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1 INTRODUCTION

1.1 PROJECT MOTIVATION AND GOALS

Developing detailed computer simulations of aerospace vehicles and other engineered

systems is difficult. As models of subsystems are combined to form a complete model of the

overall system, there appears to be a virtually inevitable, geometric growth in the complexity of

the resulting computer code, the difficulty of overcoming numerical instabilities, and the effort

required to eliminate software bugs and perform quality assurance. Further, the complete model

can be so unwieldy that uncertainty analysis and optimization efforts are impaired.

The project seeks to develop methods to address these issues. The goals are to reduce

model development time, increase accuracy (e.g., by allowing the integration of multi-

disciplinary models), facilitate collaboration by geographically-distributed groups of engineers,

support uncertainty analysis and optimization, reduce hardware costs, and increase execution

speeds. These problems are the subject of considerable contemporary research (e.g., Biedron

et al., 1999; Heath and Dick, 2000).

All of these goals would be addressed if complicated system models with intricate

interconnections and strong internal feedback mechanisms could be partitioned into subsystems

that were executed semi-independently. Each subsystem would be modeled in detail by separate

(possibly geographically-isolated) groups of engineers and then executed on a separate processor
of a computer network. The development and implementation of such an approach is the subject

of this project. The principal deliverables from the project will be mathematical techniques to

allow the linking of the separate subsystem models, an object-oriented methodology for

developing the models, and a distributed simulation software library that facilitates the process.

The library is intended for use on ordinary personal computers connected by a local area

network, as found in most engineering organizations, purpose-built "Beowulf' networks, as well

as computers connected by the Internet.

The potential payoff of this technology is very large, in terms of hardware and software

development costs, as well as design capabilities. Hardware costs would be reduced by allowing

networked processors to be efficiently used for detailed simulation of complicated aerospace

systems. Software costs would be reduced by a divide-and-conquer approach that directly

attacks complexity, supports interdisciplinary modeling, promotes object-oriented techniques,
and allows efficient re-use of component or subsystem models developed on earlier projects.

Design and analysis efforts are facilitated by integrated uncertainty analysis and optimization

capabilities.

1.2 OVERVIEW OF SOFTWARE LIBRARY

The primary focus of the project is on lumped parameter simulation models comprised of

coupled algebraic equations (AEs) and ordinary differential equations (ODEs), and not, for

example, single discipline finite element models (although some work has been devoted to the
latter as discussed below). If the overall set of ODEs is to be divided into separate subsystem

models, these submodels must be integrated with respect to time in a way that provides

computationally-stable results in the face of strong feedbacks and complicated interactions
between the subsystems. Stable integration is accomplished in our scheme by automatically

generating simplified versions of each subsystem model from the detailed model created by its
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analysts. These simplified models are distributed to the other processors of the network where

they serve as sufficiently accurate stand-ins for the associated detailed models for short periods

of time. Thus, if we break an entire system into N subsystems, then each of N processors in a

network could solve one detailed subsystem model and N-1 simplified models for the other

subsystems. The latter provide the required feedbacks necessary for the stable integration of the

detailed subsystem model. The simplified models are kept accurate by periodically updating

them to account for changes in the nominal operating state or discontinuities.

The software library is described in much more detail in Section 5.

1.3 ACCOMPLISHMENTS IN FY02

The project began in June, 2001. In the first complete fiscal year of the project, we made

substantial progress, and the following accomplishments are noted:

• We developed improved, more general methods for generating simplified subsystem

models for systems comprised of ODEs, ODEs and AEs, and just AEs. In particular,

a block diagonalization process was developed to substantially improve the generality

and numerical robustness of the model simplification process.

• We evaluated the use of sophisticated control theory techniques for creating more

reliable simplified subsystem models.

• We refined the preliminary software architecture developed in FY01.

• We developed an efficient and highly flexible means for exchanging information

between the separate processors using CORBA.

• We updated the software library to incorporate many of these advances.

• We tested the software library on several models of increasing difficulty.

• We performed tests in which we simulated aerospace systems on separate computers

connected by both a local area network as well as the Internet.

These efforts are described in more detail in the remainder of the report.

2 METHODS FOR GENERATING SIMPLIFIED SUBSYSTEM MODELS AND

ASSESSING THEIR PERFORMANCE

2.1 AVAILABLE I_[ETHODS FOR GENERATING SIMPLIFIED MODELS

Simplified subsystem models need to be developed periodically as a simulation proceeds
and then distributed over the network to the various processors. Frequent updating may be

necessary when a detailed subsystem model is highly nonlinear or when discontinuities occur,

since in either case the simplified model may become inaccurate relatively quickly.

Ideally, the simplified models will be generated "on the fly" by the software library and

their development will require little effort of the model developer other than that necessary to
formulate his or her model in the first place. If this and the other project goals can be

accomplished, the developer of a new subsystem model could basically ignore the software
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engineering complications posed by interactions with other subsystem models and focus entirely

on the physics of their individual subsystem.

One possible method for developing simplified models is to use Response Surface

methodology. This technique has long been used to develop simplified versions of models to

support optimization and uncertainty analysis. The generation of Response Surfaces usually

requires the execution of a large number of detailed model simulations, often defined by

experimental design techniques. Adoption of this technique would require extensive

preprocessing of the models, which would compromise the goal of providing a transparent

environment for software development.

We have chosen instead to utilize modified versions of techniques developed for

generating simplified models for control system implementation. In this section, we introduce

these techniques and develop a framework for assessing their costs and benefits. Later sections

will develop the chosen methods in more detail.

2.2 THE ROLES OF LINEARIZATION, DIAGONALIZATION, AND MODEL ORDER REDUCTION

Let us first consider how a simplified model can be developed when a model consists

only of ODEs. The original detailed subsystem model is assumed to be of the form:

xi : f_(x,u) i=l .... n (2-1)

In this equation, x represents the values of the states, and u represents the various inputs

to the model. Note that included in the inputs are the states of other subsystem models to which

this model is attached, as well as explicit functions of time. The rates of change fare, in general,

nonlinear and may possess discontinuities. Subsystem models encountered in practice will also

contain coupled sets of algebraic equations. However, as shown in the next section, these can be

eliminated, so we incur no loss of generality in assuming that the model contains only ODEs as

indicated in Equation (2-1).

To generate a simplified model at a particular time, we first linearize around the vectors

of current values of the state variables and input parameters, Xo and Uo, respectively:

(2-2)

In Equation (2-2) and elsewhere in this report, summation is implied over repeated

indices (in this case, k). Matrices and vectors are denoted by quantities in bold. It is convenient

to drop the S notation and write this in the standard form:

x = Jx + Bu + fo (2-3)

We also allow for the possibility that the desired outputs of the subsystem model z are

not necessarily the states themselves, but algebraic functions of the states and inputs:
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z = h(x,u) (2-4)

When we linearize the output equations, we obtain:

z = Cx + Du + Zo (2-5)

The various matrices shown are all partial derivatives of the underlying equations. For

example, the elements of the Jacobian matrix J are given by:

_f_ (2-6)
Jik =

In the controls literature, the Jacobian is often called the "system" matrix, usually

denoted A. Similarly, the elements of matrix C are given by:

Ohi (2-7)
Cik = 3x----[

and so on for the other matrices. The set of Equations (2-3) and (2-5) already constitutes a

simplified version of the subsystem model, of course. However, it is desirable to simplify the
model further, to minimize the amount of information that must be distributed over the network

and the computational burden that is placed on each of the processors executing the simplified

model. One way to do this is to diagonalize the system matrix A using a similarity

transformation. If a matrix S can be found such that:

S J S-1 = A (2-8)

where A is a diagonal matrix (whose elements are the eigenvalues of A), we then define a

different ("hat") coordinate system by:

^

x = Sx (2-9)

We also define:

^

B = BS-1 (2-10)

^

f o = Sfo (2-11)

^

C = CS-l (2-12)

In terms of these, Equations (2-3) and (2-5) become:

4
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^

dx

dt

^ A A

- Ax+Bu + fo (2-13)

^ ^

z = C x+ Du + Zo (2-14)

In the following development, we will take the liberty of suppressing the "^" notation on

the states x, the matrices B, and C, and the vector fo. This creates no real ambiguity since we

always analyze the subsystem behavior in transformed coordinate systems.

The simplified model represented by Equations (2-13) and (2-14) is already easier to deal

with since the size of the diagonalized system matrix A is much smaller than the size of J. This

makes it much easier to transmit the subsystem model over the network that connects the various

processors and to integrate the models in time. Just as importantly, the diagonalization process

also decouples each of the states from each other, making it possible to write closed-form

expressions for the time-dependent values of the states in terms of the various inputs. If in doing
so we determine that some states have little effect on the outputs of interest, they can be

eliminated from the set of equations since they are, by definition, not needed for the calculation

of other states that might be important. This makes it possible to further reduce the size of the

simplified model, a process termed model order reduction.

Thus, linearization, diagonalization, and model order reduction can all be used to develop

a simplified version of a subsystem model. While model order reduction need not necessarily be

preceded by an explicit diagonalization step, there are good reasons for doing so, as will be

discussed below.

2.3 BLOCK VERSUS STRICT DIAGONALIZATION

The preceding discussion assumed that the Jacobian matrix could be strictly diagonalized

using a similarity transformation. Diagonalization has the highly useful feature that it

completely decouples the states of a model, allowing the contribution of each state to the model

outputs to be separately quantified. States which do not appreciably affect the model outputs can
then be eliminated from the model, resulting in a smaller model. Unfortunately, strict

diagonalization is not always possible or desirable.

2.3.1 Strict Diagonalization

The Jacobian matrix, J in Equation (2-3), can often be completely diagonalized by a

similarity transformation as shown above. Such a transformation can be defined by a matrix S,

whose rows are composed of the left eigenvectors of J, and a matrix S -_ whose columns are

composed of the right eigenvectors of J. When the set of right eigenvectors and the set of left

eigenvectors are biorthogonal, this similarity transformation yields a diagonal matrix, A, whose

diagonal elements are the eigenvalues of J:
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°1S J S -_ = A = diag(2a,2z ..... AN ) = ".. (2-15)

0 AN

When all the eigenvalues of a matrix are different, it can be shown that this

diagonalization process can be performed, at least in principle (i.e., with infinite precision

arithmetic). More generally, a matrix is diagonalizable by a similarity transformation when all of

its eigenvalues are nondefective (Golub and Van Loan, 1983). An eigenvalue is said to be

defective when its algebraic multiplicity (i.e., the number of times _i is repeated) exceeds its

geometric multiplicity (i.e., the number of linearly independent eigenvectors associated with )_i).
In other words, J is nondefective (and therefore diagonalizable) whenever its eigenvalues are all

distinct, or when each of the repeated eigenvalues may be associated with a linearly independent

eigenvector.

We had originally anticipated that the occurrence of defective matrices associated with

physical models would be rare. However, we have found relatively simple physical models

(e.g., conservation of mass balance equations for a mixing tank) which produce defective
Jacobian matrices. Model order reduction using the strict diagonalization procedure is not

possible in these cases. Less serious drawbacks to the use of common algorithms for strict

diagonalization include the need to support complex number arithmetic (since real models can

have complex eigenvalues) and the possibility that highly ill-conditioned transformation matrices

S and S -_ will result. Consequently, it was judged necessary to devise a more robust algorithm

for transforming the Jacobian matrix into a form amenable to model simplification.

2.3.2 Block Diagonalization

Defective Jacobian matrices cannot be transformed into a form that is strictly diagonal

using a similarity transformation. However, according to theory, such matrices can always be

put into the Jordan canonical form in which Jordan blocks appear along the diagonal of the
transformed matrix, and all other entries are zero. A Jordan block of order 3 (for example),

corresponding to a particular repeated eigenvalue 2, has the form:

t 1012 1

0 2

(2-16)

As illustrated, the Jordan block consists of a matrix in which the eigenvalue appears

along the diagonal, and unity appears in the matrix elements just to one side. Unfortunately,

computing the Jordan canonical form can present serious numerical problems and we chose not

to pursue this approach (Golub and Van Loan, 1983).

To overcome the inability, even in theory, to always strictly diagonalize Jacobian

matrices, while also avoiding the numerical problems associated with generating the Jordan

canonical form, we have instead implemented an algorithm based on block diagonalization of the

Jacobian matrix. Block diagonalization can be expressed as a similarity transformation:

6
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B l 0 1
S J S-' = B = diag(B_, B 2 .... B.) = '. (2-17)

0 B.

where each Bi represents a square ni-x-ni submatrix. As in the case of Jordan blocks, the

submatrices have their associated eigenvalue along the diagonal, but in this case entries will

generally fill the entire upper triangular portion of the submatrix. When a block diagonalized

matrix is generated, the treatment is equivalent to the previous algorithm if the order ni of each

block Bi is equal to one. That is, each state associated with a lxl block is completely decoupled

from the remaining states and may be considered independently for the purpose of model order

reduction. However, all states associated with a block of rank greater than 1 are coupled to the

other states of that block.

2.3.3 Algorithm for Block Diagonalization

Bavely and Stewart (1979) developed an algorithm for the block diagonalization of a

matrix using a similarity transformation as described in Equation (2-17). This algorithm has

several very attractive features:

1. It is applicable to defective Jacobian matrices.

2. The initial step of the algorithm (reduction to quasi-triangular form) is based on the

Schur decomposition, a much more numerically robust algorithm than other similarity

transformations, e.g., using left and right eigenvectors or reduction to Jordan

canonical form.

3. It produces quite well-conditioned transformation matrices S "l and S, by grouping

both equal and nearly equal eigenvalues into the block diagonal structure when

necessary.

4. It uses only real matrix arithmetic since complex eigenvalues are stored in an

equivalent fashion in real-valued, 2x2 diagonal blocks.

5. When repeated, but not defective eigenvalues exist, the transformation matrices

generated by the algorithm are orthogonal and the transformed matrix is strictly

diagonal. This was not the case with the previous algorithm used in the software

library.

We also evaluated a variation of the algorithm for block diagonalization (available in the

free software package SCILAB) which uses complex arithmetic. The use of complex matrix

arithmetic has the potential benefit of allowing further reduction in the block size of matrices

with complex eigenvalues, since such eigenvalues may be stored in lx 1 rather than 2x2 diagonal

blocks (if an eigenvalue of a real matrix is complex, then another eigenvalue of that matrix is the

first eigenvalue's complex conjugate). However, the use of complex numbers requires twice the

memory space, involves more than twice the computational complexity, and introduces complex-

valued rounding errors into the calculation of real-valued model outputs. Further, we expect that

in the model order reduction process, if a state associated with a complex valued eigenvalue

contributes significantly to the subsystem model outputs, the state associated with the complex
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conjugate of this eigenvalue will as well. If so, both states must be included anyway, and there is

little advantage to considering them separately.

2.4 APPROXIMATE EFFECT OF SUBSYSTEM MODEL COMPLEXITY ON NETWORK LOADING

AND EXECUTION SPEED

To assess the costs and benefits of model order reduction, and to let us eventually

compare the various schemes available for carrying this out, it is helpful to consider the demands

that various schemes might place on computer time and network bandwidth.

As discussed earlier, there are several potential benefits in using the distributed modeling

software library. Many of these address what might be termed software engineering problems.

In that regard, the library should:

• Allow subsystem modelers working in different technical disciplines to easily

integrate their separate models into a complete system model. If the design goals are
realized, little additional effort will be required of the subsystem modeler beyond

creating his individual model in the first place. Importantly, stable and accurate

integration of the complete system model should be achievable more or less

automatically, allowing subsystem modelers to focus on their technical discipline,

rather than difficult areas of numerical analysis and software engineering.

• Permit geographically distributed sets of subsystem modelers to interact

transparently.

• Ease the quality assurance burden, by allowing such efforts to focus on ensuring the

integrity of the individual subsystem models on a model-by-model basis, rather than

having to treat the entire code as a whole.

• Support uncertainty analysis on complex system models.

• Support optimization of complex system models.

In the end, these are probably the most important benefits of the library. Software

developers creating complex system models usually discover that integrating many relatively

simple submodels can be very time-consuming and error-prone when the individual models

interact in ways that are complex, subtle, and often numerically "stiff."

Nevertheless, it is also possible that gains in execution speed will also result from

harnessing the power of large computer networks, and this would be another advantage of this

approach. Conversely, if the software library results in a huge drop in execution speed, it will

have considerably less appeal to developers. Similarly, if the network bandwidth required to

transmit simplified models is too high, the system may not be practicable. For these reasons, it is

useful to qualitatively consider the effect of distributed simulation on network loading and

execution speed.

2.4.1 Assumed Model Characteristics

For simplicity, we consider a dynamic system model that has been partitioned into m

subsystem models, each of roughly equal complexity. We assume that we can utilize m
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processors to solve these models, i.e. one processor is used for each subsystem model.

Assuming for the moment that the simplified versions of the submodels that are exchanged

between processors are relatively small, we neglect the times required to transmit the simplified

models between the various processors compared to the time required to develop them in the first

place.

It should be noted that we have already made a key assumption: that no single slow-

running subsystem model delays the execution of the model as a whole. This may require

considerable care when partitioning the overall system model into subsystems.

In general, a particular subsystem model can consist of ordinary differential equations

(ODEs) and algebraic equations. The latter are used in the computation of the rates-of-change of

the former. For example, the gas pressure might be calculated algebraically from the

temperature and mass and then used to compute the rate of change of the mass. Other algebraic

equations may be present that relate the values of the internal variables defined by ODEs and

algebraic equations to the key subsystem model outputs needed by the other subsystem models.

To make the following discussion simpler, we assume that the effort required to evaluate the

algebraic equations is included in the effort required to calculate the rates-of-change of the ODE-
defined states on which they depend. If this is done, and if we make the further assumption that

the number of key outputs is much smaller than the number of internal states, we make little

error in considering the model as consisting entirely of ODEs. In practice, the mapping between

outputs and states is usually trivial, i.e., certain ODE states or algebraic variables are themselves

the key model outputs, so no additional effort is required to evaluate the outputs in the detailed

model given the values of the states.

Let us now define:

n = number of states in

n' = number of states in

f = average number of

each detailed subsystem model

a simplified subsystem model (after model order reduction)

floating point operations required per state in a detailed model

f' = average number of floating point operations required per state in a simplified model

j = average number of operations required to compute one term of the Jacobian matrix

q = average number of nonzero terms in Jacobian matrix per rate (number of nonzero matrix

elements per row)

p = number of time steps between updates of simplified models ("model update interval")

r = number of floating point operations that can be performed per second

u = number of inputs

o = number of outputs

With no loss in generality, we can let r = 1. In other words, time is measured in the units

of the time required to perform a single floating point operation on the processor.

2.4.2 Requirements on Network Bandwidth of Distributed Simulation

One way to compare the effectiveness of different schemes for developing simplified

subsystem models is to perform an approximate analysis of the network bandwidth required to

transmit such a model over the network. We consider four different scenarios:
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1. The full linearized model is transmitted.

2. The full linearized model is transmitted using a sparse matrix scheme in which only

the nonzero elements of large matrices are transmitted, together with integers

describing the row and column numbers of these elements.

3. The diagonalized model is transmitted with no model order reduction.

4. A diagonalized and model order reduced model is transmitted.

For simplicity, we assume that the system matrix can be essentially fully diagonalized,

i.e., there are relatively few 2x2 or larger sub-blocks. The approximate number of variables that
must be transmitted to communicate the linearized model, Equations (2-3) and (2-5) is then

shown in Table 2-1.

Table 2-I. Approximate Size of Simplified Models Developed and

Transmitted Using Different Techniques

Quantity Full linearized Sparse version Diagonalized Diagonalized,

(matrix or model of full model model reduced order

vector) model

A n 2 3nq n n"

B nu nu nu n'u

n N n nfo
C

D

Zn

no

ou

no

ou

no

ou

o

no

ou

While the number of nonzero elements of the B, C, and D matrices may be somewhat

overstated in Table 2-1 (full matrices were assumed), this will not cause much error if the

number of inputs and outputs is small compared to the number of states, as appears reasonable.

We can evaluate the implications of these estimates using crude assumptions on the

complexity of subsystem models. We believe that the use of the software library that is likely to

be most practicable is when a large number of relatively simple subsystem models are being

coupled. Thus, a reasonable set of guesses might be that a representative subsystem model has

50 states, of which 10 are needed in a particular update interval to provide a reasonably accurate

approximation of subsystem behavior. If we assume that this system is coupled to its neighbors

using 5 inputs and outputs, and that the average state variable's rate-of-change f is a function of

5 other states, we have:

n = 50

n' =10

q=5
0=5

u= 5
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From these estimates (or, perhaps more

Table 2-2.

accurately, guesses), we obtain the results shown in

Table 2-2. Relative Size of Simplified Models for a Particular Set of Assumptions

Number of variables that must be transmittedMethod Used to Develop Model

Full linearized model 3080

Sparse version of full model 1330

Diagonalized model 630

Diagonalized, reduced order model 150

While these specific assumptions are highly arguable and will no doubt vary widely from

application to application, we can generally conclude that diagonalization by itself offers huge

benefits in reducing the model size, and that an additional model order reduction step after block

diagonalization offers further significant benefits.

2.4.3 Effect of Distributed Simulation on Execution Speed

We now consider the impact on execution speed of simulating a system by distributing

the subsystem models to various processors. In the most favorable situation, the number of

operations required to solve the complete model is just the effort required to individually

integrate each state. Note that this is only the case when the ODEs are not numerically stiff, and

is probably relatively rare. In the more typical situation where stiff ODEs are present, an
iterative technique is generally required to achieve stable and accurate integration, and much

more time would be required to model the system on a single processor. All else being equal, in

such a case the multiple processor approach using the distributed modeling library would look

much more attractive than is shown below.

a. Entire System Model Executed on a Single Processor Without Using the Distributed

Software Library

Given the assumption that all equations can be integrated explicitly, the time t_ required

to integrate the equations on one processor is essentially just that required to calculate the rates at

each time step multiplied by the number of time steps in an update interval:

t I : nfmp

b. Each Subsystem Model is Executed in a Distributed Fashion on a Separate Processor

When the distributed modeling library is used, each processor must accomplish several

tasks, which we consider separately below:

(1) Calculation of Jacobian Matrix

Any practicable implementation of the distributed modeling system will utilize an

explicit, hard-coded representation of the terms of the Jacobian matrix. These are developed by

preprocessing the subsystem model's source code with an external program such as ADIFOR or

ADIC, and the time required to do this preprocessing is not included in the execution time. Once

11
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the Jacobian has been encoded, the time required to calculate the Jacobian matrix at the

beginning of each update interval is:

njq

(2) Diagonalization of Jacobian Matrix

The software library uses block diagonalization to decouple the individual states to

facilitate overall model simplification and model order reduction. According to Bavely and

Stewart (1979), the time required to accomplish this is generally upper-bounded by:

4n /12

In some cases, this grossly overestimates the time required. For example, in the

optimistic case where all the eigenvalues are real and can be deflated, the time required is much

smaller, only:

n3/2

According to Varga (1993), a reasonable "maximal" estimate is:

15n 3

In what follows, we shall conservatively use the lesser of 15n _ and n 4/12. We use the

minimum of these two estimates since for modest n, the Bavely and Stewart estimate is actually

smaller than that of Varga even though the former varies as a higher power of n.

(3) Model Order Reduction

After the Jacobian matrix has been diagonalized, typically just a few operations are

necessary to decide whether each state in the transformed coordinate system should be kept. To

avoid introducing more parameters, we assume that this is about the same as the number of

operations required to integrate each simplified model equation, or:

f

Transformation of the system equations into the coordinate system that block-

diagonalizes the states requires several matrix multiplications, Equations (2-10)-(2-12):

~ 3n _

(4) Integration of Simplified Models

The time required to integrate all the simplified models over the update interval is simply:

pm?l ' f'
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(5) Integration of One Detailed Subsystem Model

The time required to integrate the single detailed subsystem model that is resident on a

given processor is:

Thus the total time required per processor to integrate the system for one update interval is:

t,. = min(5n3,n 4/12) + njq + f' + 3n '2 + pmn'f + pnf

Assuming that all the processors run simultaneously, this is also the total clock time required to

perform the calculation.

To more clearly see the implications of these expressions, we make the following

assumptions:

1. The number of processors m is much larger than 1.

2. The number of floating point operations required to evaluate the rate-of-change of a

state in the detailed model f is much larger than that required to evaluate the same

rate-of-change in the simplified model, f'. This is nearly certainly going to be the

case, since the simplified model states have been diagonalized and are essentially

trivial to evaluate.

3. The amount of work required to calculate all the rates-of-change of a simplified

model is much less than that required by its detailed counterpart:

n'f' << nf

4. Each state of the detailed model depends on only a few of the other states so that the

number of terms in the Jacobian matrix is:

q<<n

5. The number of operations required to evaluate a term in the Jacobian matrix is

smaller than or comparable to the number of operations required to evaluate the

corresponding state:

j<f

Given these assumptions, the ratio of the time required to solve the system in a

distributed fashion on multiple processors compared to the most optimistic situation for solving

on one processor is given by:

min ,15n 2

n'f' 1 (2-18)t,. +__+__

t t pfm nf m

13



@reare
If the above ratio is less than 1, it represents the clock time savings obtained by using the

distributed processing library. What this ratio will be in a given case is difficult to estimate,

since this obviously depends on the number of subsystem models, how complex they are, how

long a simplified model can be used before it is updated, etc. Based on the previous discussion,

the last two terms in Equation (2-1) are likely to be very small, so the relative cost primarily

hinges on the first term, i.e., how long the block-diagonalization process takes. This clearly

depends very strongly on the complexity of the original subsystem models, i.e., n.

Extending the logic introduced earlier for assessing network bandwidth, a reasonable set

of guesses might be:

n =50

n' =10

m=10

p= 1000

f= 50

f'=5

From these values we obtain from Equation (2-18):

t L 1 (2-19)

t m 10

The validity of this numerical estimate is certainly arguable, but several qualitative

conclusions can be drawn from Equation (2-1):

1. The cost of block-diagonalizing the Jacobian matrix of each subsystem model can

easily dominate the effort required to implement the distributed computing technique.
Whether this actually occurs depends primarily on the size of the subsystem models

(i.e., the number of differential equations) and their complexity.

2. The distributed processing method will be most cost-efficient if the number of states

in the individual subsystem models is not too large, the rate of change of each state is

complicated to evaluate, and the simplified models can be used for a relatively long

duration before they are replaced.

3. The cost of distributed computing could be reduced if more efficient means for

diagonalizing the Jacobian can be found. For example, if the Jacobian matrix

changes slowly between model updates, perturbation methods might be employed,

analogous to techniques available in the literature for computing the effect of small

changes in a matrix on its eigenvectors.

The preceding qualitative analysis neglects any time required to transmit the simplified

models over the network. This may be reasonable in many cases, but there is some evidence

from our testing on very low quality (dial-up) lines that the "start-up" costs associated with each

transmission can be substantial. Thus, a quantitative estimate of the time required to perform

distributed computation would require a more thorough analysis.
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2.4.4 Implications of Choice of Model Order Reduction Schemes on Execution Speed

Various schemes for model order reduction have been developed other than the procedure

based on block diagonalization that is currently implemented in the software library. One

appealing scheme, discussed further in Section 4, involves basing model order reduction on a

"balanced implementation" of the model. The balancing step requires the calculation of the so-

called observability and controllability Grammians of the system matrices. Given certain

assumptions, this scheme offers explicit control of the reduced order model's accuracy.

These techniques are generally used off-line, often with relatively simple system models,

rather than for "on the fly" calculation of simplified versions of relatively complicated system

models as we need. Based on the cost-benefit analysis presented above, these other approaches

will not be very appealing if they require much longer computational times than is necessary for

block diagonalization. What might be practicable is to sequentially apply these more advanced

techniques to the relatively small blocks of a block-diagonalized matrix, assuming that these

extra steps require little additional cost. Such a sequential approach has been proposed by Varga

(1993, 1995).

2.5 CONCLUSIONS

The most important reasons to develop distributed simulation techniques are to improve

the efficiency of the software development process, not to gain improvements in execution

speed. Nevertheless, if distributed simulation techniques are to become widely used, they must

be efficient enough that they do not present too large a burden on network bandwidth or

individual processor speed.

Linearization followed by block diagonalization provides a powerful technique for

developing simplified subsystem models. Even without a subsequent MOR step, the

diagonalized models can be transferred relatively efficiently across the network and will present

a relatively small computational burden on the other processors. However, the cost of block

diagonalization is relatively large for complex models having a large number of states. Thus, the
distributed software library will be most efficient during execution when the overall system

consists of a relatively large number of models of moderate complexity whose linearized

versions do not require too frequent updating. Also, for a given level of model complexity,

methods that can extend the time required between block diagonalization (such as perturbation

techniques) could be beneficial.

Sophisticated model order reduction schemes have been presented in the literature,

e.g., those discussed in Section 4 that involve calculating the Grammians of the system matrices.

If they require computer time that is much larger than that required for block diagonalization,

these may not be practicable for this application.

3 REFORMULATING SUBSYSTEM MODELS TO FACILITATE

DIAGONALIZATION AND MODEL ORDER REDUCTION

In the preceding section, a method for decoupling the various states was presented. This

block diagonalization process is relatively time-consuming and can present mathematical
difficulties. In this section, several means are presented for reformulating the model to improve

the efficiency of this process.
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3.1 ELIMINATION OF STATES REPRESENTED BY PURE INTEGRALS FROM THE SYSTEM

MATRIX

Equations that represent pure integrals, rather than ordinary differential equations, often

appear in dynamical models. For example, the position of an object might be calculated by

integrating its velocity. Such a calculation would be included if another subsystem model, such

as a controller, needed the object's position. However, if no other variable (such as a force) in

the same subsystem model depends on position, then the column of the system (Jacobian) matrix

that defines the dependence of the various state rates-of-change on the position will contain only

zeros. In such cases, the row and column of the matrix corresponding to the position variable

could be removed prior to diagonalization.

While we have always recognized that states calculated by pure integrals have zero

eigenvalues, early experience did not suggest that their inclusion would lead to any problems.

However, in the case of some of the recent test models, formally removing such variables prior

to the diagonalization process appeared to improve the robustness and efficiency of the

diagonalization process. Moreover, after removing pure integrals from one model, the

diagonalized matrix in some cases was found to no longer contain sub-blocks larger than 2x2,

potentially leading to more compact simplified models. Finally, reducing the dimension n of the
matrix will have a large effect on the time (-15n 3) required for block diagonalization.

To ensure that all pure integrals are removed, an iterative approach is needed. Iteration is

required since a given state variable might only be needed for calculating another pure integral.
In such cases, both variables can be made pure integrals so long as they are subsequently

calculated in the proper order. It can be shown that the proper order of integration is the same as

the order in which the pure integrals are removed during the iteration process.

In practice, however, a single pass through the pure integral removal process may be the

best choice, i.e., removing only those states that do not appear in any other state's rate of change.

If an iterative process is used, the pure integrals become interdependent, and it does not appear

possible to calculate closed-form solutions for them. This complicates model order reduction.

At present, a single-pass and an iterative scheme for removing pure integrals are both

available in the software library. Further testing is planned to fully understand the costs and

benefits of removing such states.

3.2 ELIMINATION OF ALGEBRAIC VARIABLES FROM A COUPLED SET OF AEs AND DAEs

In the previous year's progress report, an algorithm was described for the transformation

of models consisting of differential and algebraic equations. The main drawback of this

algorithm was that the NxN size of the Jacobian matrix that must be diagonalized for
transformation was equal to the sum of the number of differential equations and the number of

algebraic equations. An alternative algorithm has been developed where the dimension of the
Jacobian matrix that must be diagonalized is equal to the number of differential equations only.

As a result, the computational complexity of the algorithm is greatly reduced for models with a

large number of algebraic variables. This simplification is obtained by formally eliminating the

algebraic equations from the system variables.
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To facilitate the analysis, we write the linearization of a model containing only ODEs,

Equations (2-3) and (2-5), in a slightly different fashion that emphasizes the nature of the various

matrices:

do_x f f +fo (3-1)- Jxdx + J du
dt

& = Jhxdx + Jh._u + z ° (3-2)

In this scheme, terms such as J[ denote the partial derivatives of the state rate-of-change

functions f with respect to the states x. To develop a revised algorithm for systems comprised of

both ODEs and AEs, we assume that a particular subsystem model has been written in the

following form:

dx = f(x, y, u) (3-3)
dt

g(x, y, u) = 0 (3-4)

Again, x are the differential equation-defined state variables, y are the algebraic variables, and u

are the input variables of the subsystem. As before, a set of outputs variables z that serve as

inputs to other subsystem models are defined as nonlinear functions of x, y, and u:

z = h(x,y,u) (3-5)

We again assume that the time interval over which a simplified model will be used is

sufficiently small that linearization of the overall model is valid. Again suppressing the "S"

notation for changes in variables around the linearization point, we have:

dx Jfxx + Jfyy ' o-- = + J.,u + f (3-6)
dt

J]x+J_y+J_u =0 (3-7)

h h J_u + z °z =Jxx+Jyy+ (3-8)

Solving for y in Equation (3-7) yields:

(Jxx + J.u)y=_(jgy)-i g g

Substituting Equation (3-9) into Equations (3-6) and (3-11):

dx Jfxx+Jfy[-(J_)-t _ g , o= (J,x+J.u)]+Juu+f
dt

(3-9)

(3-10)
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z = J_x + J_[-(Jg)-'(J_x + Jgu)] + Jhu + Z° (3-11)

Rearranging yields:

dx (j, , _, ,--= -Jy(Jy) Jg)x+(J_-Jy(Jy) J_)u+f °
dt

(3-12)

z (jh h g h= - Jy(Jy)-'J_,)x + (J. - J_(J_)-lj_)u + z ° (3-13)

Note that except for the alteration of the matrices multiplying x and u, Equations (3-6)

and (3-12) and Equations (3-7) and (3-13) are functionally equivalent. Consequently, to

eliminate the AEs to form a system comprised solely of ODEs, we make the following

substitutions:

Jr,, ::(Jfx f g -' g-Jy(Jy) J,) (3-14)

Jfu := (Jfu - Jfy(Jgy)-'J_ ) (3-15)

jh:=(j_ h g)-L- Jy(Jy J_,) (3-16)

jh:=(jh h g -X g- Jy(Jy) Ju) (3-17)

This is roughly analogous to the "superelemenr' used to eliminate "internal" variables from large

sets of AEs presented in the next section.

After this preprocessing step, the same algorithm used for the solution of subsystem

models consisting only of ODEs can then be used without modification for the solution of DAE

subsystem models. Furthermore, by incorporating the contribution of changes in the algebraic

variable to changes in the outputs before diagonalization, the NxN size of the Jacobian matrix

that must be diagonalized for transformation is equal to number of differential states only. Since

the diagonalization process has N 3 or N 4 complexity, the computational cost is reduced

significantly for models with a large number of algebraic equations compared to the previous
scheme in which the entire system matrix containing both differential- and algebraically-defined

matrix elements was diagonalized.

3.3 ELIMINATION OF INTERNAL ALGEBRAIC VARIABLES IN SETS OF AEs

We have previously discussed model order reduction of ODEs or coupled sets of AEs and

ODEs. While not the main thrust of this project, we have also considered steady-state models

consisting only of large sets of algebraic equations, such as are encountered in large, multi-

disciplinary finite element models. In this case, model order reduction is much simpler and, for

linear models, exact.

Assume that a particular subsystem model consists solely of a set of nonlinear algebraic

equations written in the following form:
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g(y,u) =0 (3-18)

where

[Yb1Y= Yi
(3-19)

In Equation (3-18), y denotes the solution of a set of algebraic equations, given a set of

inputs u supplied to the subsystem model from other subsystems. Equation (3-19) denotes a

partitioning of the set of solution variables y into two subsets: "internal variables" denoted as Yi

and "boundary variables" denoted as Yb. The boundary variables Yb represent output variables of

this subsystem that are of particular interest. Explicitly defining key outputs in this way allows

us to distinguish the important results of a model from internal details that are important only in

that they affect these results. In particular, the set of boundary output variables Yb includes the
interface variables between subsystem models, so that the boundary outputs Yb from one model

are fed into another model as input parameters (i.e., elements of u) to that model.

We now proceed to develop a simplified model framework for the solution of sets of

algebraic equations. The problem may be stated as follows: given a set of values for input

variables u and a set of nonlinear functionsg(y,u), find y* such thatg(y*,u)=0. Numerical

techniques for the solution of sets of nonlinear algebraic equation are typically based on some
variation of Newton's method. This iterative algorithm may be summarized by the following

steps:

1. Given a set of initial guesses for solution variables yiand values for input variables u,

calculate the residual R defined by:

g(y_,u) = R' (3-20)

Note that if R _ = 0, then y" = y_.

2. A first order Taylor series expansion about y' yields the linear approximation:

g(y_ +6y_,u)= R i + JyqSy i (3-21)

where jr_ is the Jacobian matrix whose (m,n) th element is given by:

_ Og,.(y,u) (3-22)JY _
m,n

3y.

3. We wish to find a correction 6y_ such that g(y_ + _iy _,u) = 0. The preceding approximation

can be used to solve for 6y_ yielding:

_yi : _(J yi )-1R _ (3-23)
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4. The estimates for the solution variables are then updated as:

y,+t = yi + 6yi (3-24)

Since g is nonlinear, an iterative approach is necessary, and the algorithm returns to

step 1, with y/+1 ___ y_until some convergence criteria are met (e.g., IRil < e R and II r'll<

For the purpose of Newton's method iterations, we now consider linearization of the AEs

that comprise our model around some values of y and u:

jy6y +jUfu+gO = 0 (3-25)

where

Og,. (y.u) (3-26)

Jmr'" - 0y,

ju __ Og,.(y,u) (3-27)

m,n _U n

g(y , ) (3-28)gO _ o u o

During the iterative numerical solution of a distributed multi-subsystem model, a

subsystem will be represented by its linearized counterpart. Assuming that the model consists of

m algebraic equations andp inputs, the model is represented by an (m x m) matrix JY, an (m x p)

matrix JU, and an (m x 1) vector gO. In addition, calculation of 6y requires an m x 1 vector

yo and calculation of 6urequires a p x 1 vector u ° . Thus, the number of elements that must be

transmitted over the network at each iteration is m(m+ p +2)+ p. In general, we assume

m >>p so this number may be approximated as m 2. Obviously, such a requirement may be

infeasible since the number of solution variables m can grow very large for a complicated model.

A more attractive option utilizes the concept of a "superelement," which exploits the

partitioning of solution variables y into internal variables Yi and boundary variables Yb.

Likewise, the algebraic equations are partitioned by assigning each input and output variable to a

unique equation. As a result, the linearized model may be partitioned as:

1I Jyb J:iqV6Yb +[J:]_iu+ g: =0

I Jry JYJ[_6ytJ [J_J [_g,

(3-29)

Suppressing "8 ", the first "super row" of this superelement matrix yields:
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U 0

JYbYb + JYiYi + Jb u + gb = 0

The second "super row" of the superelement matrix yields:

ILl 0

J_bYb +J[iYi +Jlu+gi =0

(3-30)

(3-31)

Solving the second super row for 6Yi gives:

Y, =-(J_.)-_[J_bYb +J_'u+g °]
(3-32)

Substituting this expression for Yi into the first super row and rearranging gives:

-Jb, J_, J,b)Yb+(Jg -Jyb_Jy-'`lu)u+(g_'-'bi'_ _,i(J_,b y y-' y lY lY-to °) = 0ii vi
(3-33)

or

JYYb +JU6U+l_° :0 (3-34)

where

_ I y |y-lly
J Y : JYb Obi oil Oib

(3-35)

u _ I y I y-flu
ju = Jb 'tlbi°fi °i

(3-36)

o |y |y-l_o_o = gb --.-blo, gi (3-37)

Thus, assuming the number of boundary variables is b, the equivalent superelement

model consists ofabxbmatrix JY,abxpmatrix jU, andabx 1 vector _o. In addition,

calculation of ybrequires a b x 1 vector Yb and calculation of urequires a p x 1 vector u ° .

Thus, the number of elements that must be transmitted over the network at each iteration is

b(b + p + 2) + p. In general, we assume m - p so the total number of elements required is on the

order of bz. Since b << m, the relative size of the transmitted model can be reduced by several

orders of magnitude for large models. The computational burden placed on the remote

processors when solving the simplified model is also drastically reduced.
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3.4 CONCLUSIONS

When applying diagonalization and model order reduction techniques, real subsystem

models present various complications. For example, such models can contain:

• States that are represented by pure integrals over time, rather than ordinary

differential equations.

• Coupled sets of algebraic and differential equations.

To prevent these complications from unnecessarily reducing the efficiency and numerical

robustness of diagonalization and model order reduction, preprocessing steps have been

developed to simplify the model prior to diagonalization.

While not the main thrust of this project, we have also considered subsystem models

containing only algebraic equations. For such models, we adapted the "superelement" method

used in finite element analysis that eliminates all internal variables that cannot be directly

observed by external subsystems. This provides a very effective and comparatively simple

method for developing simplified versions of a subsystem model.

4 MODEL ORDER REDUCTION OF BLOCK DIAGONALIZED SETS OF

ORDINARY DIFFERENTIAL EQUATIONS

4.1 INTRODUCTION

To recap the preceding discussion, after linearization of a subsystem model's equations,

we can formally eliminate any algebraically-defined variables y using the methods presented

above. After these steps have been taken, the subsystem model can be written between

discontinuities (if present):

x = Ax + Bu + F o (4-1)

Z =Cx + Du +W o (4-2)

where A is the NxN system or Jacobian matrix. We now turn to model order reduction methods

for reducing the size of these matrices.

4.2 INAPPLICABILITY OF TEXTBOOK MOR STRATEGIES

Model order reduction has been studied very extensively, and disparate techniques for

accomplishing this are available in the literature. Textbooks often demonstrate the development
of a coordinate transformation that eliminates states that do not contribute even slightly to the

output variables (Hendricks et al., 2000; Brogan, 1991). This form of the system is called the

"Kalman Observable Canonical Form."

To reduce the system to the Kalman Observable Canonical Form, one seeks a coordinate

transformation X that transforms the variables x and the matrix C shown in Equations (4-1) and

(4-2) as follows:
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^

x = Xx (4-3)

(4-4)

If the dimension of C o is p < n, where n is the dimension of the original system, then we don't

need the transformed states xp+t ..... x, for calculating the outputs. If X can also be chosen in

such a way that:

A EA= XAX_I = A o 0

A zl AnD

(4-5)

then these states are also not needed for calculating the observable states xt,...Xp. In this case

we can dispense with them altogether, leading to a system with p states that can calculate all the

outputs.

Methods for finding the transformation matrix X are provided in textbooks. This scheme

initially appears highly advantageous since it does not appear to require that any assumptions be
made on the future values of the inputs u. However, the examples given in textbooks are

somewhat contrived, and numerical experiments indicate that when applied to the real models

encountered in practice, we will rarely be able to eliminate states using such methods. That is,

each state of the model will usually contribute at least somewhat to the outputs. In this regard,

Moore (1981) has noted that "arbitrarily small perturbations in an uncontrollable [or

unobservable] model may make the subspace technically proper [e.g., there no longer are strictly

unobservable states]... There may well exist, however, a lower order model which has

effectively [emphasis added] the same impulse response matrix. [Thus] there is a gap between

minimal realization theory and the problem of finding a lower order approximation, which we

shall refer to as the 'model reduction problem'."

We must therefore turn to other techniques to try to effectively address the model

reduction problem.

4.3 "RATE-BASED" VERSUS "IMPORTANCE-BASED" MOR STRATEGIES

There are two basic techniques for eliminating diagonalized states from a state-space

model such as Equation (4-1). First, we can usually eliminate some states because they

effectively act as algebraic rather than differential equations over the time frame of interest. This

could be the case because they have large, negative eigenvalues and thus adjust so quickly to any

change in inputs that we can regard the adjustment transient as effectively instantaneous. We

can eliminate other ODEs because their eigenvalues are very small and they thus act as pure

integrals. Eliminating all such states may result in very substantial reductions in model

complexity.

To simplify the model still further, we must look at how significantly the remaining

ODE-defined states contribute to the behavior of the subsystem, as manifested in their affect on
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the outputs z. If a given state does not affect any of the outputs at all, then it can be eliminated.

However, we will rarely find very many transformed states that have no effect at all on the

outputs, and less straightforward techniques must therefore be employed.

In order to judge how important a given state is, we look at how important it is, i.e., how

much the state affects the various outputs. Just for this purpose, we could assume that the

various inputs u to the model are relatively constant over this model update interval. While this

assumption is hard to rigorously justify, it has so far proven quite effective for distinguishing

unimportant states and has the inestimable advantage of allowing us to explicitly calculate the

value of each state at the end of the update interval. This then enables us to eliminate those

states that do not contribute significantly (relative to other states) to the model outputs. In this

scheme, the values of the inputs have generally been set to their average value over the preceding

update interval. We have termed this a "state-centric" approach to MOR.

In view of the potentially risky assumption of constant input values over the update

interval, an alternative "output-centric" approach has also been formulated. In its extreme form,

this scheme essentially eliminates the whole notion of states represented by differential

equations. Instead, each output of a subsystem model is viewed as an explicit time-integral over

the various inputs to the model. These integrals are obtained by substituting exact solutions to

the underlying linearized and diagonalized model in the expressions used to calculate the

outputs. As documented in previous reports, the k th output can be written:

3 , o Ohk
3hk a,.'r -a,_OZ, u,.(.c)d.c+Ie-._,_ f d.r)+_um +z°_ (4-6)

zk(t): _ _ _xie'tJo_ dum o i Oum
inputs, m states, i

In this case, we assumed for simplicity that the system matrix could be strictly diagonalized by a

coordinate transformation.

This formulation has one key advantage: model order reduction does not require that any

assumption be made about the future behavior of the inputs u. Instead, one considers a particular

input, say u,,, in Equation (4-6) and simply eliminates those terms in the sum over states which

are relatively unimportant compared to other terms (arising from other states) involving the same

input.

Unfortunately, since the terms from a given state are generally represented in many of the

output integrals, straightforward implementations of this scheme result in the transmission of

highly redundant information. Thus, a quite possibly fatal disadvantage of this formulation is

that it potentially requires the transmission of either relatively large arrays of redundant

coefficients (e.g., 2's and -_u's ) or a "database" of coefficients along with indices that define

which terms are used in each output integral.

If the assumption of constant inputs in the state-centric approach proves too crude, it may
be most useful to combine the two techniques by continuing to integrate states as in the state-

centric approach, but using the output-centric approach to decide whether a state should be
included or not. In other words, one includes a state in the reduced order model if _ of the
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output calculations needs it to properly represent the effect of a given input u on that output.

This process makes no particular assumptions about the values of the inputs that will be

encountered over the next update interval.

If any of the importance-based techniques are used for accomplishing MOR, we must be

able to solve the subsystem's equations. This is necessary so that the effect of each input on the

various outputs can be estimated. Such solutions are helpful in any case for obtaining qualitative

insights into the states' behaviors. We address this in the next subsection.

4.4 CALCULATING THE VALUES OF THE STATES AT THE END OF THE UPDATE INTERVAL TO

SUPPORT MOR

Obtaining solutions to the state equations is very simple when the Jacobian matrix, A in

Equation (4-1), can be strictly diagonalized. In this case the individual state equations are

completely decoupled from each other and can be solved individually. Unfortunately, as

discussed previously, fully diagonalizing the Jacobian matrix, so that only single numbers appear

on the diagonal of the transformed matrix, is not always possible. Even in cases where strict

diagonalization is possible, this procedure may not be desirable for numerical reasons.

For this reason, we have adopted a block diagonalization scheme in which the diagonal of

the Jacobian matrix can contain not only discrete eigenvalues (for states where strict

diagonalization is possible), but also blocks of dimension 2x2 or greater. This necessitates that
the various MOR schemes be generalized to handle these possibilities. The values of the states

at the end of the update interval are calculated as follows for each of these types of diagonal

entries.

4.4.1 Single Real Value

When the diagonal element is only a single real value, the corresponding state equation

takes the very simple form:

x, : Zx, + 34 uk(t) + f o
Ouk

(4-7)

x, (0) : 0

As before, u(t) is used to represent the various external inputs to the state equation, which

are for the most part the outputs of the other subsystem models, and we have suppressed the "^"

notation that indicates that a transformed coordinate system is used and the "_" notation that

denotes that the state variables have been iinearized about a particular state vector. The solution

of this equation at the end of the update interval can be readily shown to be:

xi(t)=e_fe-Z( u_(s)+ fi°)ds (4-8)
o °uk

For model order reduction based on importance, we currently assume in the software

library that the values of the inputs are constant, e.g., the average values calculated during the
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previous update interval. As noted above, this assumption is not strictly necessary, and other,

more general methods can also be considered. In any event, this assumption is only made to

rank the importance of the various states; the actual reduced order system solution does, of

course, take into account the actual time-dependence of the inputs.

Given this assumption, after a change in variables the solution reduces simply to:

(4-9)

The special case with 2 = 0 is encountered fairly frequently. For example, in dynamics

models where output quantities such as position are obtained by integrating the velocities, if

none of the other equations depend on the velocity, the corresponding eigenvalue will be zero.

For this case, the value of the state is obtained from an explicit integral over time (or by merely

multiplying by the time interval if the inputs are constant):

x,(t) = _( u k (s) + f_°)ds (4-10)
o Ol_k

4.4.2 A Pair of Complex Conjugate Eigenvalues

As discussed above, an additional advantage of the block diagonalization procedure is

that it involves only real arithmetic. For cases where the system matrix would ordinarily return a

pair of complex conjugate eigenvalues, the algorithm returns a 2x2 block in that location. To be

specific, let the two "real" eigenvalues be given by:

,_, = ct +_fli (4-11)

where a and fl are, respectively, the real and imaginary parts of the pair of eigenvalues. One

can show that an additional transformation applied to the 2x2 block produced by the Bavely and

Stewart block diagonalization algorithm will reduce that block to the canonical form:

(4-12)

For a constant value for the associated input vector u, the solution of these two states can

be written:

x(t) = ( U-o+ fo )_erSds (4-13)
o

where the term in the integral is now a matrix exponential rather than the conventional

exponential that appeared in the very similar-looking Equation (4-9). The quantities x(t) and f
are two-dimensional vectors. The matrix exponential is defined in terms of a power series

expansion:
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T 2 T 3

___ + __ + ... (4-14)
exp(T) = 1 + T -_ 2! 3!

Evaluating the matrix exponential is, in general, both time-consuming and numerically

problematical (Moler and Van Loan, 1979). However, for the special form of the matrix T

shown in Equation (4-12), calculating the matrix exponential is quite simple (Hogan, 1994). Let

us decompose T as follows:

T : A s + A, (4-15)

where the symmetric part is given by:

(4-16)

and the asymmetric part is:

(4-17)

The symmetric part is proportional to the identity matrix, so these two matrices commute. In

such a case, it can be shown that the usual scalar property holds true:

exp(T) = exp(As)exp(A.) (4-18)

By employing the series expansion Equation (4-14), one can readily show that:

leaP0'°' 0/exp(A, ) = exp(a)
(4-19)

and

=(cos(r) sin(r)']

exp(A.) _,-sin(fl) cos(r))

(4-20)

Equations (4-19) and (4-20) are substituted into Equation (4-13) and their product is integrated

term-by-term. The result is a 2x2 matrix:

(acos(flt) + flsin(flt) a' asin(flt) - flcos(flt) -I fl

e,nl - az +--------_U----- az + fl2 az + fl 2 O_2+ fl z
aCOS(flt) + fl sin(fit) a

_.|- asin(flt) +_-/7_flc°s(flt) az+flfl2 az +f12 a2 + r2

(4-21)
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To obtain the values of the two states at the end of the update interval, this 2x2 matrix is

substituted into Equation (4-13):

(xl(t) x2(t))=e_( 3ft Uk__uk + o __ I
fl  f2uk+f; *

Ouk

acos(flt) + flsin(flt) o_ asin(flt) - flcos(flt) _- tiff2
_ _sin_ • _ COS_

otcos(flt) + fl sin(fit) 0(

0(2 _t_ _2 0(2 ..]_ + q-

(4-22)

This result could also have been obtained by initially retaining the complex form for each of the

eigenvalues, performing the integration, and then converting the result to the equivalent 2x2 real

form.

4.4.3 Upper Triangular Block Matrix of Order NxN

The last type of matrix that can be returned on the diagonal by the block diagonalization

algorithm is an NxN upper triangular matrix. This always occurs when the subsystem model

possesses N degenerate (equal valued) eigenvalues for which independent eigenvectors cannot be

defined (defective states). Such blocks also appear in practice when the eigenvalues, although

slightly different, are not sufficiently different that they can be treated separately without

introducing a numerically ill-conditioned similarity transformation.

Computing the values of the states at the end of the update interval is done in a very

similar fashion to that just discussed. The values of the coupled states at the end of the update

interval are again given by Equation (4-13). The matrix exponential is also calculated using a

similar procedure (Tomasi, 2000): as in the case of the 2x2 complex conjugate eigenvalues, the

sub-block matrix is decomposed as follows.

T = A s + U (4-23)

Here A s is similar to what was obtained in the 2x2 case, namely a NxN diagonal matrix with

(we assume) essentially equal matrix elements 2 (the degenerate eigenvalue) along the diagonal.

U is a strictly upper-triangular matrix (no entry on the diagonal or below) that results from the

Schur decomposition used in the Bavely-Stewart block diagonalization process. The matrices

A s and U obviously commute, so the only new task is to evaluate exp(U). A strictly upper

triangular NxN matrix U can readily be shown to be nilpotent of order N, that is:

U" : 0 (4-24)

Thus, the power series expansion (4-14) only contains terms up to order n-1"

,-1 U j
exp(U) = 1 + 7

(4-25)
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Substituting into Equation (4-13) and integrating term-by-term yields:

x(t) -

of

 o+Uo u( I Je,UU Jt j _ (- 1)"

A k,j:0\ _z::0(j - m)!(2t) m
UJ(-1)J ))(2)j

(4-26)

or, equivalently:

x(t) -
_f gn-1 .

Io+.o ul 
2 \j=0

/ j //J e;_tJ Z (-1)m (--1)J-
m:O(J -- m)!(2t) m (2)'

(4-27)

Note that this reduces to the usual result for the lxl (completely diagonalized) case, for which

the only term is j=m=0.

For the special case where 2, = 0, which is encountered fairly often, we obtain:

3f ]_ UJt _+1
x(t)=(So + Uo_u )_:o-_-_)!

(4-28)

4.4.4 Variables Defined by Pure Integrals Over Time

"States" that can be expressed as explicit, "pure" integrals over time can be removed

from the set of ODE-defined states x since no other state equation depends on them. If we

perform a "one-pass" removal of such variables (see Section 3), their rates-of-change can be

written:

y = Ha + Kx + Yo (4-29)

As discussed in Section 3, if a "one-pass" removal is performed, the y do not depend on

each other, and we have assumed that here.

As in the case of the other types of states, the values of the y at the end of the update

interval are needed to support Model Order Reduction. These values can be calculated by simply

integrating each of the terms on the right-hand side of Equation (4-29) over time. This can be

done quite simply given the explicit or series formulas developed for each of the types of the

states x, Equations (4-9), (4-22), and (4-27). This would not be possible if an iterative, multiple-

pass algorithm was used to eliminate more of the pure integrals.

4.5 MODEL ORDER REDUCTION

4.5.1 Implications of the Form of the Subsystem Models on the Optimal MOR Strategy

Our ultimate aim is to find the simplest possible model that will adequately represent the

detailed behavior of the subsystem over a limited time period called the update interval. The

structure of the subsystem models affects the most effective strategy for model order reduction.
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The software library is intended to integrate in a distributed fashion subsystems that are

internally complicated but that connect to neighboring subsystems via a relatively few number of

"boundary variables." If the number of boundary variables is too high, such a partitioning is

unlikely to be effective. Based on this consideration and the discussion provided in Section 2,

the following assumptions are considered reasonable:

1. The number of inputs u in any subsystem is small compared to the total number of

internal states n.

2. The number of outputs o, which are also inputs to the other subsystem models, is also

small compared to the number of internal states.

3. The compiler and computer hardware are such that they can take dot products and

multiply by zero very quickly.

4. The number of subsystems in the overall system is large as is the number of available

processors.

Some implications of these assumptions are:

1. The "output-centric" approach mentioned earlier requires either enormous

redundancy in the subsystem model (since each output generally will involve the

same state-related information needed by one or more of the other outputs), or the

transmission of a large number of pointers to a "central database" of state-related

data. Given assumptions (2) and (3) above, if we need to retain a state at all (because
it is needed in at least one output), it would be just as efficient to integrate it by itself

("state-centric approach") and include the state in every output.

2. If a state is kept, assumption (1) suggests that there is little motivation to attempt to

eliminate its dependence on any of the inputs (i.e.,taking advantage of

"uncontrollability"). Doing so would save little time and could compound the

problem of accurately dealing with unexpected large changes in inputs.

3. Based on assumption (4), we should not necessarily reject model order reduction

techniques just because they require a relatively large computational effort. If a
substantial effort is required to generate a simplified subsystem model, this could be

repaid if the model is used on a large number of other processors. Thus, spending
extra time to reduce the complexity of a subsystem model could be worthwhile.

States can be eliminated from the model, either because they don't act as differential

equations or because they are not "important." We first consider the former.

4.5.2 Rate-Based Schemes for Eliminating States Based On Their Individual Time-

Dependence

a. lxl states

When the eigenvalue of a state that has been completely diagonalized (i.e., is represented

by a lxl block) is very small, its rate of change no longer depends on itself to a significant

degree, and the state can be integrated directly as shown in Equation (4-10). Thus, for a given

output given by h(x,u), we can form pure integrals over time of the form:
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_._ i ___' OhOx OuOfu(s)ds (4-30)
inputsu 0 stateswith_---_O

Grouping the terms in this way can be advantageous because the summation over the states

collapses all such states involving a given output into a single term for each of the inputs u:

t

I E aiu_(s)ds (4-31)
0 inputs i

Because of assumption (2), there probably will be many more such defective states than

there are outputs z. For this reason, it appears to be advantageous to combine all such states

affecting a given output, rather than including them in the set of "pure integral states" that were

eliminated prior to diagonalization, although this is another possibility. Thus, after performing

this initial MOR step, the number of states has been reduced and the values of the outputs are

given by:

Oh Oh iz =--x + +Zo + au(s)ds (4-32)
Ox gu

o

To review, the terms on the right-hand side of the Equation (4-32) represent, respectively:

1. The dependence of the output on the retained (ODE) states x.

2. The "direct dependence" of the output on the inputs u.

3. A constant, around which the output function was linearized.

4. The dependence of the output on the time integral of inputs that arose from states

with very small eigenvalues that were eliminated in accordance with Equation (4-31).

Now consider the case where an eigenvalue is very large and negative. In this case, the

associated state will very quickly respond to a change in its inputs by settling down to a quasi-

equilibrium value given by taking the limit At --_ --oo in Equation (4-9):

)x,(t)=___ ___u Uk(t)+ f o (4-33)

(no sum on i)

In these cases, the modeler typically does not care about the precise dynamical path the system

follows toward equilibrium (if he or she did care about fast dynamics, this would be "known" to

the software library by the small value specified for the time step). Therefore, we can simply

substitute the equilibrium value of the state rather than solving its ODE. This allows us to

eliminate the state by combining its terms with the terms shown in Equation (4-32) that define

the direct dependence of the output on the inputs. So:
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Oz 3z 3z 1 Ofi (4-34)

3u 3u Ox i 2_ 3u

The constant term associated with a given output z also is combined with the Zo terms in

Equation (4-32) in the same way:

3z fi ° (4-35)
Zo := zo Ox 2

A side benefit of this procedure is that it may also justify simple integration techniques for the

states that are retained as ODEs: the very "stiff" states that could otherwise require special

treatment will have been eliminated. More sophisticated integration schemes might still be

desirable for accuracy (so long as the accuracy achieved is not rendered moot by the

approximations involved in generating the simplified models), but stability will be guaranteed,

even when using simple Euler integration.

b. 2x2 eigenvalues

Consider the case where the on-diagonal element of a 2x2 block, which denotes the real

part of the conjugate eigenvalues, has a large, negative value. We know from the complex

counterpart of the 2x2 real form that transients caused by input parameter changes will very

quickly damp out, just as in the lxl case. The quasi-steady-state solution is the 2x2 counterpart

of Equation (4-33):

I;_21=-A-1H_ (t)+(f_°t_f_)
(4-36)

The inverse of the 2x2 eigenvalue matrix A is easily evaluated, yielding:

.F(al, o

(;'2/= 0_2+l-fl2 (fl-: t/__(t) + (f'f_/1

(4-37)

The states represented by Equation (4-37) can be eliminated from Equation (4-32) by combining

their effect on the outputs with the direct dependence and constant terms as was done in the lxl

case.

c. NxN block associated with defective states

An NxN block will generally have nearly the same eigenvalues down the diagonal, since

this is the reason that the Bavely-Stewart algorithm will form a block in the first place. If this

value is very large and negative, the entire group of states can be represented adequately as

32



 reare
algebraic equations, which can be formally eliminated in a manner similar to that used for other

algebraic equations. First, the quasi-steady-state solution of the states represented by the block is

given by setting the rates to zero:

x = -(A + U)-' (fo + _ f u) (4-38)-g.

where (A + U) -1 is the inverse of the NxN block shown in Equation (4-23). Then the direct

dependence terms in Equation (4-32) that prescribe how the outputs depend on parameters are

altered as follows:

(A 0f (4-39)

Due to the special form of A + U, its inverse is upper triangular and can be efficiently evaluated

by back-substitution. The constant term in Equation (4-38) is incorporated as:

0z (A + U)-lfo (4-40)
Z° :: Z° -- -_X

If we compare Equations (4-39) and (4-40) with (4-34) and (4-35), we see that as in the 2x2 case,

the matrix inverse of the NxN block has the same role as the reciprocal of a single eigenvalue.

In principle, cases where the eigenvalues are zero can also be eliminated by combining all the
various blocks in which this is the case into one explicit integral using Equation (4-28). This

would be useful only if numerous NxN blocks with zero eigenvalues were present; to date, this

has not been encountered.

4.5.3 MOR Strategy for Selecting States That Should Be Kept Based on Their Relative

Importance

The previous discussion has detailed how states may be eliminated based on their

associated time-dependent behavior. After this has been done, further simplification of the

subsystem model may be desirable. Taking further measures to eliminate states is somewhat

more difficult, because we now must find a way to eliminate states defined by true ODEs that do

contribute to the various outputs, but in some sense do not contribute significantly. This is more

difficult for several reasons, not least of which is the fact that we must define "significant" in a

meaningful fashion.

Possibilities that could be investigated are:

. Purely diagonal states: We could check terms that define the contribution of a given

parameter to an output one by one. We would retain any state when its contribution

is at least a user-specified percent of the total contribution (i.e., we would set a flag

indicating that the state will be retained in the subsystem model because at least one

output needs it). The closed form solution Equation (4-9) would be used to compare

the contributions of the various states.
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2x2 and NxN: Use the closed form solutions, e.g., Equations (4-22) and (4-27), to

integrate to the end of the update interval, assuming a constant value for the inputs to
that state. The latter could, for example, be based on the average over the last update

interval. As noted previously, this scheme may not be accurate if the input values

assumed vary radically from those previously encountered. All states contained in a

block would be retained if any of the states in its block are needed.

The benefits to be gained by considering the relative importance of the various states no

doubt depends on the nature of the model, the need for accuracy, and how loose a criterion is

used to define "importance." The software library should probably provide the user an option to

use these techniques or not, since they may lead to a less accurate result if the inputs vary

strongly from one update interval to another. Loss of accuracy may trigger the simulation

manager to issue a model update; if this occurs too frequently, execution time could actually be

increased.

Implementation and testing of the "state-centric" elimination, using the average input

values for the inputs over the preceding update interval has proven surprisingly accurate and

effective. Implementation of the other techniques, including treatment of 2x2 and NxN blocks,

will occur early in the next fiscal year.

4.6 ADVANCED MOR TECHNIQUES

As has been discussed at length, the biggest problem with eliminating states based on

their relative contribution to the outputs is that we don't reliably know what their inputs will be

over the coming update interval. Any techniques that could be brought to bear on this difficult

problem would be very worthwhile.

Over the past two decades, a very large body of work has appeared in the control systems
literature on so-called "balancing transformation" methods for model order reduction (Dullerud

and Paganini, 2000). Such methods are unique in that they not only provide reduced order

models, but, if certain assumptions are met, they also provide rigorous error-bounds on the

output of the approximate models. The theory behind such methods is relatively complicated,

but the underlying principle is that a coordinate transformation can be defined so that the

"observability" and "controllability" is distributed in a desired manner among the transformed
states. One then chooses the states which are both most affected by the inputs and have the

largest influence on the outputs and ignores the rest of the states.

This method, while very appealing on theoretical grounds, may not be applicable in our

application. For one thing, the method assumes that the system is stable and is observed for an

infinite time. If these conditions are satisfied, relatively uncontrollable states (i.e., those that

depend weakly on the inputs), while they certainly can affect the outputs early, will eventually

die away. This is not the case in our application, since even completely uncontrollable states will

contribute terms to the outputs that drop exponentially over the update interval in accordance

with their associated eigenvalue.

Nevertheless, generalizations of this approach to finite time situations may prove

possible, and we will investigate these further in the coming fiscal year. Diagonalization, as
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implemented in the software library, is a very useful starting point for applying such methods

since:

• Diagonalization allows the unstable parts of the model, characterized by positive real

eigenvalues, to be partitioned from the stable parts. MOR using balancing methods

could then be performed on the latter.

• The calculation of the Grammians, which involves calculating the matrix exponential

of the Jacobian, is much more easily performed on the diagonalized system than on

the full matrix, as was outlined above.

4.7 CONCLUSIONS

To support model order reduction of block-diagonalized system models, we have

developed closed-form solutions for the state variables in terms of the inputs. These solutions
were obtained for the three types of system equations defined by the block diagonalization

algorithm: lxl blocks (strictly diagonalized states), 2x2 blocks resulting from pairs of states with

complex conjugate eigenvalues, and NxN blocks representing groups of states with degenerate or

nearly-degenerate eigenvalues.

MOR based on the individual time-dependence of each set of states, as determined by the

real part of the associated eigenvalue, is relatively straightforward and does not require that

assumptions be made about the behavior of the inputs over the upcoming time interval. MOR
based on the relative importance of the various states on the outputs can also be done if

reasonable assumptions can be made about the inputs. More advanced MOR techniques, based

on balancing transformations, hold promise but require generalization if they are to be used in

this application.

5 ARCHITECTURE OF SOFTWARE LIBRARY

This section describes the object-oriented structure and functionality of the classes that

comprise the distributed simulation library, as well as the CORBA-based network

communication protocol implemented for carrying out remotely distributed simulations.

5.1 OVERVIEW OF CLASS STRUCTURE AND FUNCTIONALITY

The software library being developed in this project is designed to support the object-

oriented modeling and distributed simulation of aerospace systems. An object-oriented class

structure is used that allows these complex systems to be partitioned into relatively independent

objects. Partitioning the system in this manner supports the re-use of model objects developed

on previous projects and attacks overall model complexity by allowing the subsystem models to

be developed and validated independently.

We have designed and implemented a class structure for developing models using this

object-oriented approach in the C++ programming language. The modeling classes are classified

into two categories. The first type, which include the classes DetailedModel and

Simple_Model, focus primarily on localized (i.e., non-distributed) model development and

simulation of a single subsystem. These localized model classes are designed to support a

bottom-up modeling approach where a relatively small number of engineers initially develop and
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validate a model of a particular subsystem of an aerospace vehicle. By encapsulating these

subsystem models as components in a common framework, these classes facilitate subsequent

large-scale simulation of the entire aerospace vehicle. The second type of modeling classes,
which include the classes Simulation_Process and Simulation_Manager, implement the

necessary logic and communication protocols for combining these localized subsystem models

into a geographically distributed simulation of a complex process.

In summary, the Detailed_Model class encapsulates the user-defined mathematical model

of a single subsystem (e.g., a fuel pump) described by a set of ordinary differential and algebraic

equations. Periodically during a simulation, the Detailed_Model class generates simplified

versions of itself (through numerical linearization, diagonalization and order reduction of its

equations), resulting in an instance of a Simple_Model. This Simple_Model serves as a valid

surrogate for predicting the behavior of the rigorous Detailed_Model over short periods of
simulation time. During a simulation, each of the N subsystem models is encapsulated as a

Detailed_Model and coupled with Simple_Model versions of the other N-1 subsystems in a

Simulation_Process. As a result, each Simulation_Process represents a complete model of all

subsystems in the overall process. In addition, the Simulation_Process also maintains a local

Simple_Model of its Detailed_Model for determining when a new updated version of its

Simple_Model is required. The overall simulation is coordinated by a single instance of a

Simulation_Manager, which communicates the updated Simple_Models among the various

Simulation_Processes as necessary.

The interaction of these four classes during a distributed simulation is depicted

schematically Figure 5-1 for a process with three subsystems (labeled A, B, and C). Subsystem

A is encapsulated as Detailed_Model A in Simulation_Process A along with Simple_Model

versions of subsystems B and C. Simulation_Process A then integrates Detailed_Model A with

Simple_Models B and C simultaneously. At each intermediate time step during the simulation,

Simulation_Process A compares the outputs calculated by Detailed_Model A with the outputs

calculated by the current local Simple_Model A. If the error exceeds some prespecified criteria,

the Simulation_Process notifies the Simulation_Manager that Simple_Model A must be updated

in all Simulation_Processes. In a likewise manner, Detailed_Model B is integrated with

Simple_Models of A and C, and Detailed_Model C is integrated with Simple_Models of A and B

in their respective Simulation_Processes. The Simulation_Manager coordinates the overall

simulation by using a CORBA-based protocol to issue command invocations and communicate

Simple_Models among the various Simulation_Processes.

Typically, each Simulation_Process and the Simulation_Manager will run on its own

computer (or processor) which may reside anywhere on the local intranet or on the Intemet.

However, it is entirely possible that some or even all of the Simulation_Processes and the

Simulation_Manager run on the same computer.
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Detailed_Model Detailed_Model Detailed_Model
A B C

Simple_Models Simple_Models Simple_Models
B A A
C C B

Local Simple_Model Local Simple_Model Local Simple_Model
A B C

IDL Transmit/Receive
Protocol

IDL Transmit/Receive
Protocol

IDL Transmit/Receive
Protocol

Simulation_Manager

Object Request Broker (CORBA)

Figure 5-1. Distributed Interaction of Object-Oriented Modeling Classes During a Simulation.

5.2 PRIMARY ACTIONS EXECUTED DURING DISTRIBUTED SIMULATION

Before describing the classes in the distributed simulation software library in greater

detail, the primary actions executed during a distributed simulation will first be described. These

actions may be structured into four sequential stages: (1)distributed object initialization,

(2) model initialization, (3) model simulation, and (4) simulation termination. As each of these

stages are described below, it may be helpful to refer to Figure 5-1.

Stage-l: Distributed Object Initialization

1. Before the simulation is run, a CORBA-based Naming Service daemon is started on a

networked computer with a commonly known IP addrcss. The Naming Service

daemon is a standard program provided with CORBA ORB software libraries. It

provides a central location for storing the addrcssablc object reference of each
Simulation_Process and the Simulation_Manager in the simulation, which allows the

various objects to locate one another across the network.

2. An instance of a Simulation_Process is created on each computer hosting a

simulation of a single subsystem. The Simulation_Process creates an instance of a

Detailed Model that represents the user-defined model of this subsystem. The

Simulation_Process then locates the Naming Service on the prespecified IP address

and registers its textual name and addressable object reference with thc Naming
Service so that the Simulation_Manager can locate it.
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3. An instance of the Simulation_Manager is then created on a single computer. It also

locates the Naming Service on the prespecified IP address and registers its textual

name and addressable object reference. The Simulation_Manager then uses the

Naming Service to resolve the addressable object reference of each

Simulation_Process. The Simulation_Manager then initiates contact with each

Simulation_Process. When contacted, each Simulation_Process uses the Naming

Service to resolve the addressable object reference of the Simulation_Manager. Two-

way communication is thus made possible between each Simulation_Process and the

Simulation_Manager.

Stage-2: Model Initialization

4. Once all Simulation Processes have been located, the Simulation_Manager requests

that all Simulation_Processes initialize the state variables of their Detailed_Models to

their initial conditions.

5. After initialization, each Simulation_Process then requests that its Detailed_Model

generate the data required to instantiate a Simple_Model. An overview of this process

is illustrated in Figure 5-2. The Simulation_Process then transmits this data to the

Simulation_Manager.

6. Once the Simulation_Manager receives a complete set of Simple_Model data

structures, it transmits this set among all Simulation_Processes.

7. When a Simulation_Process receives the set of Simple_Model data structures, it

creates a Simple_Model version of each remote subsystem, as well as a

Simple_Model of its local subsystem.
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Lineadze model by computing

partial derivatives using
numerical differentiation

I Compute eigenvalues, eigenvectors, 1
and transformation matrices

for block diagonalization

I Transform states andblock diagonalize Jacobian

Perform MOR algorithm to reduce
number of transformed states

Pack initial values of inputs and outputs,
block diagonalized Jacobian,

and transformed state data arrays
into simple model byte array

I F_eturns,mp,emode,byte array I

Figure 5-2. Detailed_Model:: generate_simple_model(...) function.

Stage-3:

8.

.

10.

Model Integration

The Simulation Manager then requests that each Simulation_Process begin

simultaneous numerical integration of its Detailed_Model with its Simple_Models up

to the next reporting interval. Note that each Simulation_Process is allowed to

proceed at its own integration rate during the simulation.

After every intermediate integration time step, each Simulation_Process verifies the

validity of its current local Simple_Model by comparing the outputs calculated by the

Simple_Model with the outputs calculated by its Detailed_Model. If a specified error
criterion is exceeded, the Simulation_Process halts integration and reports the time

point at which its local Simple_Model was determined to be invalid. This process is

illustrated in Figure 5-3.

If one or more Simulation_Processes do not reach the end of the reporting interval,

the Simulation_Manager requests that all Simulation_Processes reset their state

variables to the values at the beginning of the reporting interval, and only simulate as

far as the first time point at which a Simple_Model became invalid. At that time

point, new Simple_Models are generated and distributed among the

Simulation_Process. The updated Simple_Models are used for the remainder of the

reporting interval (or at least until another becomes invalid). This process is

illustrated in Figure 5-4.
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11. When all Simulation_Processes reach the end of the reporting interval successfully,

the calculated results are reported to a data file, and the algorithm returns to step 8

until the final simulation time is reached.

_[ Determine end of current time step I
I J

Simultaneously integrate

Detailed_Model with Simple_Models
to end of current time step

Integrate Simple_Model of
local Detailed_Model

to end of current time step

Have Detailed_Model and local

Simple_Model calculate
outputs at end of time step

If error between outputs of Detailed_Model
and outputs of local Simple_Model exceeds
tolerance, return last good integration time

(i.e., time at beginning of current time step)

Increment simulation time to end

of current time step. Exit when
end of reporting interval reached.

l
Figure 5-3. Simulation_Process:: integrate(...) function.
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._ Have each Simulation_Process
generate updated Simple_Model

oflocalDetailed_Model

Have each Simulation_Process I
save state of its Detailed_Model and

Simple_Models at the initial time

Have each Simulation_Process simulate to

end of reporting interval, unless predicted

outputs of its local Simple_Model

exceeds specified error tolerance

If all Simulation_Processes reach end

of reporting interval, proceed to report

I Otherwise, have each
Simulation_Process restore its
state to that at the initial time

I Have each Simulation_Process ]

integrate from its restored state until
the limiting time determined by the

Simulation Process requiring an update ,,

I Set initial time to limiting time I

1

___At end of reporting interval, have _1_I each Simulation_Processgenerate report of current
states, inputs, and outputs

Figure 5-4. Simulation_Manager:: integrate(...) function.

Stage-4: Simulation Termination

12. Once the final simulation time is reached, the Simulation_Manager requests that all

Simulation_Processes transmit their results as a data file. The Simulation_Manager

can then issue a command for all Simulation_Processes to shut down, or they can

remain active for another subsequent simulation.

5.3 OBJECT-ORIENTED MODELING CLASSES

The object-oriented structure of the four modeling classes, Detailed_Model,

Simple_Model, Simulation_Process, and Simulation_Manager, that make implementation of this

logic possible are now described.

The Detailed Model class is summarized in Table 5-1. This class encapsulates the

mathematical model of a single subsystem described by a set of ordinary differential equations

and algebraic equations:

x : f(x,y,u) (5-1)

g(x, y, u) : 0 (5-2)
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where x are the differential state variables, y are the algebraic variables, and u are the input

variables of the subsystem. In addition, a set of outputs variables z that serve as inputs to other

subsystem models are defined as nonlinear functions of x, y, and u.

z = h(x,y,u) (5-3)

Mathematically, an instance of Detailed_Model is a well-defined system of equations that, given

constant or time-dependent values of its input variables and initial values of its state variables,

may be used to integrate the time-dependent behavior of its state and output variables.

In order to create a Detailed_Model, the user first specifies the number of differential

state, algebraic, input, and output variables for the model. The Detailed_Model class

automatically allocates sufficient computer memory for storing the values of these variables.

The differential and algebraic equations are represented by the user-defined functions

calculate_xdot(...) and calcuIate_gy(...), respectively. The equations for calculating outputs are

represented by the user-defined function calculate_outputs(...). The user also provides a fourth
function initialize_states(...), which initializes the differential state variables x0 to their desired

values at the beginning of the simulation.

Most importantly, the Detailed_Model class also encapsulates the methodology of the

model order reduction algorithm. As a result, at any instance in simulation time, the

generate_simple_model(...) function of the Detailed_Model class can be called to automatically

create a simplified, reduced-order model, represented as a simple_model_key that may be used to

create any number of duplicate instances of a Simple_Model.

Table 5-1. Description of DetMled_ModelClass

Class:

Inputs specified by

user:

Key class
methods:

Key class
variables:

Detailed_Model

calculate_xdot(...) function for computing time-derivatives of state

variables given current values of state, algebraic, and input variables.

calculate_gy(...) function for computing residuals of algebraic equations

given current values of state, algebraic, and input variables

calculate_outputs(...) function for computing values of output variables

given current values of state, algebraic, and input variables.

initialize_states(...) function for initializing values of state variables at

beginning of simulation.
number_of_states, number_of_inputs, number__of_outputs integers that

define the dimensions of the model.

generate_simple_model(...) generates the data necessary for

constructing a reduced-order model of the Detailed_Model.

report(...) function reports current values of state, algebraic, input, and

output variables.

x[ 1, xdot[ 1, y[ 1, gy[ 1, u[ ], and z[ ] arrays for representing current
values of states, rates-of-change, algebraic variables, residuals, inputs,

and outputs, respectively
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The Simple_Model class is summarized in Table 5-2. This class represents a linearized

reduced-order model of a particular Detailed_Model. Mathematically, it encapsulates

Equation (2-13), which calculates the rates of change of the transformed state variables, and

Equation (2-14), which calculates its outputs, where both equations depend on the current value

of its transformed state and input variables. Given the same time-dependent input variables as to

the Detailed_Model, the calculate_xhat_dot(...) and calculate_outputs(...) functions of the

Simple_Model can be used during integration to accurately predict the outputs of the

Detailed Model over short periods of simulation time. Updated periodically, the sequence of

Simple__lodels thus serve as surrogates for calculating the outputs of the Detailed_Model over

the entire simulation.

Table 5-2. Description of Simple_Model Class

Class: Simple_Model

simple_model_key data structure containing information required for

instantiating Simple_Model class
Inputs specified by
Detailed_Model:

Key class methods:

Key class variables:

number_of_transformed states, number_of_inputs,

number_of_outputs which are integers that define the dimensions of

the simple model.
initial_time which specifies the point in simulation time at which the

simplified model data was generated.
calculate_xhat_dot (...) function for computing time-derivatives of

transformed state variables given current values of transformed state

and input variables.
calculate_outputs(...) function computes values of output variables

given current values of transformed state and input variables.

report(...) function reports current values of transformed state, input,

and output variables.
x_hat[ 1, u[], and z[] arrays representing current values of the

transformed state, input, and output variables..

In our design, we have focused on keeping the Detailed_Model and Simple_Model

streamlined so that engineers developing subsystem models are not burdened with the intricacies

of distributed simulation of complex systems. Consequently, in our design we have encapsulated

this functionality in two separate classes, Simulation_Process and Simulation_Manager.

The Simulation_Process class is summarized in Table 5-3. This class represents an

integrated multi-system model with N-component subsystems. An instance of a
Simulation_Process is created on each computer where the Detailed_Model of a particular

subsystem is defined. The overall model is simulated by the Simulation_Process by integrating
the Detailed Model simultaneously with the N-1 Simple_Models. Each Simulation_Process also

integrates the current simplified version of its Detailed_Model in order to evaluate its validity
after each time step. If an updated Simple_Model is required, it is generated by the

Detailed_Model and sent by the Simulation_Process to the Simulation_Manager. Over the

course of the integration, updated sets of Simple_Models are communicated among all

Simulation_Processes by an instance of the Simulation_Manager using a CORBA-based

protocol.
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Table

Class:

Inputs specified by
user:

Inputs specified by

Simulation_Manager:

Key class methods:

Key class variables:

5-3. Description of Simulation_ Process Class

Simulation_Process

Naming_service IP address specifying location of Naming Service

Detailed_Model which is the locally defined detailed model of a

particular subsystem.

Simple_Models which are the current set of N-1 simplified

subsystem models received from the Simulation_Manager.

input_output_maps specify mappings that link each input variables

of all detailed and simple models with the appropriate output

variable of another detailed or simple models.

integrate(...) function simultaneously integrates the
Detailed_Model along with the N-1 Simple_Models over a

specified time interval.

update_local_simple_model(... ) function called by
Simulation_Manager to get updated Simple_Model version of

Detailed_Model.

update_simple_models(... ) function used by Simulation_Manager

to transmit new set of Simple_Model s of remote processes

report(...) function gets report of current variable values for

Detailed_Model and Simple Models.

local simple_model represents the current simplified version of the

local-Detailed_Model, used to determine when an update is

required.

The Simulation_Manager class is summarized in Table 5-4. The Simulation_Manager

coordinates communication between the instances of Simulation_Processes running on separate

computers. A single instance of Simulation_Manager is created for an entire distributed multi-

system simulation. This "global" Simulation_Manager may reside on the same computer as a
Simulation_Process, or it may reside independently on a dedicated computer. The

Simulation_Manager serves as a central repository from which simulations are initiated and

where histories of Simple_Models for each Detailed_Model are maintained. It also serves as a

communication middleman between the individual Simulation_Processes. In this manner, each

Simulation_Process does not need to be aware of and communicate with all other

Simulation_Processes, but rather communicates exclusively with the global

Simulation_Manager.

In the future, for remotely distributed simulations this architecture may be revised to

allow multiple Simulation_Managers. In this scheme, a "local" Simulation_Manager would be

implemented at each remote site in order to reduce the required network bandwidth for

transmitting a set of Simple_Models. The global Simulation_Manager would only transmit the

set of Simple_Models to the local Simulation_Manager at each remote site (rather than to every

Simulation_Process at each remote site). The local Simulation_Manager would then forward the

set of Simple_Models to each Simulation_Process at its site through an assumedly high-speed

connection.
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Table 5-4. Description of Simulation_Manager Class

Class:

Inputs specified by

user:

Key class methods:

Key class variables:

Simulation Manager

Naming_service_IP address specifying location of Naming

Service

Process_names identify textual names of each simulation

process, used for requesting addressable object references from

Naming Service.

Input_output_maps specify mappings that link each input
variables of all detailed models with the appropriate output

variable of another detailed model.

initialize_simulation(...) function requests a Simple_Model from

each Simulation_Process, transmits these Simple_Models among

all other Simulation_Processes, and notifies all

Simulation_Processes to prepare for integration.

integrate(...) function calls all Simulation_Processes to integrate

over a specified time interval

report(...) function gets report of current variable values for all

Simulation Processes.

simple_model_history maintains a history of Simple_Models for
each Detailed_Model and the time intervals over which they are

valid.

The classes of the distributed simulation software library provide a common framework

that encapsulates multi-discipline subsystem models as modular, reusable components. These

classes are designed to be minimally invasive during the modeling process, allowing engineers to

develop new subsystem models or reuse legacy models with little additional overhead. They

also streamline aspects of model development by providing routines for numerical integration,

by automatically and dynamically creating data structures for storing variable values during

simulation, and by reporting simulation results in a structured format. These classes may also be

readily extended and modified through the object-oriented concept of inheritance. For example,

during the course of this project, the additional capability for solving sets of purely algebraic

equations (as opposed to mixed sets of differential and algebraic equations) using a

superelement-based approach was implemented. At that point, the Simple_Model class was
restructured into an abstract class with two subclasses, Simple_ODE_Model and

Simple_AE_Model. This class hierarchy is illustrated in Figure 5-5.

Simplified_Model class

provides functionality
common to both

subclasses

I

Simplified_ODE_Model class
provides functionality

for representation of ODE
or DAE (dynamic) models

I
Simplified_AE_Model class

provides functionality
for representation of

AE (steady-state) models

Figure 5-5. Simple_Model Class Hierarchy.
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The Simplified_ODE_Model class provides the necessary functionality for approximating

the behavior of models consisting of ODEs or DAEs. The SimpIified_AE_Model class provides

the necessary functionality for using superelements to approximate the behavior of models

consisting of AEs. The abstract Simple_Model super-class provides the functionality common to

both subclasses (e.g., handling of data arrays for model variables) which they access through the

property of object-oriented inheritance. This eliminates the need for redundant code in the
subclasses. In addition, data used exclusively by a particular subclass appears only in that class

definition, thus minimizing the amount of data that must be transmitted when instances of a

Simple_Model subclass are communicated over the network.

5.4 SELECTION OF A CORBA ORB

The software library being developed in this project enables the distributed simulation of

an overall model comprised of multiple subsystem models. The implemented scheme requires

both the transmission of Simple_Models (i.e., data structures) among Simulation_Processes as

well as the remote invocation of Simulation_Process procedures by the Simulation_Manager.

Several technologies currently exist for implementing such networked communications, the most

established of which are Common Object Request Broker Architecture (CORBA), Java Remote

Method Invocation (RMI), and Microsoft .NET. Of these, CORBA was selected for this project

because, unlike Java RMI, it is language independent and, unlike Microsoft .NET, it is platform

independent. In summary, CORBA provides an open, vendor-independent architecture and

protocol that enables a program running on almost any computer, operating system,

programming language, and network to inter-operate with other CORBA-based programs

executing on almost any other computer, operating system, programming language, and network.

Two CORBA Object Request Brokers (ORBs) were evaluated: omniORB (developed at

AT&T Laboratories: http://www.uk.research.att.com/omniORB) and MICO (developed as an

OpenSource project: http://www.mico.org/). These ORBs were selected because both are freely

available, have been branded as CORBA compliant by the OpenGroup standardization

organization, and support development on Unix, Linux, and Windows operating systems. While
the omniORB version was used in the initial testing last year, the MICO ORB has subsequently

proven to be much more robust and compliant. Note, however, that since CORBA is a
standardized architecture, any other compliant ORB can also be used.

5.5 IMPLEMENTATION OF CORBA PROTOCOL IN SOFTWARE LIBRARY

CORBA enables the interoperability of programs across a network. The communication

interface between such programs is defined using a declarative, programming language called

the interface definition language (IDL). Consequently, the communication protocol between the

Simulation_Manager and Simulation_Processes was defined using an IDL specification. An

excerpt from this specification is shown in Table 5-5.

46



@reare

Table 5-5. Excerpt From IDL Specification for Software Library

module MOR {

I/ ...ByteArray typedef representing ordered list of bytes (i.e., binary data)...

typedef sequence<octet> ByteArray;

// ...struct specifying params for generating Simple_Models

struct ModelParams {

double time;

double update_interval;

double contribution_threshold;

};

// ...stub class representing interface to Simulation_Process.-.

interface Simulation Process_Stub (

// ...get name...

string name IDL();

// ...initialize simulation, returning simple model key...

long initialize_simulation_IDL(in ModelParams stub, out ByteArray model);

// ...reinitialize state of process so can restart simulation-.

void reinitialize_process_IDL();

// ...add simple model to list representing external models...

void add simple model_IDL(in ByteArray bytes, in long keylen);

// ...generate and return updated simple model of local detailed model...

long generate_local_simple_model_IDL(in ModelParams params, out ByteArray model);

// ...generate updated simple model and return using oneway callback...

oneway void update_local_simple_model_oneway_IDL(in ModelParams params);

// ...update simple models of remote models...

void update simple_models_IDL(in ByteArray model, in long size);

// ...integrate models...

double integrate_IDL(in double t, in double t2, in double deltaT);

// ...integrate models using oneway callback...

oneway void integrate_oneway_IDL(in double t, in double t2, in double deltaT);

// ...save/restore state...

void save_state_IDL(in double time);

void restore_state_IDL(In double time);

// ...report current values...

void report IDL(in double t, in double delta_t);

// ...retrieve reporting file...

long close_and_fetch report_file_IDL(out ByteArray file);

);
i};

The complete IDL specification explicitly defines all allowable communications between

the Simulation_Manager and the Simulation_Processes (represented in the IDL shown in
Table 5-5 for instances of interface class Simulation_Process_Stub). The ORB IDL compiler

then generates C++ "skeleton" code for compiling with the distributed simulation software

library. The changes to the software library necessary to implement inter-process

communications were thus limited to these two classes. Further, these changes only involved
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"interface" implementations, and no changes to the fundamental algorithms or logic were

necessary. The Simulation_Process was defined as a subclass of the Simulation_Process_Stub
class. The inherited IDL functions were then mapped to their preexisting counterparts with

exception handling added to make networked communication more robust. For the

Simulation Manager class, all references to Simulation_Processes were replaced with references

to Simulat_n_Process_Stubs and the associated function calls redirected to their IDL-derived

counterparts.

As a result of this design, separate executable server programs are compiled for each

model subsystem encapsulated in a Simulation_Process. The various executables can then be

run in a distributed manner on any combination of networked computers. A separate executable

client program is also compiled for the Simulation_Manager which links to the desired model

subsystem servers at run-time.

5.6 WORKAROUND FOR CORBA SYNCHRONOUS MESSAGING

It should be noted that CORBA invocations (i.e., function calls) on remote objects are by

default synchronous, in which execution is "blocked" until the remote process returns control. In

other words, if a Simulation_Manager calls the integrate_lDL function of a Simulation_Process,

the Simulation Manager executable is blocked until the Simulation_Process executable returns

control. Unfortunately, this default situation would prohibit parallel processing as all remote

Simulation_Processes would integrate in a serial manner. To avoid this situation, a oneway
invocation scheme was implemented for the Simulation_Process functions used for integration

and generation of simple models.

When a oneway CORBA invocation is used, control returns immediately to the

Simulation_Manager after invoking the integrate_oneway_IDL function of a

Simulation_Process. This scheme allows the Simulation_Manager to start integration of the

remaining Simulation_Processes in parallel before the first process finishes its integration.

However, since oneway invocations cannot return a value (i.e., the time to which the

Simulation_Process simulated to successfully), this information must be reported by the

Simulation Process using a separate CORBA invocation. In our implementation, the

Simulation[Manager process spawns a separate Model_Receiver process on its local processor

for receiving these invocations and data transmissions from the Simulation_Processes. The

Model_Receiver then passes this data to the Simulation_Manager using an input pipe channel.

Although the oneway invocation method has been robust in our testing, in the future

another proposed method of CORBA message passing may prove to be more desirable. The

CORBA standards body (OMG) has specified an asynchronous method invocation protocol.

Using this method, the Simulation_Manager would invoke non-blocking calls on each
Simulation Process, then check periodically to see whether a process has concluded. The

advantage of this approach is that a separate application thread would not be required for the

Simulation_Manager client process. As this is a relatively recently proposed protocol, few

CORBA vendors have yet implemented it. Consequently, until it is more commonly available,

we will continue to use the oneway invocation protocol.
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6 CURRENT IMPLEMENTATION OF SOFTWARE LIBRARY

This section describes the current status of the distributed simulation library with respect

to software implementation. In summary, the overall architecture and class structure, as well as

the remote distributed simulation capabilities using CORBA, have been completed. Model order

reduction algorithms have also been implemented for systems comprised of ODEs (based on the

relative importance of states for calculating outputs), DAEs (based on eliminating algebraic

equations and subsequently using techniques for ODEs), and AEs (based on superelements).

Since the underlying framework of the software library has been completed, future work

will focus on enhancements to class functionality and additional algorithm development. This

development will be focused in four areas:

I. Advanced and supplemental model-order reduction techniques. This development

area will focus on extending the library of available MOR algorithms, especially with regard to

MOR based on the time-dependence of each state, as described in Section 4 of this report.

2. Improved integration and error-control routines. This development area includes

improved model integration routines and error control routines. We will consider more

sophisticated integration algorithms (e.g., adaptive time-stepping based on error control, and

handling of model discontiuities). We will also investigate error control strategies that dictate

the updating frequency of Simple_Models (e.g., updating Simple_Models of highly nonlinear

subsystems more frequently than those of relatively linear subsystems, and implementing a more
efficient fallback scheme when Simple_Models exceed error tolerances).

3. Supplemental analysis tools. This development area includes the use of third-party

automatic differentiation software (e.g., ADIC) for automatic generation of code for calculating

partial derivatives of model equations encoded in C++, and also the added capability for

performing uncertainty analysis on the decoupled modeled subsystems.

4. Enhanced usability. This development area will focus on ease-of-use enhancements

geared toward future end users of the distributed simulation library. Our focus will be to

minimize the burden imposed on such a modeler through simplified object-oriented interfaces to

external models and class wrappers for integrating existing legacy models.

The status of specific tasks for each of these areas are summarized in Table 6-1.
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Table 6-1. Implementation Status of Software Library

Item

Model-order reduction techniques

MOR based on time-dependence of each state:

I x 1 blocks

2x2 blocks

NxN blocks

MOR based on relative importance of states for

calculating outputs
lxl blocks

2x2 blocks

NxN blocks

Using balancing transformations

Segregation of pure integrals prior to diagonalization

Elimination of algebraic variables in DAEs

Use of super-elements to perform MOR on AEs

Improved integration

Adaptive time step adjustment
"Fall-back" when simple models become invalid

Automatic initialization of ODEs and DAEs at t=0

Model discontinuities

Supplemental analysis tools

Off-line Jacobian matrix generation using automatic

differentiation software

Integrated uncertainty analysis

Enhanced usability

Simplified interfaces to external models
Class wraoners for integrating existing models

Theory

C

C

C

C (Note 1)

C (Note 1)

C (Note 1)

F

C

C

C

C

C

C

F

Implementation

F

F

F

C

F

F

TBD

P

C

P (Note 2)

F

F

F

TBD

N/A F (Note 3)

F F (Note 3)

N/A

N/A

F

P

Key:

C-complete

P-partially complete

F-not yet done but planned for future

TBD-no decision yet on whether to implement

Notes:

1. Assumes that inputs can be set to average values encountered during last time interval.

2. Currently implemented for models consisting entirely on AEs. Not yet implemented for

DAEs in which some subsystem models consist solely of AEs.

3. Part of FY03 work scope
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7 TEST MODEL DEVELOPMENT

To test the distributed simulation software library, it is necessary to have models of

physical systems that are typical of those that will be developed by the intended users.

Unfortunately, existing models appropriate for use in testing were difficult to find because they

were not publicly available, were poorly documented, or in their present form were not easily

partitioned into subsystems. As a result, we found it expedient to develop our own models to

support testing.

Taken at face value, this experience suggests that existing code may not be readily

amenable to implementation in a distributed fashion using the software library. We believe that

such a conclusion is premature. Certainly, the major effort required to develop a good model is

the formulation of the physical model in the first place. Thus, adapting an existing model to the

new format required for distributed simulation should not prove onerous when this is done by

personnel intimately familiar with the existing code.

The effort necessary to develop test models was larger than originally anticipated, but this

effort has proved invaluable because the interactions between the simplified model algorithms

and the physical models could be explored at a level impossible with closed or poorly-

understood physical models derived from other sources. For example, the development of a

tubular reactor model introduced the need for block diagonalization (since the Jacobian matrix of

the linearized model was not diagonalizable due to degenerate eigenvalues). The development of

the turboprop transport plane model led to the representation of complex eigenvalues in 2x2

complex conjugate form in order to eliminate the need for complex arithmetic. The development

of the F-16 aircraft model motivated the need to remove pure integrals from the model (since the

pure integral states which determine position from velocity led to 3x3 block diagonals).

Described below are five physics-based models that have been used to test the algorithms

for simplified subsystem model development.

7.1 HEAT CONDUCTION MODEL

The first model to be developed to test the distributed simulation software was a simple

heat conduction model. Based upon the one-dimensional unsteady heat conduction equation, an

explicit finite-difference model of a conductive bar was created (Figure 7-1). The bar has been
discretized into 90 nodes as shown. With 90 temperature nodes, this model has 90 states.

U 1

T30

Model -A T31 Model -B

Figure 7-1. One-Dimensional 90-State Discretized Heated Bar Divided Into Three Sub Models.
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As for boundary conditions, one end of the bar is adiabatic (zero heat flux) while the

other end is subject to an oscillating temperature boundary condition with the following form

U 1 = 3 + 0.05 sin(t / 103) (7-1)

For implementation using the software library, the 90 nodes are grouped into three

subsystem models with 30 nodes each. Critical to the definition is the definition of the inputs

and outputs of each subsystem. For this system, the inputs and outputs for each subsystem are

the bounding temperatures as shown in the table below.

Table 7-1. Inputs and Outputs of the Subsystem Models

for the 1-D Unsteady Heat Conduction Model.

Inputs Outputs

Submodel A Ut, T31 T30

Submodel B T30, T61 T31,T60

Submodel C T60 T61, T90

With the unsteady heat conduction problem formulated in this way, the system is

governed by 90 coupled linear differential equations. An example of the results generated by the

simplified implementation of this model is seen in the figure below.
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Figure 7-2. Results Generated by the Distributed Implementation of an Unsteady 1-D Thermal
Conduction Model. Model uses explicit finite-difference technique with central differencing. The 90 node

discretization is divided into three, 30-node subsystem models for computation. The software library

algorithms are used to linearize, diagonalize, and then reduce the order of the subsystem models every

50 seconds.
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In this test, the thermal diffusivity term is assumed to be equal to 1.0 and all the nodes are

initialized to a temperature of 1.0. The equations are then integrated through time with the

software library algorithms used to linearize, diagonalize, and reduce the order of the subsystem

models after every 50 seconds of simulated time.

As can be seen in the figure, the proper unsteady heat conduction behavior is seen. Of

particular interest, though, is the line showing that the number of total states kept by the model

order reduction algorithms decrease as the model reaches steady state. This is the expected

behavior since fewer states should be necessary to capture the small changes that occur as the

system oscillates about steady state.

7.2 TURBOPROP AIRCRAFT MODEL

Since linearization is an important component of the development of simplified

subsystem models, testing these algorithms on a linear system of equations (see Heat Conduction

Model above) is not entirely satisfactory. As a first step to testing the algorithms on nonlinear

equations, a simple model for a turboprop transport aircraft was found in the literature (Lewis
and Stevens, 1992). This model was extended and implemented here for use in testing the

software library.

As shown in Figure 7-3, the overall turboprop aircraft model is composed of three

subsystem models: (1) the aircraft body, (2) the engine, and (3) the control system.

Desired Altitude
Desired Speed

Speed

,o, / \Pitch
Pitch Rate

Altitude Elevator Commanded
X Position Angle Throttle

I
Actual

Throttle

__ , Speed

Figure 7-3. Model of Turboprop Transport Aircraft.
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The aircraft body subsystem is a three-degree-of-freedom (DOF) model for the forward-

backward, up-down, and pitching motions of the airplane. To compute the translational and
rotational accelerations, the body model must know the angle of the elevator as commanded by

the controller subsystem and it must know the engine thrust as computed by the engine

subsystem.

The engine subsystem is a simple, 1 DOF model whose current power level (actual

throttle) is a simple lag (time constant = 3 seconds) from the commanded power level as

provided by the controller. The thrust produced by the engine is a function of the current power
level and the speed of the aircraft. The speed dependence is included to model the behavior of

propeller engines where thrust decreases with increasing airplane speed.

The controller subsystem attempts to keep the airplane flying in a stable, trimmed state at

the desired speed and altitude. Given a change in the desired speed, the controller uses

proportional and integral (PI) feedback on the error in the current speed to change the

commanded power level of the engine. Given a change in the desired altitude, the controller uses

PI control to change the elevator angle until the desired climb rate is achieved. Additionally, the

elevator control law includes a term that is proportional to the pitch rate to maintain stability. To

perform these tasks, the controller subsystem is provided with all the states of the airplane body

and engine as inputs.

The overall aircraft model, therefore, contains nine states governed by nonlinear ordinary

differential equations. The system is nonlinear because of the aerodynamic forces applied to the

airplane body, the limits on elevator deflection, the limits on engine power, the limits on the

throttle command, and the limits on the allowed climb-rate.

To demonstrate the behavior of the modeled aircraft, the full nonlinear model was

subjected to a series of changes in desired speed and desired altitude. The model was initialized

to trimmed flight at the desired speed of 400 ft/s (237 knots) and the desired altitude of 20,000 ft.

After 10 seconds of simulation time, the speed setpoint of the controller was changed to 500 ft/s.

After an additional 70 seconds of simulation time, the altitude setpoint of the controller was

changed to 25,000 ft. The figure shows the resulting dynamic behavior of the complete model.
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Simulation Results (update interval = 0.5 s, contribution threshold = le-003)
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Figure 7-4. Simulation Results for Turboprop Transport Model Performing a Maneuver to Increase Speed
and Then Increase Altitude.

To generate the results seen above, the simplified model algorithms implemented in the

software library were used to linearize, diagonalize, and reduce the order of the subsystem

models. The top plot shows the speed of the aircraft body compared with its specified controller

setpoint. The second plot shows the altitude of the aircraft body compared with its specified

controller setpoint. The third plot shows the angle of attack (AOA), pitch, pitch rate, and

elevator position (specified by the controller) of the aircraft body. The fourth plot shows the

throttle position of the engine compared with the position commanded by the controller. The

bottom plot shows the total number of states retained for each subsystem. During slow

transients, approximately 25-50% of the total states were eliminated.

55



 reare
Comparison of the above results to the results generated without linearization,

diagonalization, or model order reduction shows that small errors were introduced by the

processing steps. Specifically, error is introduced near model discontinuities such as at about
t = 145 s where the commanded throttle is seen to rise slightly when, in fact, it should have

jumped down to zero as the climb was finishing. Since any modeling technique that relies upon
linearization cannot be expected to perfectly capture discontinuities, the small errors seen in the

above results were not considered critical. It should be noted that future versions of the software

library are expected to include a simulation manager that detects discontinuities and issues new
models to account for them. In any event, the overall ability of the algorithms to generate a

sufficiently accurate simplified model is considered excellent for this example.

7.3 F-16 AIRCRAFT MODEL

To further test the capabilities of the distributed simulation algorithms, a more complex

model with more states and more submodels was necessary. In addition to the turboprop

transport aircraft model described earlier, Lewis and Stevens (1992) also provided a six-degree-

of-freedom (DOF) model of an F-16 military fighter airplane. As before, this model was

extended and implemented here for use in testing.

The overall model consists of six submodels (see figure below): a six-degree-of-freedom

dynamic model for the airplane body, 1 DOF dynamic models for the engine, elevator, ailerons,

and rudder, as well as a multi-input/multi-output model for the controller. Underlying these

models are nonlinear, ordinary differential equations.

Cu rrent Power
Throttle

Deflection

Deflection
II

Command

Figure 7-5. States, Inputs, and Outputs of the Components of the F-16 Model.
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The body submodel is based on a standard formulation for the equations of motion for

translation and rotation in three dimensions. The model includes lookup tables to evaluate all of

the aerodynamic forces including lift, drag, and damping as well as to evaluate the forces

generated by the control surfaces (elevator, ailerons, and rudder). The tables are based on wind
tunnel data for an F-16 (Lewis and Stevens, 1992). Depending on the quantity being evaluated,

these tables are angle-of-attack and side-slip angle dependent. The aerodynamic forces are then

scaled by the dynamic air pressure, which is dependent on altitude and speed.

The engine submodel is a single-degree-of-freedom (exponential lag) dynamic model of a

jet engine. The lag time-constant is power-level dependent and is evaluated by a table lookup.

The thrust level generated by the engine is also computed by table lookup and it is based on the

current power level, the aircraft's altitude, and the aircraft's speed relative to the local speed of

sound. The thrust model spans the engine's power range from minimum idle, through military

power, to maximum throttle with afterburner.

The aerodynamic control surfaces (the elevator, ailerons, and rudder) are each modeled as

a single-degree-of-freedom, exponential lag between the actual surface deflection and the
commanded surface deflection. From Stevens and Lewis, each of the three models has a time

constant of 1/20.2 sec. The models for the control surfaces are not given maximum or minimum

deflection limits.

Finally, a multi-input/multi-output controller was developed to keep the aircraft stable

and to guide the aircraft through a number of maneuvers. The controller must provide

commands for the engine and for the elevator, ailerons, and rudder. Throttle control is

accomplished either by passing through pilot-commanded throttle level or, when modeling the

level-flight autopilot, a proportional-integral feedback controller is used to achieve and maintain

the desired speed. On the other hand, the elevator, ailerons, and rudder are feedback controlled

to best achieve the angle rates requested by the pilot or by the autopilot.

To achieve the requested pitch rate, a proportional-integral (PI) feedback controller is

used to issue the elevator command. Similarly, the desired roll rate is achieved using a

proportional feedback controller to generate the aileron command. Finally, the rudder command

is determined using the sum of the output from a PI feedback controller on yaw rate and from the

output of a aileron-rudder-interconnect controller that attempts to maintain a stability-axis roll

regardless of the current angle-of-attack.

For all three control surfaces, the commanded deflection angles are limited to the known

deflection limits of the surfaces. When limited, the integral portion of any associated PI

controller is bypassed to prevent controller windup.

All together, the system is composed of 20 nonlinear ordinary differential equations that

govern the behavior of 20 states. For distributed simulation, the model is implemented as six

subsystems with inputs and outputs shown in the previous figure. The software library was

employed to linearize, diagonalize, and then reduce the order of the subsystem models.

To test the performance of the simplified subsystem models, a vertical "S" maneuver was

simulated (see figure below). This complex maneuver requires a series of control surface and
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throttle commands that should be much more demanding to capture than the simple altitude and

speed changes modeled for the transport plane.
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Figure 7-6. Vertical "S" Maneuver Performed by Modeled F-16.

For the full nonlinear simulation, the resulting time-dependent behaviors of the

subsystem models during this maneuver are shown in the figure below. Notice that due to

physical constraints on the controlled throttle position, sharp model discontinuities occur near
5 seconds and 35 seconds of simulation time.
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Figure 7-7. Simulation Results for F-16 Model Performing a Vertical "S" Manuever.

As before, the distributed simulation algorithms allow for successful integration of the

model through time with only small errors introduced near model discontinuities. Over the

entire simulation period, approximately 25-50% of the total states were eliminated. This is

encouraging because it shows that a significant fraction of the states in a model can be eliminated

even though each subsystem had a relatively small number of states. We expect that a larger

fraction of the states can be eliminated as the number of states grows without compromising

fidelity.
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7.4 CHEMICAL PLANT MODEL

A simple chemical process model was also developed, primarily to test the capabilities of

the library for handling coupled differential and algebraic equations (DAlEs). This model was

primarily chosen for convenience, since one of the engineers on the project was expert in this

area. However, the numerical challenges posed by such models are judged to be similar to those

that would be encountered in, for example, a spacecraft hydraulic system simulation, so the

lessons learned are likely to be applicable to a variety of models.

The process model consists of a mixing tank, a tubular reactor, and a two-phase absorber.

The mixing tank is modeled as a uniform volume, while reactor contents and the liquid and

vapor phases of the absorber are spatially distributed along one dimension (i.e., their behaviors

are modeled by partial differential equations). These partial differential equations are reduced to

ODEs using finite control volumes.

The mathematical model for each control volume consists of a set of ODEs representing

the conservation of mass for each chemical species and algebraic equations that related the mole

fraction of each species to the molar holdup of each species in the control volume.

While this model has not been used extensively, the experience obtained with it was

invaluable. In particular, this experience lead to the realization that the block diagonalization

algorithm described in Section 2 was necessary. In addition, another version of the model was
written that contained only DAEs. The exact agreement of the two versions' results verifies that

the procedure used to eliminate algebraic equations described in Section 3 is correct.

7.5 SATELLITE FORMATION FLIGHT MODEL

To provide a more difficult test of the software library, a model for the formation flight
behavior of a cluster of satellites was developed. This model provides a very convenient test bed

for studying the performance of the distributed simulation software library, since the overall

complexity and the number of subsystem models can be adjusted essentially arbitrarily.

The motivation for this model is driven by the recent activities in the field of autonomous

formation flight (Bauer et al., 1999; U.S. AFRL, 1998; NASA GSFC), specifically the U.S. Air

Force Research Laboratory's effort on TechSat 21 microsatellite cluster program (see figure

below) and the NASA Earth Observing One (EO-1) satellite's recent formation flight with the

LANDSAT 7 satellite. The purpose of programs such as these is to use multiple satellites

operating cooperatively and autonomously to increase mission performance, flexibility, and

redundancy, while decreasing overall mission cost.
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Figure 7-8. Flexibility of Mission Available to Satellite Clusters as Envisioned by the AFRL TechSat 21
Effort (U.S. AFRL, 1998).

For many satellite clusters, such as the EO-1/LANDSAT pair and for space-based radar

clusters envisioned as part of the TechSat 21 program, one of the principal technological

challenges is to autonomously maintain the physical configuration of the satellite cluster. To
make satellite clusters feasible, the individual satellites must be capable of formation flight using

their own sensors and control systems. Operator workload and communication blackouts

prevent controllers on the ground from performing this task.

If the ability to finely control cluster formation is achieved, a wide array of new missions

becomes available by using the satellite cluster as if it were a single sensor with a very large

aperture. Such large sensor apertures have the potential to greatly increase the resolution of
terrestrial surveillance (for both military and scientific applications) as well as to enable

previously impossible astronomical observations such as the search for gravity waves or earth-

like planets.

7.5.1 Model Description

For this study, a model has been developed for the motion of earth-orbiting satellites and

their ability to maintain formation flight. It is meant to be an example of the type of simulation

that might be used by system engineers to gage the effect of various design parameters such as:

(1) the type of station-keeping control algorithm being employed, (2) the type and performance

of actuators required to maintain formation, and (3) the amount of power and fuel necessary to

feed those actuators.

Specifically, the phenomena included and parameter values chosen are intended to model

a satellite formation appropriate for radar imaging (see TechSat 21 figure earlier) using satellites

of approximately the same size and configuration as the EO-1 earth-observation satellites.

Each satellite model is composed of a number of subsystems including a model for the

satellite's rigid body motion, the earth's gravity, the satellite's atmospheric drag, the momentum

wheels controlling the satellite's orientation, and the satellite's controller, which determines the

proper thruster and orientation commands. The figure below shows how each of the subsytems

are interconnected.

61



 reare
"Lea der" Sate Uite Position

"Leader" Satellite Velocity

Vector

Total Fuel Bum

Position Gravity Gravity Position

Vector Vector Vector Vector

I

V

Commands

Torque

Figure 7-9. Subsystem Models and Their Inter-Connections for Each Satellite Model.

The rigid body motion of the satellite is modeled as a six-degree-of-freedom system

based on Newton's laws of motion. Position, velocity, and acceleration are each represented by

a three-component vector as measured in a Cartesian earth-centered earth-fixed coordinate

system. Satellite orientation is tracked using a four-element quaternion representation. Rotation
rates and rotation accelerations are represented using three element vectors as measured about

the satellite's principal axes (see figure below). Linear motion accelerations are induced by the

sum of forces due to the gravity of the earth, the atmospheric drag imparted by the satellite's

velocity, and the thruster firings as commanded by the satellite's controller. Angular
accelerations are induced by the sum of torques resulting from atmospheric drag and the

acceleration of the momentum wheels as commanded by the satellite's controller.
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Figure 7-10. Coordinate System Attached to Satellite. Satellite controller attempts to maintain the
satellite orientation such that the Z-axis is along the gravity vector and the X-axis is along the velocity
vector.

The earth's gravity is modeled simply using Newton's law of gravitation, which can be

expressed as

GM ,a,h m satellite "_ (7-2)

where

G is the universal gravitation constant (N-m2/kg2),

Mearth is the mass of the earth (kg),

msateltite is the mass of the satellite (kg), and

T is the current position vector (m) of the satellite.

The atmospheric drag on the satellite's body is modeled using

Far.g :-±pA ro Ca VIV
2 P ')

(7-3)

where

9 is the air density (kg/m 3) at the current altitude as modeled by the 1976 U. S. standard

atmosphere,

Aproj is the projected area (m 2) of the satellite along the velocity vector,

C,t is the drag coefficient, and

_7 is the current velocity vector (m/s) of the satellite.

The drag force is applied to the satellite body at the centroid of the satellite's projected area. If

the centroid of the projected area deviated from the satellite's center of mass (which will occur

for asymmetrical satellite shapes), the drag force will induce a torque on the satellite and

possibly cause rotational motion. For this model, the size and shape of the satellite are modeled
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after NASA's EO-1, which is asymmetrical due to its single solar wing (see figure above). Of

course, at altitudes typical for EO-1, atmospheric drag should be very small so its effect on both

linear and rotational motion should be minimal.

To control the orientation of the modeled satellite, it is assumed that momentum wheels

are used (note that this is not the configuration used for EO-1, but it is being used here for this

model). Each momentum wheel is composed of a motor attached to a flywheel which are both

fit in a housing that is rigidly attached to the spacecraft structure. To generate a torque on the

spacecraft, a signal is given to speed or slow the flywheel that is oriented along the proper
satellite axis. Because the torque generated to speed or slow the flywheel generates a reaction

torque on the satellite, the satellite orientation can be controlled.

The momentum wheel is modeled as a first order system where the satellite controller

generates a command for a certain amount of torque. The motor in the momentum wheel is

assumed to generate the requested torque instantly. The speed of the flywheel then responds as a

first-order exponential lag as expressed by:

dO)wheel _ (Spin Command)(C,orq.e ) (7-4)

dt J wheet

where

O,)whee l is the angular velocity (rad/s) of the flywheel in the momentum wheel,

(Spin Command) is the spin command generated by the controller that is a value between

-1 and +1 representing the desired fraction of maximum torque that can be

generated by the momentum wheel,

Cto_q,,eis the maximum torque (N-m) that the momentum wheel can generate, and

,]wheel is the rotational inertia (kg-m) of the flywheel in the momentum wheel.

The angular velocity of the flywheel is maintained as a system state to make sure that the

wheels do not spin up to fast. In a real satellite, an over-spun wheel would require a maneuver to

dump angular momentum from the wheel. Typically, a thruster firing is used to perform this

task. This satellite model performs no such maneuvers because the duration of the simulations

performed do not extend long enough for wheel speeds to get too high.

This model of the satellite uses one momentum wheel for each of its three principal axes.

The momentum wheels are assumed to be frictionless.

The final subsystem model of the satellite is the satellite's controller. For this model, the

controller has two purposes--generate momentum wheel commands to control the satellite's

orientation, and generate thruster commands to control the satellite's position within the satellite

formation. An overview of the controller's inputs and outputs are shown in the figure below.
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Figure 7-11. Model of Satellite Controller.

Momentum wheel commands are currently generated to maintain the orientation of the

satellite such that the satellite's Z-axis is always pointing along the gravity vector and such that

the satellite's X-axis is always pointing along the portion of the satellite's velocity vector that is

perpendicular to the gravity vector. Proportional Integral Derivative (PID) control is used to

generate momentum wheel commands along the proper axes to minimize the angular error
between the actual location of the principal axes and the desired location of the principal axes.

The integral portion of the orientation controller requires one system state for each wheel. The
orientation controller, therefore, contributes three states to the overall system model.

Thruster commands are generated to maintain the satellite's position within the

formation. The formation control laws are based on a leader-follower structure where a given

satellite is trying to position itself relative to its "leader." Of course, the satellite's "leader"

might be also be trying to position itself relative to its own "leader," which yields a cascaded

leader-follower system.

For this model, the formation is arranged where the satellites are grouped into subgroups

(see figure below). Within a subgroup, the satellites are each controlling its along-orbit position

relative to the subgroup leader. Each subgroup leader is, in turn, controlling its along-orbit

position relative to the subgroup leader in front of it. The overall leader of the whole formation

is not controlling its position at all--it is just falling inertially.
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Figure 7-12. Leader-Follower Satellite Formation Where Each Satellite Follows the Leader of its
Subgroup. Each subgroup leader follows the subgroup leader in front of it. The overall leader falls
inertially.

For all satellites, a thruster is used to control the separation of the satellite relative to its

"leader" as to minimize the error between the actual separation and the desired separation. To

maximize orbital stability, though, the thruster is not fired along the satellite's velocity vector to

increase or decrease its speed. Instead, the thruster is fired along the gravity vector as seen by

the satellite (usually perpendicular to the velocity vector) to increase or decrease the satellite's

altitude. When the satellite's altitude decreases, for example, its velocity relative to its leader

should increase. This change in relative speed allows the satellite to catch up to or fall away

from its leader. In this way, the separation in controlled.

With this control scheme defined, implementation is fairly direct. For a given difference

between the actual satellite separation and the desired separation, a Proportional Derivative (PD)

control expression is used to calculate the desired satellite velocity. Based on the orbital trade-

off between kinetic and potential energy, this desired velocity corresponds to a new desired

altitude. PD control is then used to issue thruster commands to control the satellite's altitude to

achieve the desired altitude.

Note that as the error in satellite separation shrinks, the desired closing velocity will also

shrink. A smaller closing velocity requires less of a deviation of the desired altitude from the

nominal altitude, which causes the controller to fire the thrusters to move the satellite back to its

nominal altitude. Finally, as the satellite reaches the desired separation, the desired closing

velocity will become zero and the satellite will end up at the same altitude (and, therefore, the

same velocity) as the leader satellite. Steady state is achieved.

So, this controller, with its three states for the error integrals for the orientation controller

and its two states for filtering (smoothing) in the separation controller, contributes five states to

the overall satellite model. With the controller's five states, the three momentum wheels with

one state each, the satellite body with 13 states, and with an integral state computing total fuel

burn, the satellite model as a whole has 22 states. These states are governed by 22 coupled

ordinary differential equations--many of which are nonlinear. For the model of the entire

satellite formation, an arbitrarily large number of states and equations can be included simply by

increasing the number of satellites in the formation.
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7.5.2 Satellite Formation

For a formation to act as a single large radar aperture, the satellites must be distributed

both in the along-orbit direction and in the cross-orbit direction. Ideally, they should be

distributed and move together to form some type of stable, regular grid pattern--like a school

band marching in a parade. Unfortunately, a stable grid formation is not possible for a formation

of satellites because it is impossible to maintain a fixed cross-orbit separation without enormous

amounts of thrust (and fuel). Looking at the left-hand plot of the figure below, note that the top-

most and bottom-most orbits maintain a constant cross-orbit separation relative to the center

orbit. Because the top and bottom orbits are not inertially correct (e.g., they do not follow a

Great Circle route), an enormous amount of thrust is required to fight gravity throughout the

orbit. This is not feasible.

Figure 7-13. Examples of Non-Inertial (left) and Inertial (center and right) Orbits for Achieving Cross-Orbit
Satellite Separation. The non-inertial orbits (left) fight gravity thereby requiring an unreasonable amount
of thruster power and fuel. Inertial orbits require far less fuel but sacrifice some cross-orbit coverage
(center). Consistent cross-orbit coverage can be achieved by adding satellites and by carefully choosing
the longitude of each orbit's ascending node.

Instead, a new formation has been chosen that allows each satellite to follow an inertially

appropriate orbit (meaning a Great Circle route) while achieving cross-orbit separation (see the

center plot of the figure above). The cross-orbit separation is achieved by slightly offsetting one
satellite's orbital inclination relative to the others. As the above center plot shows, this offset in

inclination allows cross-orbit separation to be achieved throughout much of the orbit. By using

more satellites and by properly choosing the longitude of their ascending node (where they cross

the equator), a fairly constant amount of cross-orbit coverage can be maintained (right-hand

plot).

In setting up and controlling the formation for this simulation, the desired inclination

angle for the formation as a whole must be decided. To mimic the EO-1 and other earth-

observing satellites, an orbital inclination of 98 degrees is chosen (see figure below).

Furthermore, the orbit is assumed to be circular with an altitude of 750 km (again following from

the EO-1 example). For the cascaded leader-follower control that has been implemented here for

the satellite controller, each subgroup leader (including the overall formation leader) is set to

follow this same orbit with each subgroup leader following the previous subgroup leader by the

proscribed subgroup separation distance.
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Figure 7-14. Nominal Orbit Used for Simulations (as plotted over a stationary earth) - Circular With an
Altitude of 750 km and an Inclination Angle of 98 deg.

Within a subgroup, each follower is given the same orbit except the inclination angle is

adjusted to yield the desired maximum cross-orbit separation. For these simulations, the

maximum cross-orbit separation is taken to be _+250 meters relative to the subgroup leader's

position. This amount of cross-orbit separation yields an exceptionally small 1.01 x 10 -3 degree

deviation from the nominal 98 degree orbital inclination. Within the subgroup, the satellites are

also set to be separated from one another in the along-orbit direction by the proscribed satellite

separation distance.

The result is that, relative to the overall leader satellite, the satellite formation is

distributed both in the along-orbit and cross-orbit directions as shown previously in Figure 7-13.

The cross-orbit position of the follower satellites is changing throughout the orbit, but cross-orbit

coverage is maintained. Using more satellites allows for an extended and dense virtual aperture

to be created by this method.

7.5.3 Simulation Results

With the model and the satellite formation defined, the motion of the formation and the

reaction of the formation to changes in commands can be simulated. One typical command that

might be given to the formation is to change its configuration in response to mission

requirements (see TechSat 21 above). For an imaging satellite formation such as this one, it

might be desired to pull the satellites closer (decrease their separation) to widen the formation's
radar beamwidth so that it can cover more ground in a single look.

Specifically, a simulation was run with a formation of 30 satellites (grouped into six

subgroups). The initial subgroup separation was 200 meters and the initial satellite separation
was 25 meters. The new configuration requires a subgroup separation of 100 meters and a

satellite separation of 10 meters. The results of just the subgroup leader satellites are presented

in the figure below.
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Figure 7-15. Simulation Results of Maneuver to Shrink the Spacing Between Subgroup Leader Satellites
From 200 m to 100 m. Only subgroup leaders are plotted.

In this figure, note that the initial separation between subgroup leaders is seen to be the

given value of 200 meters. Looking at the plot of thrust, it is seen that the thruster immediately

fires up to its maximum thrust to try to reduce this separation to 100 meters. The thruster burn

acts to lower the altitude of each of the satellites. The reduction in altitude increases the relative

velocity of the satellites. This increased velocity then acts to reduce the separation between the

satellites. The simulation results confirm the behavior expected during the design of the

controller. Similarly, note that as the desired separation is approached, the thruster firings have
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begun to bring the satellite's altitude back to its original value and the relative velocity has begun

to return to zero. Again, the expected behavior is seen.

An interesting point to note is how the plots differ for each satellite. For example, note

that the satellite farthest back (starting at a separation of 1000 m relative to the overall leader)

must end up about 500 meters behind the overall leader once the repositioning maneuver is fully

complete. It has the most distance to make up. Because of this need, note how the satellite dips

to the lowest altitude, stays at a low altitude for the longest time, and achieves the highest

relative velocity. To an orbital engineer, this maneuver performed by the last satellite might be

too extreme (or not extreme enough). Using this simulation, the engineer could try different

formation control laws until the desired performance is achieved.

Another interesting point is seen when looking at the plot below, which shows the data

for all 30 satellites in the simulation. In this plot, the four follower satellites in each subgroup

are seen closely following their leader. No instabilities arise due to their closeness. In fact,

perhaps because of their closeness, note that the followers use much less thrust than the leaders.

For an engineer looking to minimize fuel usage, exploring this finding would be critical. Finally,

with respect to the performance of the algorithms, note that these results were achieved by

keeping only 220-250 of the 660 (30 satellites times 22 states each) total states for this
simulation. Combined with the benefits achieved by diagonalization, this represents a substantial

reduction in model complexity.

7O



 reare

E
v

0

-200

-400

-600

-800

-1000

0.5
z

0

tE -0.5

-1
0

Along-Orbit Separation From Overall Leader

500
1 I [

1000 1500 2000 2500
Satellite Thrust Along Satellite's Z-Axis

j i i i

500 1000 150O

30O0

Satellite Altitude

I I

2000 2500 3000

705.1 .....

704.8
0

0.15

__ 0.1
0

0.05
>

.>- 0

rr -0,05
0

300

I I I I I

500 1000 1500 2000 2500
Satellite Velocity Relative To Overall Leader

3OO0

I

500 1000 1500 2000 2500 3000
Total Number of States Kept in MOR Simulation

i

250

O_

_5 200

I I I I I

1500 500 1000 1500 2000 2500 3000

Time (sec)

Figure 7-16. Simulation Results of Maneuver to Shrink the Spacing Between Subgroup Leader Satellites
From 200 m to 100 m and to Shrink the Spacing Between Satellites Within a Subgroup From 25 m to
10m.

?1



 'reare
8 TESTS OF SOFTWARE LIBRARY IMPLEMENTATION

During the past year of this project, the distributed simulation library has been tested

extensively using the physics-based models described in the preceding section. Prior progress

reports have described the application of the software library to these models, where testing

focused on evaluating the performance of the model-order reduction algorithms. In these tests,

the effect of varying the number of states retained in a simple model and varying the updating

frequency for the simple models were evaluated. Specifically, these results were described in

detail in monthly progress report 5 (dated November 28, 2001) for the heat conduction model,

monthly progress report 8 (dated February 28, 2002) for the turboprop transport plane model,

and monthly progress report 10 (dated April 29, 2002) for the F-16 aircraft model. Summaries of

these results are also provided in Section 6 of this report.

During the latter part of the year, we also performed numerous tests of the CORBA-based

distributed simulation capabilities of the software library. Various computer configurations were

tested, both with multiple subsystem processes running on a single computer and with

subsystem processes dispersed across an internal network. In addition, the robustness of the

algorithms was evaluated by imposing artificial communication delays during the simulations.

The efforts of this past year culminated with a full-scale test using subsystem processes

distributed across the Internet on geographically dispersed computers with real communication

delays. These tests successfully demonstrated the utility of the software in running distributed
simulations across the Internet, and also showed the robustness of the system with respect to

networking communication delays. Details of these tests are described in the remainder of this

section.

8.1 DEMONSTRATION OF SOFTWARE LIBRARY FOR EXAMPLE CONFIGURATIONS (F-16 AND

SIX SATELLITE FORMATION) ON A SINGLE COMPUTER

The performance of the distributed simulation software library was first tested on two

relatively simple example models, the F-16 aircraft model and a six satellite formation model. In
these initial demonstrations, we demonstrated our approach with multiple processes, each

representing a subsystem, executing on the same computer.

In order to examine the effects of implementing the models in a distributed fashion on

multiple computers, simulations were run both with and without artificially simulated

communication delays. These were imposed as a random delay of up to one second in the

response of the Simulation_Process server process whenever a CORBA invocation request was

made by the Simulation_Manager to the integrate_oneway_IDL(...) or the

update_local_simple_model_oneway_IDL(...) functions. A different sequence of random pauses

was generated for each Simulation_Process by seeding its pseudo-random number generator

using the local clock millisecond time when the first call to it was made.

The configuration used for the F-16 model is illustrated in Figure 8-1. In this test, seven

separate executable processes were run on the same computer: six Simulation_Processes (one

for each model subsystem: body, engine, controller, elevator, ailerons, and rudder) and one

Simulation_Manager. The CORBA Naming Service process was also run on this computer. The

single computer tests were repeated on two separate computers, both with and without

72



 reare
communication delays. Test results are summarized in Table 8-1. For all cases, the simulation

results were not affected by communication delays as they were exactly identical to all bits of

machine precision (results are illustrated in Figure 8-2). However, as expected, communication

delays as well as processor speed both had a large impact on the required execution time.
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Figure 8-1. Configuration for F-16 Multiple Process Simulation.

Table 8-1. Test Results for F-16 With Multiple Processes on Single Computer

Computer Processor RAM Execution time

without delays
60 secjyb.creare.com Pentium 1]I 512 MB

1.1 GHz

testl.creare.com Pentium Pro 128 MB 290 sec 1100 sec

200 MHz

Execution time

with delays
1000 sec

73



 'reare

600

F-16 simulation results for distributed simulation

i i i i i i i

500

-o 400

O.
o_ 300

_0.5

I I I I I I I I I

2000 5 10 15 20 25 30 35 40 45 50

0

0

0.6

0.4

-8 0.2

o

1 r r T--T--

L l J L____ 1

5 10 15 20 25 30 35 40 45 50

I I I I / -. _ I

I I I I I I I I I

-020 5 10 15 20 25 30 35 40 45 50

i i i I

Ioo ' '_ ' /'\ ' i AOA

I• -- Pitch

50 _- /" _ / _.,, .... Elevator

_ 0 . _/-4 .... -- --

-50 t i I I I I I i i *
0 5 10 15 20 25 30 35 40 45 bO

20 )_ ' , , , , , , , ,

0 I I I I I t I I I

0 5 10 15 35 40 4520 25 30 bO

Time (sec)

Figure 8-2. Simulation Results for F-16 Model With Multiple Processes on Single Computer.

These tests were repeated for the six satellite formation model using the configuration

illustrated in Figure 8-3. In this test, seven separate executable processes were run on the same

computer: one Simulation_Process for each satellite and one Simulation_Manager, along with

the CORBA Naming Service. The test was again repeated on two separate computers, both with

and without communication delays. Test results are summarized in Table 8-2. Simulation

results (illustrated in Figure 8-4) were again exactly identical to all bits of machine precision for

all cases.
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Figure 8-3. Configuration for Six-Satellite Formation Multiple Process Simulation.

Table 8-2. Test Results for Six-Satellite Formation With

Multiple Processes on Single Computer

Computer

j yb.creare.com

test I .creare.com

Processor

Pentium III

1.1 GHz

Pentium Pro

200 MHz

RAM

512MB

128 MB

Execution time

without delays
3300 sec

14000 sec

Execution time

with delays
31000 sec

42000 sec
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Figure 8-4. Simulation Results for Six-Satellite Formation Model With Multiple Processes on Single
Computer.

For both the F-I6 and six-satellite formation models running on a single computer,

neither communication delays nor processor speed had any effect on the computed simulation

results. For the non-delayed cases, execution run-time was approximately inversely proportional

to processor clock speed. For the artificially delayed cases, processor speed had a much smaller

effect, since the imposed communication delay became a more significant "bottleneck" that

dominated execution run-time.

It should be noted that during these tests, a significant "call latency" was observed with

the CORBA communication protocol. Even for function calls that pass no parameters, the
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maximum call rate using a 10 MB Ethernet connection is approximately 200 to 2000 operation

invocations per second (as compared to 1,000,000 or more internal C++ function calls per

second). Henning and Vinoski (1999) state that "the overall cost of remote calls is dominated by

call latency until parameters reach several hundred bytes in size, so an invocation without

parameters takes about the same time as an invocation that transmits few parameters."

Following this observation, several modifications were made to the software library to minimize

the number of CORBA invocations. For example, the set of Simple_Models was originally sent

by the Simulation_Manager to each Simulation_Process using an individual function call for

each simple model. This was modified so that all Simple_Model updates are now passed using a

single invocation. Such straightforward changes resulted in a significant reduction in run-time

for the multiple process simulations. For example, these changes reduced the time required to

run the non-delayed F-16 simulation on test 1.creare.com from 405 seconds to 286 seconds.

8.2 DEMONSTRATION OF SOFTWARE LIBRARY FOR EXAMPLE CONFIGURATIONS (F-16 AND

SIX-SATELLITE FORMATION) ON MULTIPLE NETWORKED COMPUTERS

Both the F-16 and six-satellite formation models simulations were then run with each

subsystem distributed across multiple networked computers. The configurations used for either
model are summarized in Table 8-3. For both models, each subsystem process was run on a

separate computer. The Simulation_Manager and Naming Service processes were also run on

one of these computers (testl.creare.com) alongside a subsystem process. The processor speed

(-200 MHz) and RAM (-128 MB) were comparable for each computer. The computers were

physically linked on the same 10 Mbps Ethernet line which was connected to the Internet

through a T1 connection.

No problems were observed with the simulations distributed across these multiple

networked computers, and the exact same simulation results were obtained. Compared to the

previous simulations run on a single computer, we expected a trade-off between faster local

execution of each process (since each process had its own processor) but slower communication

among processes. The total execution time for the F-16 and six-satellite formation simulations
were 130 seconds and 4200 seconds, respectively, on the six computers, as compared to 290 and

14000 seconds, respectively, on a single 200 MHz computer (testl.creare.com). Thus, for these

examples the benefits of distributed computing power outweighed the added cost of network

communication.
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Computer

Table 8-3. Configurations for F-16 and Six-Satellite Formation Models

With Processes on Multiple Networked Computers

Processor RAM Connection F-16

test 1.creare.com* Pentium Pro

200 MHz

test2.creare.com Pentium Pro

200 MHz

test3.creare.com

test4.creare.com

test5.creare.com

Pentium Pro

200 MHz

Pentium Pro

200 MHz

Pentium Pro

180 MHz

128 MB

128 MB

128 MB

128 MB

96 MB

test6.creare.com Pentium Pro 128 MB

266 MHz

Type & Speed

T1

750 kbps
TI

750 kbps

T1

750 kbps
T1

750 kbps
T1

750 kbps
T1

750 kbps

Subsystem
Model

engine

Satellite

Subsystem
Model

satellite 1

controller satellite 2

elevator satellite 3

* Simulation_Manager and Naming Service also run on testl .creare.com

ailerons

rudder

satellite 4

satellite 5

body satellite 6

The six-satellite formation simulation was then repeated for a shorter simulation time

period (300 seconds) under three different conditions. In the first case, the models were

subjected to the linearization, block diagonalization, and model order reduction algorithms. For

this first case, the time required to generate the Simple_Models would be greatest, but the time

required to transmit and integrate them would be the least due to their relatively small size. In
the second case, the models were linearized and block diagonalized, but not subjected to model

order reduction. For this second case, the time required for Simple_Model generation would be

somewhat less than the first case while the time required for transmission and integration would

be somewhat more. In the third case, the models were only iinearized, and subjected to neither

block diagonalization nor model order reduction. For this third case, the time required to

generate the Simple_Models would be the least, but the time required to transmit and integrate

them would be the greatest due to their relatively large size. The results of these tests are shown

in Table 8-4. Note that the typical Simple_Model size for these 22 state linearized models is

reduced by about 25% by block diagonalization alone, while block diagonalization coupled with
model order reduction reduces the linearized model size by about 75% for this model.

Unfortunately, the reduction in execution time was not nearly as dramatic. This suggests

that much of the run-time cost is dominated by linearization of the Detailed_Models. This is not

surprising since the software library currently estimates partial derivatives of the

Detailed Models using finite differences, a very computationally expensive technique. During

the nextyear of this project, we will implement a model preprocessing step, where the partial
derivatives of the model will be hard-coded explicitly using third-party automatic differentiation

software (probably ADIC). This should not only greatly reduce the execution time required for
the distributed simulation software library, but also result in more accurate linearizations of the

model (and hence more accurate Simple_Models).
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Table 8-4. Results for Various Simple_ModelGenerate Schemes for Six-Satellite

Formation Models With Processes on Multiple Networked Computers

Case Linearization Block Model Typical Execution

Diagonalization Order Simple_Model Time
Reduction Size

1 _/ ,_ _/ 1200 bytes 4200 sec

2 _/ { 3600 bytes 4300 sec

3 _/ 4800 bytes 4700 sec

8.3 DEMONSTRATION OF SOFTWARE LIBRARY FOR COMPLEX CONFIGURATION

(30-SATELLITE FORMATION) ON MULTIPLE NETWORKED COMPUTERS

In the next test, a substantially more complex model of a 30 satellite formation

(consisting of six subformations with five satellites each) was simulated on the same set of

multiple networked computers. The configuration used is summarized in Table 8-5. Each of the

30 satellites was simulated as a separate process. However, due to computer availability

limitations, five independent satellite processes were simulated on each of the six computers.

The Simulation_Manager and Naming Service processes were also run on one of these

computers (testl.creare.com) alongside the first five satellite processes.

The results for 3000 seconds of simulation time are illustrated in Figure 8-5. No

problems were observed with the distributed simulation of this complex configuration on

multiple networked computers. However, the processing time for the overall simulation was

rather lengthy (approximately 16.4 hours). This is attributed not to network communication

delays but rather a processing speed bottleneck since five processes were simulated together on

each computer. This problem is again exacerbated by the use of finite differences to estimate

partial derivatives of the Detailed_Models. Moreover, each Simulation_Process subsystem

process, as well as the Simulation_Manager process, would ideally be run on its own dedicated

computer (or processor of a multiple processor computer). We expect that such a configuration
would reduce the total execution time for the 30 satellite formation model by approximately 80%

(since the processing speed of each process would increase by roughly a factor of five).
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Table 8-5. Configurations for 30-Satellite Formation Models With Processes

Computer

on Multiple Networked Computers

RAMProcessor

test 1.creare.com* Pentium Pro 128 MB

200 MHz

test2.creare.com 128 MBPentium Pro

200 MHz

test3.creare.com Pentium Pro

200 MHz

test4.creare.com Pentium Pro

200 MHz

test5.creare.com

128 MB

128 MB

96 MBPentium Pro

180 MHz

Connection

Type & Speed

T1

750 kbps
T1

750 kbps
T1

750 kbps
T1

750 kbps
T1

750 kbps
T1

750 kbps

test6.creare.com Pentium Pro 128 MB

266 MHz

* Simulation_Manager and Naming Service also run on test 1.creare.com

Satellite

Subsystem
Models

satellites 1, 2,

3,4,5

satellites 6, 7,

8,9,10

satellites 11,

12, 13, 14, 15

satellites 16,

17, 18, 19, 20

satellites 21,

22, 23, 24, 25

satellites 26,

27, 28, 29, 30
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Figure 8-5. Simulation Results for 30-Satellite Formation Model With Multiple Processes on Multiple
Computers.

8.4 DEMONSTRATION OF SOFTWARE LIBRARY FOR COMPLEX CONFIGURATION

(30-SATELLITE FORMATION) ON INTERNET/GEOGRAPHICALLY DISPERSED

COMPUTERS

The testing of the distributed simulation software library culminated with a

demonstration on geographically dispersed computers communicating over the Internet. In

addition to the six computers at Creare Inc., two engineers volunteered use of their home

computers as part of the demonstration. One of these computers was connected through a

relatively fast DSL network connection. The other, however, was connected through a

significantly slower 56 Kband dial-up connection. While dial-up connections would not be the
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preferred scheme for production calculations, this configuration allowed us to test the robustness

of the integrated system to the relatively unpredictable time delays that are encountered with a

dial-up network connection.

For this test, the 30-satellite formation (consisting of six subformations with five

satellites each) was again simulated. The configuration of the computers used is summarized in

Table 8-6. Note that although only one satellite subsystem was run on each remote computer,

this was not a restriction imposed by the software library. Also, due to the slow speed of the

dial-up connection, the simulation was run for only 300 seconds of simulation time.

Two minor problems were encountered before the geographically distributed simulation

was run successfully. First, networking firewalls had been installed on both remote computers,

and these firewalls did not allow the Simulation_Manager process on test l.creare.com to contact

the Simulation_Processes on the remote computers. To work around this, the firewall was

temporarily disabled on one computer and explicit permission was granted for the IP address of

testl.creare.com to communicate through the firewall of the other computer. The second

problem arose when the computer on the dial-up network connection went into "standby mode"

(an energy saving feature which puts the computer into a low power consumption state) that
caused the network connection to be lost. To work around this, the automatic standby feature of

the computer was also temporarily disabled. Once these problems were addressed, the

simulation proceeded without any additional difficulties. Note, however, that if a network

connection is lost during a simulation in the current version of the software library, then the

entire simulation must be restarted since there is no explicit recovery mechanism in place.

The simulation results for the geographically distributed test are illustrated in Figure 8-6.

These results are exactly the same as for the first 300 seconds of the results illustrated in

Figure 8-5. The total execution time required for the simulation was 9000 seconds, an increase

of approximately 50% from the configuration shown in Table 8-5 that did not involve

geographically dispersed computers. Again, the increase in execution time is attributable to the

slow dial-up connection used for one of the remote computers, even though the processing speed

of this computer was substantially greater than the others. This illustrates the fact that the

distributed simulation software library is most productive when the simulation is distributed on

computers with approximately equal processing speeds and network connection speeds.

Otherwise, a single computer can act as a bottleneck which slows down the entire simulation.
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Table 8-6. Configurations for 30-Satellite Formation Models

With Processes on Geographically Dispersed Computers

Computer Processor RAM

Pentium Pro

200 MHz

Location &

Distance from

Creare Inc.

testl.creare.com* Pentium Pro 128 MB Hanover, NH

200 MHz --

test2.creare.com 128 MB Hanover, NH

test3.creare.com Pentium Pro 128 MB

2OO MHz

test4.creare.com Pentium Pro 128 MB

200 MHz

test5.creare.com 96 MBPentium Pro

180 MHz

Pentium Pro

266 MHz

Pentium III

1.2 GHz

128 MB

Hanover, Nil

jyb
(earthlink.net)

Hanover, NH

Hanover, NH

Hanover, NHtest6.creare.com

jks Pentium II 64 MB Hartland, VT

(vermontel.net) 266 MHz 20 miles
512 MB Grantham, NH

20 miles

Connection

Type &

Speed
T1

750 Kbps
T1

750 Kbps
T1

750 Kbps

T1

750 Kbps
T1

750 Kbps
T1

750 Kbps

DSL

1000 Kbps

phone dial-up

50 Kbps

* Simulation_Manager and Naming Service also run on testl.creare.com

Satellite

Subsystem
Models

satellites 1, 2,

3,4,5

satellites 6, 7,

9, 10

satellites 11,

12, 13, 14, 15

satellites 16,

17, 18, 19, 20

satellites 21,

22, 24, 25

satellites 26,

27, 28, 29, 30

satellite 23

satellite 8
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Figure 8-6. Simulation Results for 30-Satellite Formation Model With Multiple Processes on
Geographically Dispersed Computers.

8.5 CONCLUSIONS

The capabilities and performance of the distributed simulation software library have been

demonstrated for multiple subsystem processes of varying complexity, running on a single

computer, distributed across a local intranet, and geographically distributed across the Internet.

Use of object-oriented partitioning and surrogate Simple_Models greatly reduces the frequency at

which the distributed processes must communicate. Furthermore, the use of model order
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reduction in the generation of Simple_Models greatly reduces the amount of data that must be

communicated among these processes.

The use of a CORBA-based communication scheme in the software library has proven to

be robust, and simulation results are unaffected by both simulated and real communication

delays. Although CORBA invocations introduce an overhead due to call latency, special

consideration has been taken in the design of the software library to minimize this.

9 CONCLUSIONS AND FUTURE PLANS

In this fiscal year, we largely completed the theoretical underpinnings of our approach for

distributed simulation of aerospace models. Many of these features were implemented in the

associated software library, and the software was then demonstrated in a series of tests. Over the

course of the year, tests were successfully conducted on five different physical models of

generally increasing complexity. The tests included simulations where the entire model was

executed on a single computer, on several computers connected by a local area network, and on

geographically distributed computers connected by the Intemet.

While the effort necessary to develop the various physical models for testing the library

was larger than originally anticipated, this effort has proved invaluable because of the different

lessons that were learned in each case about the behavior of these models. In particular, the need

to treat block-diagonalized forms of the linearized subsystem models was learned by testing the

library on the more complicated, highly nonlinear models.

In the coming year, most of our effort will be focused in two areas. First, we will

develop the capability to automatically generate hard-coded versions of the Jacobian matrix of

the subsystem models using the ADIC or ADIFOR codes developed at Argonne National

Laboratory (assuming, as we anticipate, that no difficulty is encountered in acquiring access to

these programs). Second, we will add an uncertainty analysis capability to the software library

using an adjoint-based technique. We will also continue adding to the functionality of the model

order reduction algorithms. All modifications to the library will be tested using the suite of test

models described above.
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