISCUSSION

The inviscid M_ = 3 flow around a circular cylinder is used to test the accuracy of

the grid redistribution and local grid refinement methods. A grid refinement study
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is performed to investigate the influence of the grid adaptation on the numerical

solution accuracy downstream of the captured bow shock. The following sequence

of grids is used in the grid refinement study: 33 x 33, 6,5 x 6.5, 129 x 129, and

257 x 257. Error in the smooth portion of the solution is measured in the L2 sense,

as follows:

±
k=lj=l kj/

I1¢ ¢_11_ = i_y ' (5o)

where _.j and ¢_ are the numerical and exact values of ¢ at point (k, j), and K

and dr are the number of grid points in the domain of interest. The norm of wall

quantities is formed in a manner similar to Eq. (50), but only the wall points are

used in the formula.

6.1. Grid Redistribution Method

An adaptive grid is generated by equidistributing the monitor function Eq. (13),

as described in Section 4.1. Three sets of the parameters dl and d2 (6.45 and 2.15,

7.95 and 2.65, 12.6 and 4.2) in Eq. (13) generate three families of the adaptive grids.

These three sets of parameters dl and d2 provide that the ratio of the adaptive

grid spacing to the uniform grid spacing at the shock is equal to 1.5, 2.5, and 4,

respectively. A sample 65 x 65 adaptive grid generated by this grid redistribution

procedure is shown in Fig. 5. The region around the shock is well resolved by

reducing the local grid spacing by a factor of 2.5 compared with the uniform mesh

with the same number of grid points. Figure 6 shows the pressure contours obtained

with the LF 2 2 scheme on the 65 x 65 uniform (left) and adaptive (right) grids.

As one might expect, the grid adaptation improves the shock resolution. To give

greater insight into how the grid clustering influences on the shock smearing, the

centerline pressure distributions computed on these adaptive and uniform grids

1.5 >,

1

FIG. 5.

method.

0.5

A

-2 -1.5 -1 -0.5 0.5 1

X

Adaptive G5 x 65 grid (/_.2?Ull//_Xlllill = 2.5) generated by the grid redistribution
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FIG. 6. Pressure contours obtained with the LF-2-2 scheme on 65 x 65 uniform (left) and

adaptive (right) grids.
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are depicted in Eig. 7. For all the grids considered, the bow shock is captured

within 6 cells, which is typical for the Lax Eriedrichs flux splitting employed. At

the same time, the shock thickness, which is proportional to the local grid spacing

in the physical space, becomes thinner as the clustering of grid points increases.

Locally near the shock, the numerical solution profile, which remains practically

unchanged, is scaled according to the local grid spacing. Note that the numerical

solutions obtained with the LE 4 3 finite difference scheme demonstrate similar

behavior.

Grid refinement studies using three families of adaptive grids and one family of

uniform grids that have the same number of grid points are presented in Eigs. 8 13.

The L2 norm of the wall pressure error is shown in Fig. 8. As one can see in the

figure, the convergence rate obtained for the smooth problem is consistent with the

design order of the scheme used. The smooth problem is formulated in the region
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0 + Uniform grid, shocked problem
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FIG. 8. Grid refinement study at M_ = 3, showing tire wall pressure error obtained with

the LF-2-2 scheme on uniform and adaptive grids.
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FIG. 9. Grid relClneinent study at M_ = 3, showing the pressure error ira the half of the

domain closest to the body obtained with the LF-2-2 scheme on uniform and adaptive grids.

bounded by the exact shock wave and the cylinder, so that there is no discontinuity

in the domain. The inflow boundary condition at the bow shock is implemented by

solving the Riemann problem between the numerical state and the exact post shock

conditions from _he spectral solution.

Although the shock resolution is improved by clustering grid points around the

shock, the error in the pressure on the body surface increases by a factor of 5 10

compared with that calculated on the uniform grid with the same number of grid

points. It should be noted that the higher the concentration of grid points in the

vicinity of the shock, the larger the error that is introduced into the numerical

solution by the grid nonuniformity. The grid adaptation results in the metric coef
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FIG. 10. Grid refinement study at ]_1_ = 3, showing the wall pressure error obtained with

the LF-4-3 scheme on uniform and adaptive grids.
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FIG. 11. Crid refinement study at __/_ = 3, showing the pressure error in the half of the

domain closest to the body obtained with the LF-4-3 scheme on uniform and adaptive grids.

ficients drastically increasing near the shock, which, in turn, considerably decreases

the accuracy in regions where the solution is smooth. These numerical calculations

corroborate the analysis presented in Section 5.1. Surprisingly, the shock capturing

solutions obtained on uniform grids no_ only are more accurate than the eorre

sponding solution of the smooth problem, but also exhibit higher convergence rate

on fine meshes. This anomalous behavior present in the shock aligned cases did not

generalize to non shock aligned meshes. Nevertheless, this superconvergence is not

yet well understood and requires additional investigation.

The L2 norm of the pressure error calculated in the half of the domain closest to

the body is presented in Fig. 9. Such a choice of the domain enables us to exclude
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anypointcloseto thecapturedshock,wherethepointwiseerrorisof theorder
ofO(1). The error behavior obtained in the field is very similar to that exhibited

by the wall pressure error. As in the foregoing comparison, the grid adaptation

significantly increases the error in the smooth portion of the solution. Note that for

the LF 2 2 scheme, the first order error component is comparable with the design

order error, giving the appearance of the second order convergence rate on all the

grids considered.

Error convergence plots obtained with the fourth order upwind biased LF 4 3

scheme are depicted in Figs. 10 and 11 which are analogous to Figs. 8 and 9,

accordingly. In contrast to the second order scheme, the fourth order method using

uniform grids quickly approaches the asymptotic limit and exhibits just the first

order convergence on fine grids. In spite of the fact that the solution error is

dominated by the first order error component, the grid adaptation improves the

numerical solution accuracy only asymptotically. On one hand, the concentration

of grid points near the shock reduces the first order error component, so that the

convergence rate increases towards the design order limit, as shown in Figs. 10

and 11. On the other hand, the high order error component significantly increases

because of the grid nonuniformity. As a result, the solution error is dominated

by the design order error component. Despite some improvement in accuracy on

the coarsest adaptive grids, the L2 norm of the solution error obtained on finer

adaptive grids is larger than that calculated on the corresponding uniform grids.

As shown in Section 5.1, the main reason for such a behavior is that the design

order error component, resulted from the approximation of the metric coefficients,

drastically increases, owing to the clustering of grid points near the shock. Although

the adaptive grid solution exhibits a higher convergence rate, the errors obtained

on the corresponding adaptive and uniform grids become comparable only on the

finest 257 x 257 mesh. Hence, the grid redistribution method based on the LF

4 3 scheme provides improvement in accuracy only on extremely fine grids which

are very seldom found in practical applications, because of the computational cost

involved. Note that the adaptive grid solution error suffers from the first order

degeneration but with much lower first order error constant, as follows from Eq.

(29).

In the grid convergence studies presented above, the solution error is measured

in regions where the solution is smooth. However, it appears intuitively that the

grid adaptation should reduce the solution error in the vicinity of the shock. One

can argue that calculation of the lift or the drag for discontinuous flows results in

an error in these integral quantities of O(AP_Ax_), where AP, and Ax_ are the

pressure jump across the shock and the grid spacing at the shock, respectively.

This assumption is the basis for using grid adaptation methods to reduce the first

order shock error in the lift and drag which are two of the most important integral

quantities obtained from the solution of the Euler equations.

To check whether the grid adaptation improves the accuracy of the integral quan

titles, we compare errors in the pressure integral across the bow shock along line

y = 0 calculated on the same adaptive and uniform grids. Two integration al

gorithms have been used to compute the integral. The first one is a standard

two point second order trapezoidal rule quadrature formula. The second one uses

a piecewise cubic spline to fit the discrete pressure. Then, the spline is integrated
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FIG. 12. Grid refinement study for the pressure integral error obtained with the LF-2-2

scheme on uniform and adaptive grids.
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FIG. 13. Grid refinement study for the pressure integral error obtained with the LF-4-3

scheme on uniform and adaptive grids.

analytically, providing a fourth order accurate integration formula for sufficiently

smooth functions. Although the fourth order integration procedure imposes more

severe constraints on smoothness of the integrated function, pressure integral er

rors obtained with second and fourth order quadrature formulas are practically

identical. Therefore, only the results calculated using the fourth order integration

procedure are presented.

Figures 12 and la show the grid refinement study for the pressure integral ob

rained with the LF 2 2 and LF 4 3 shock capturing schemes, respectively. In con

trast to conventional wisdom, the pressure integral calculated with the LF 2 2

scheme on clustered grids is less accurate than that computed on uniform grids
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withthesamenumberof gridpoints.Figure12showsthat theaccuracyof the
pressureintegraldeterioratesastheconcentrationofgridpointsin thevicinityof
theshockincreases.FortheLF43 scheme,slightimprovementof thepressure
integralaccuracycanbeobservedonboththecoarsestandfinestadaptivegrids,
whilesimilardeteriorationinaccuracyoccurson65 × 65 and 129 × 129 meshes.

h should be emphasized that the error in the pressure integral across the shock

behaves very similarly to the L2 norm of the wall pressure error. This is no surprise

because these quantities are closely connected. To show this relation, we integrate

the 2 D steady Euler equations over the entire domain to give

(Fx + G_) dV = fF-nd[2 = 0, (51)

V

where 5c is the flux tensor, 9 is the boundary of the physical domain V, n is an

outward pointing unit vector normal to fl. As follows from Fig. 5, [2 = AB + BC +

CD + DA. Thus,

/:T.ndf_=f.T.nd�f.T.ndf_ff.nd_. (52)

AN BC CD DA

Because the finite difference schemes used are fully conservative, Eq. (52) holds not

only for the exact analytical solution, but also for the discrete solution. As follows

from Eq. (52), the accuracy of the solution integral along the centerline AB is

determined by the accuracy of the integrals calculated along the other boundaries

including the body surface BC. This indicates that the integral L2 norm of the

wall pressure error is closely related to the accuracy of the pressure integral along

the centerline.

6.2. Local Grid Refinement Method

As follows from the analysis presented in Section 5.2, the most troublesome parts

of the local grid refinement method are the grid discontinuity and the interface

boundary conditions. Therefore, special attention has been paid to implementation

of the interface boundary conditions and their accuracy. In the present study,

the Roe's approximate Riemann solver is used to build a flux at grid interfaces.

The left and right states at a grid interface are obtained as solutions of the Euler

equations calculated separately in each subdomain. The numerical flux built this

way is then used to construct the second and fourth order approximations, Eqs. (8

9). This implementation of the interface boundary conditions maintains stability,

conservation, and accuracy in multiple dimensions for both second and fourth

order methods. Because only matching nested grids are considered, there are no

hanging nodes in the domain.

To verify the accuracy of the interface boundary conditions described above, two

calculations of the smooth Mo_ = 2.5 blunt body problem are performed. The first

grid refinement study is done on a sequence of uniformly spaced grids. Each grid

is divided on eight subdomains containing the same number of grid points in both

the radial and circumferential directions, as shown in Fig. 14. Pressure contours

computed with the LF 4 3 scheme on this multiblock grid are also shown in Fig. 14.
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FIG. 14. 8-block 25 × 33 uniform grid (left) and pressure contours (right) of the smooth
M_ = 2.5 flow calculated with the LF'-4-3 scheme.
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FIG. 15. Two-level 41 × 33 locally refined grid (left) and pressure contours (right) of the
smooth M_ = 2.5 flow calculated with the LF-4-3 scheme.

Although the present formulation of the interface boundary conditions results in

the numerical solution being discontinuous at interfaces, the absolute value of the

solution jump at the interface is of the order of the truncation error of the scheme

used. For example, the characteristic interface pressure jump calculated with the

LF 4 3 scheme on a 25 x 33 uniform 8 block grid is O(10-a).

The second series of calculations is performed on a sequence of locally refined

grids similar to those which are used in the shock capturing formulation. As in

the previous test case, only the flow between the bow shock and the cylinder is

considered, i.e., there are no discontinuities in this subproblem. A three level locally

refined grid corresponding to a 2,5 x 33 background mesh and the pressure contours

calculated on this grid are shown in Pig. 15. Qualitatively, the solutions obtained on

uniform and nested multiblock grids are very similar. However, the corresponding

L2 pressure error norms calculated in the half of the domain closest to the body

are quite different, as seen in Fig. 16. As shown in Section 5.2, the presence of

interfaces in the domain introduces additional error in the numerical solution. On

the coarsest 8 block uniform grid, the solution is less accurate than that obtained on
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FIG. 16. Grid refinenlent study at M_ = 2.5, showing the pressure error in the half of
the domain closest to the body obtained with the LF-4-3 scheme on the 8-block uniform and 2-

to 5-level locally refined grids.

the corresponding single block uniform grid. This reduction in accuracy is due to

the fact that all grid points in each subdomain are treated as the boundary points.

Therefore, the third order boundary closure approximation is used on the entire

coarsest mesh. On finer meshes, the multiblock uniform grid formulation exhibits

the design order convergence rate and provides practically the same accuracy as

on the single block uniform grid. In contrast to multiblock uniform grid results,

the locally refined grid formulation leads to both one order of magnitude reduction

in accuracy and deterioration of the convergence rate to 3 on fine meshes. These

numerical results corroborate the theoretical analysis which shows that the error

components corresponding to the lowest fully resolved and the high unresolved

fl'equencies are amplified by the grid discontinuity. Such a reduction in accuracy is

also caused by the approximate solution of the Riemann problem and by spurious

reflection of waves traveling through the interfaces.

To test the accuracy of the local grid refinement method, the LF 2 2 and LF 4 3

schemes are used to capture the bow shock around a Mach 3 circular cylinder. A

typical three level 137 × 65 locally refined grid used in both second and fourth

order formulations is shown in Fig. 17. This adaptive grid corresponding to 65 x 65

background uniform mesh is locally refined near the exact shock location, such

that the local grid spacing of the finest nested subgrid is 8 times smaller than

that of the background mesh. Figure 18 shows the pressure contours calculated on

these uniform and locally refined grids. As expected, the shock wave fl'ont becomes

much sharper on the adaptive grid. To demonstrate the improvement in the shock

resolution owing to the local grid refinement, the centerline pressure distributions

computed on the three level and five level locally refined grids are compared with

the uniform grid results in Fig. 19. The comparison shows that the bow shock is

smeared over six grid cells for all the grids considered, while the shock thickness in

the physical space is reduced proportionally to the local grid spacing.
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FIG. 17. Three-level 137 × 65 locally refined grid.
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FIG. 18. Pressure contours obtained with the LF-4-3 scheme on the 65 X 65 uniform (left)
and 3-level 137 × 65 locally refined (right) grids.

Despite improved shock sharpness, there is no reduction in the L2 error norm

measured in smooth portion of the numerical solution calculated with the second

order method, as is evident in Figs. 20 and 21 which are analogous to Figs. 8 and 9.

Figure 20 shows that the L2 norm of the wall pressure error obtained with the LF

2 2 scheme on locally refined grids increases by a factor of 10 s 102 compared with

the uniform grid results. The pressure error measured in the half of the domain

closest to the body exhibits similar behavior, as is evident in Fig. 21. Note that

for the second order scheme, the error convergence rate of the local grid refinement

method is less than the design order.

In contrast to the second order method, the numerical solution error obtained

with the LF 4 3 scheme is dominated by the first order error component. Figures

22 and 23 show that the local grid refinement near the shock reduces the first order

error component generated by the LF 4 3 shock capturing procedure, so that the

design order error component becomes dominant on the adaptive grids. Although



ACCURACY OF ADAPTIVE METHODS FOR SHOCKS 29

12

11

10

9

8

6

5

4

iI3

I
2

1

°i , , , m-eI , , , ,

-1.75 -1.7

x

/

/

/

-- -0-- - Uniform grid

---_---- 3-level locally refined grid

5-level locally refined grid

, , , , i , , , , i

-1.65 -1.6

FIG. 19. Pressure distributions along line y = 0 calculated on the 65 x 65 uniform and 3-,

and 5-level locally refined grids.

-1.5

_'_ -2

a.
'3 -2.5

I_.

-3.5

-4

Uniform grid, shocked problem

Uniform grid, smooth problem

Locally refined grid, 2-5 levels

Locally refined grid, 3-6 levels

Locally refined grid, 4-7 levels

,,. ................... ,......1 5 1.75 2 2.25 2 5 2.75

Iogl0(N_e,_)

FIG. 20. Grid refinement study at 3I_ = 3, showing the wall pressure error obtained with

the LF-2-2 scheme on uniform and locally refined grids.

the error convergence rate is Mmost recovered to the design order, the L2 norm of

the wall pressure error obtained on locally refined grids becomes comparable with

the uniform grid results only on the finest mesh. For coarser grids, the superiority

of uniformly spaced grids is evident. The same conclusion can be drawn for the

pressure error measured in the field away from the shock, except that the solution

errors obtained on the locally refined and uniform grids become comparable on

the coarser 129 × 129 grid, as one can see in Fig. 23. The numerical results
obtained with both the second and fourth order schemes show that as the number

of interfaces between coarse and fine meshes increases, the deterioration in accuracy

also increases, which qualitatively corroborates the analysis presented in Section 5.2.
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FIG. 21. Grid refinement study at __/_ = 3, showing the pressure error in the half of the

domain closest to the body obtained with the LF-2-2 scheme on uniform and locally refined grids.
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FIG. 22. Grid refinement study at ]_I_ = 3, sfiowing the wall pressure error obtained with

the bF-4-3 scheme on uniform and locally refined grids.

Error convergence plots of the pressure integral along the centerline calculated

using the LF 2 2 and LF 4 3 schemes on the same sequences of locally refined

and uniform meshes are depicted in Figs. 24 and 25, respectively. Note that the

error convergence on uniform grids is monotonic, whereas the error convergence on

adaptive grids exhibits nonmonotonic behavior. Figure 24 shows that the local grid

refinement method based on the LF 2 2 scheme does not reduce the pressure integral

error compared with the uniform grid results. Certain improvement in accuracy of

the pressure integral computed with the LF 4 3 scheme can be observed on fine

locally refined grids, as shown in Fig. 25. However, this gain in accuracy decreases

as the background mesh is globally refined, and it practically vanishes on _he finest
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FIG. 23. Grid refinement study at __/_ = 3, showing the pressure error in the half of the

domain closest to the body obtained with the LF-4-3 scheme on uniform and locally refined grids.
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FIG. 24. Grid refinement study for _he pressure integral error obtained with _he LF-2-2

scheme on uniform and locally refined grids.

adaptive mesh. Although only the error in the pressure and its integral have been

presented in this study, similar convergence behavior is observed for the other flow

quantities.

The results presented above have been obtained under the assumption that one

family of grid lines is parallel to the bow shock. However, in practical applications,

generation of shock aligned grids is a complicated problem, because the exact shock

location is unknown. To gain greater insight into the error behavior when the grid

is not aligned wi_h the shock, we perform a grid refinement study on uniform grids

generated by the mapping Eq.(ll) with to(O) = const. In this case, circumferential

grid lines are circular arcs which are not aligned with the bow shock. Figure 26
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FIG. 25. Grid refinement study for the pressure integral error obtained with the LF-4-3

scheme on uniform and locally refined grids.
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FIG. 26. Nonaligned uniform 65 X 65 grid and pressure contours obtained with the LF-2-2

scheme on this grid.

shows a uniform 6.5 x 65 grid and isobars of the blunt body flow calculated with the

LF 2 2 scheme on this grid. Note that the maximum angle between the bow shock

and circumferential grid lines, which occurs at the point where the shock crosses

the outflow boundary, is about 4.5°. The L2 norm of the wall pressure error and the

pressure error norm measured in the half of the domain closest to the body surface

(obtained on the nonaligned uniform grids) are compared with the shock aligned

uniform and most accurate adaptive grid results in Figs. 27 and 28, respectively.

As follows from the grid refinement study, when the grid is aligned with the bow

shock, the coefficient in front of _he first order error component is negligibly small,

giving the appearance of a second order convergence rate. However, this coefficient
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FIG. 27. Grid refinement study at AI_ = 3, showing the wall pressm'e error obtained with

the LF-2-2 scheme on nonaligned uniform, shock-aligned uniform and adaptive grids.
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FIG. 28. Grid refinement study at __/_ = 3, showing the pressure error in the half of the
domain closest to the body obtained with the LF-2-2 scheme on nonaligned uniform, shock-aligned

uniform and adaptive grids.

becomes much larger on nonaligned grids that makes the first order shock error

component dominant on much coarser grids. Despite the fact that the L2 norm of

the pressure error obtained on the finest nonaligned uniform mesh is one order of

magnitude less accurate than that on the corresponding shock aligned uniform grid,

the nonaligned uniform grid solution is still more accurate than the best adaptive

grid results. As one can see in Figs. 27 and 28, the error convergence obtained

with the LF 2 2 scheme is very similar to that calculated with the LF 4 3 scheme

on shock aligned grids. Figure 28 shows that the grid adaptation can improve the

numerical solution accuracy only asymptotically.
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7. GRID ADAPTATION CRITERION FOR CAPTURED SHOCKS

Based oll the results presented in Sections 6.1 and 6.2, we propose the following

grid adaptation strategy for captured shocks. The most general error convergence

behavior shown schematically in Fig. 29 is characterized by the presence of three

different regions in the error convergence plot. The first region corresponds to

coarse meshes such that the shock error component is of the order of O(1). In

this region, the grid adaptation near the shock is desirable because it reduces the

most troublesome part of the error generated by the shock capturing procedure. It

should be stressed that the grid adaptation not only reduces the shock error, but

also localizes the captured shock, which minimizes interaction of Gibbs oscillations

with the boundary conditions and other features of the flow. This is one of the main

reasons why high resolution shock capturing schemes, such as ENO and weighted

ENO schemes, provide better accuracy on coarse grids compared to high order

linear algorithms.

In the second region, which corresponds to sufficiently fine grids, the coefficient

C1 in Eq. (14) approaches its asymptotic value which, as has been shown for

the LF 2 2 scheme, may be very smalh For these grids, the design order error

component dominates the first order error component, i.e. IlCphPll > IlCltql. As

a result, any clustering of grid points or local mesh refinement in the vicinity of

the shock reduces only that part of the error which is not dominant, ultimately

reducing the numerical solution accuracy in smooth portions of the solution. The

main reason for such a behavior is the fact that both grid adaptation strategies

are not without penalties in the solution accuracy. As follows from the truncation

error analysis, for the grid redistribution method, the main source of error is due

to the high order derivatives of the metric coefficients which drastically increase on

nonuniform meshes. The numerical analysis performed for the local grid refinement

technique has shown that, in this case, the error accumulation occurs because of

discontinuities in grid spacing and the coupling between coarse and fine meshes,

herein calculated as an approximate solution of the Riemann problem. Because
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FIG. 29. Error convergence diagram for a high-order shock-capturing method.
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ofthesepenaltiesin thesolutionaccuracy,thegridadaptationincreasesthetotal
errorin thenumericalsolutionif it isusedin thesecondregion.

Thethirdregioncorrespondstothefirstorderasymptoticlimit. In thisregion,
thegridadaptationnearthebowshockwouldbethemostefficientuseofthecorn
puterresources.However,ashasbeenshownnumerically,thereisatransitionzone
wheretheerrorconvergencerateis O(h), but the grid adaptation does not provide

improvement in the numericM solution accuracy compared with the corresponding

uniform grid results. This is because both the grid redistribution and local grid

refinement methods introduce additional error in the numerical solution, caused by

the grid nonuniformity. Note that the transition zone becomes larger if the corn

putational cost is used instead of the number of grid cells in the error convergence

plots.

From the above analysis it follows that the grid adaptation is desirable if the

following inequality holds:

IIclhll> 11(TphPll, (53)

where the norm is measured in regions where the solution is smooth. The above

inequality can be used as a grid adaptation criterion for captured discontinuities.

It should be noted that the constants Cs and (7_, depend on both the problem

and the numerical scheme used. As has been mentioned earlier, the coefficient

Cp can be treated as the leading truncation error term. To our knowledge, there

are no theoretical results for evaluation of the coefficient (7,. Therefore, to use

the criterion (53) in practical applications, global grid refinement or coarsening is

required. The global coarsening can be used if the grid is fine enough to correspond

to the second and third regions in the error convergence diagram. However, if the

grid is very coarse that corresponds to the first region, the coarsening cannot be

used. and the grid refinement is the only way to evaluate the error convergence

rate. This approach becomes quite expensive in three dimensions. From this point

of view, it is very important to be able to predict a priori the error introduced by

the shock capturing procedure. This quantification together with the criterion (53)

will provide guidance for grid adaptation for captured discontinuities.

It is instructive to speculate on the generality of this work, particularly on two

practical questions: 1) are the conclusions and suggestions (see Fig. 29) valid for any

general discontinuous flow, and 2) are the present results (second and fourth order

Lax Friedrichs schemes) general for any high order numerical Mgorithm? Although

a precise answer does not presently exist to either question, we make the following

conjecture: Similar qualitative results and an equivalent grid adaptation criterion

(53) will be obtained for any flows containing multidimensional shocks, indepen

dent of the high order numerical method (central difference with scalar dissipation,

Roe, TVD, and ENO). This assertion is based on the observation that for any

captured discontinuities, the numerical solution error obtained with any high order

shock capturing method consists of two parts: the first order shock error (7,h and

the design order error component (Tph p. Although the coefficients (7, and (Tp are

problem and scheme dependent, asymptotically, these coefficients do not depend

on the grid spacing h. Consequently, for any high order method, such that p > 1,

and any finite values (71 and (Tr, the solution error is asymptotically dominated by
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thefirstordererrorcomponent,correspondingto thethird regionin Fig. 29. If
C1 << @, the solution error exhibits high order convergence on sufficiently coarse

grids, and corresponds to the second region in the error convergence diagram. If

the grid is very coarse, such that Clh _ O(1), the solution error corresponds to

the first region in Fig. 29. Note, however, that the first and second regions may

be very small or even nonexistent if C1 >> @, whereas the third region always ex

ists, regardless of the discontinuity strength and the high order numerical algorithm

used.

Although the results presented above have been obtained for steady state flows,

the same conclusions can be drawn for time dependent problems as well. An essen

tial effect of the grid nonuniformity on the numerical solution accuracy remains one

of the most important sources of error for unsteady problems with shocks. Since

time dependent flows involve both the temporal and spatial errors, additional errors

caused by mesh movement and dynamical refinement/coarsening are introduced

into the numerical solution. The main source of error for moving grid methods is

the inability to satisfy the geometric conservation law in the presence of moving dis

continuities. One of the main problems associated with time dependent local grid

refinement methods is the need to interpolate. Note that any high order interpo

lation across a strong discontinuity can cause a perceptible loss of spatial accuracy

and can produce strong oscillations because of the Gibbs phenomenon. Another

very important issue, particularly for unsteady problems, is a mutual influence of

the temporal and spatial error components.

8. CONCLUSIONS

The accuracy of the adaptive grid redistribution and local grid refinement meth

ods is examined and analyzed for captured shocks. The grid refinement study using

second and fourth order finite difference schemes based on the Lax Friedrichs flux

vector splitting is performed to solve the supersonic inviscid flow around a circular

cylinder. The numerical calculations show that if the solution error is dominated

by the first order error component, the grid adaptation near the shock increases the

error convergence rate towards the design order of the numerical algorithm used. At

the same time, it has been shown theoretically and corroborated numerically that

the design order error component drastically increases because of the grid nonuni

formity. As a result, either clustering of grid points or local grid refinement near the

shock improves the numerical solution accuracy only asymptotically on very fine

meshes that are not reasonable for modern computers. Furthermore, it has been

found that neither grid adaptation strategy practically reduces error in the pres

sure integral across the shock compared with that obtained on the corresponding

uniform grid. From the present analysis it follows that grid adaptation is desirable

if the first order error component measured in the smooth part of the solution is

much larger than the design order error component. This inequality can be used

as a grid adaptation criterion for captured discontinuities.
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