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ABSTRACT

The "Collective Intelligence" (COIN) framework concerns

the design of collectives of agents so that as those agents
strive to maximize their individual utility functions, their

interaction causes a provided "world" utility function con-

cerning the entire collective to be also maximized. Here
we show how to extend that framework to scenarios hav-

ing Markovian dynamics when no re-evolution of the sys-
tem from counter-factual initial conditions (an often expen-

sive calculation) is permitted. Our approach transforms

the (time-ex_ended) argument of each agent's utility func-
tion before evaluating that function. This transformation

has benefits in scenarios not involving Markovian dynam-

ics, in particular scenarios where not all of the arguments

of an agent's utility function axe observable. We investigate
this transformation in simulations involving both linear and

quadratic (nonlinear) dynamics. In addition, we find that
a certain subset of these transformations, which result in
utilities that have low "opacity (analogous to having high

signal to noise) but are not '_actored" (analogous to not

being incentive compatible), reliably improve performance
over that arising with factored utilities. We also present a

Taylor Series method for the fully general nonlinear case.

1. INTRODUCTION

1.1 Background
In this paper we axe concerned with large distributed col-

lectives of interacting goal-driven computational processes,
where there is a provided 'world utility' function that rates

the possible behaviors of that collective [29, 27]: We are

particularly concerned with such collectives where the indi-
vidual computational processes use machine learning tech-

niques (e.g, Reinforcement Learning (RL) [14, 20, 19, 23])
to try to achieve their individual goals. We represent those
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goals of the individual processes as maximizing an associ-
ated 'payoff' utility function, one that in general can differ

from the world utility.
In such a system, we axe confronted with the following

inverse problem: How should one initialize/update the pay-

off utility functions of the individual processes so that the
ensuing behavior of the entire collective achieves large val-

ues of the provided world utility? In particular, since in

truly large systems detailed modeling of the system is usu-
ally impossible, how can we avoid such modeling? Can we

instead leverage the simple assumption that our learnering

algorithms are individually fairly good at what they do to
achieve a large world utility value?

This problem is related to work in many other fields, in-

cluding multi-agent systems (MAS's), computational eco-

nomics, mechanism design, reinforcement learning, statis-
tical mechanics, computational ecologies, (partially observ-

able) Markov decision processes and game theory. However
none of these fields is both applicable in large problems, and

directly addresses the general inverse problem, rather than

a special instance of it. (See [27] for a detailed discussion of
the relationship between these fields, involving hundreds of

references.) For example, the field of mechanism design is

not generally applicable, being largely tailored to collectives
of human beings, and in particular to the idiosyncracy of

such collectives that their members have hidden variables

whose values they "do not want to reveal". There is other

previous work that does consider the general inverse prob-

lem, and even has each individual computational process

(or "agent") use reinforcement learning [2, 7, 10, 15, 16].
However, in that work in general each process has the world

utility function as its payoff utility function (i.e., implements

a "team game" or an "exact potential game" [8]). Unfor-

tunately, as expounded below and in previous work, this

approach scales extremely poorly to large problems. (In-
tuitively, the difficulty is that each agent can have a hard

time discerning the echo of its behavior on the world utility

when the system is large; each agent has a horrible "signal-

to-noise" problem.)
Intuitively, we are concerned with payoff utility functions

that axe "aligned" with the world utility, in that modifi-

cations a player might make that would improve its payoff

utility also must improve world utility. 1 Fortunately the

ISuch alignment can be viewed as an extension of the con-
cept of incentive compatibility in mechanism design [9] to



equivalenceclassofsuchpayoffutilitiesextendswellbe-
yondteam-gameutilities.In particular,inpreviouswork
weusedtheCOllectiveINtelligence(COIN)frameworkto
derivethe'WonderfulLifeUtility'(WLU)payofffunction
[27]asanalternativeto ateam-gamepayoffutility.The
WLUisalignedwithworldutility,asdesired.In addition
though,WLUovercomesmuchofthesignal-to-noiseprob-
lemofteamgameutilities[22,29,27,31].

Asanexample,insomeofourpreviousworkweused
theWLUfor distributedcontrolof networkpacketrout-
ing[29].Conventionalapproachesto packetroutinghave
eachrouterruna shortestpathalgorithm(SPA).Unlike
withaWLU-basedcollective,inSPA-basedroutingthere
isnoconcernfordeleteriousside-effectsofroutingdecisions
ontheglobalgoal(e.g.,noconcernforbottlenecks).We
ransimulationsdemonstratingthataWLU-basedcollective
hassubstantiallybetterthroughputsthanthebestpossible
SPA-basedsystem[29],eventhoughthatSPA-basedsystem
hadinformationdeniedtheCOINsystem.

Asanotherexample,in[30]weconsideredthepared-down
problemdomain of a congestion game, in particular a more
challengiag variant of Arthur's E1 Farol bar attendance prob-

lem [1], sometimes also known as the "minority game" [6].
In this problem the individual processes making up the col-

lective are explicitly viewed as 'players' involved in a non-

cooperative game. Each player has to determine which night
in the week to attend a bar. The problem is set up so that if

either too few people attend (boring evening) or too many

people attend (crowded evening), the total enjoyment of the
attending players drops. Our goal is to design the payoff

functions of the players so that the total enjoyment across

all nights is maximized. In this previous work we showed
that use of the WLU can result in performance orders of

magnitude superior to that of team game utilities.

1.2 The Contribution of This Paper

In this paper we extend this previous work with an ap-

proach based on Transforming Arguments Utility functions

(TAU) before the evaluation of those functions. The TAU

process was originally designed to be applied to the indi-
vidual utility functions of the agents in systems in which

the world utility depends on the final state in an episode

of variables outside the collective that undergo Markovian

dynamics, with the update rule of those variables reflecting
the state of the agents at the beginning of the episode. This

is a very common scenario, obtaining whenever the agents in
the collective act as control signals perturbing the evolution

of a Markovian system.
In the previous version of the COIN framework, to achieve

g6od signal-to-noise for such scenarios might require re-evolving
the system from counter-factual initial states of the agents to
evaluate each agenCs reward for a particular episode. This

can be computationally expensive. With TAU utility func-
tions no such re-evolving is needed; the observed history of

the system in the episode is transformed in a relatively cheap
calculation, and then the utility function is evaluated with

that transformed history rather than the actual one.

The TAU process has other advantages that apply even in
scenarios not involving Markovian dynamics. In particular

it allows us to employ the COIN framework even when not

all arguments of the original utility function are observable,
due for example to communication limitations. In addition,

non-human agents, off-equilibrium behavior, etc.

certain types of TAU transformations result in utility func-
tions that are not exactly aligned with the world utility,

but have so much better signal-to-noise that the collective

performs better when agents use those transformed utility
functions than it does with exactly aligned utility functions.

In this paper computational experiments based on linear

and quadratic (nonlinear) update rules for the Markovian

system are presented that verify the foregoing. In particu-

lar, in these experiments, we consider systems of 50 agents

using a variety of world utilities and Markovian update rules.
We compare the performance of using TAU utilities for the

agents for linear and quadratic dynamics versus the per-
formance using the corresponding team game utilities. We

can also investigate systems having limited observability. In

these cases, the performance with TAU utilities even ro-

bustly outperforms that of team game utilities in which
there is full observability. We also find that the non-aligned,

high signal-to-noise utilities consistently outperform their
factored counterparts. We end with results using a Taylor

Series method to address the more general nonlinear case

than the quadratic one investigated here.

2. THE MATHEMATICS OF COLLECTIVE

INTELLIGENCE
We view the individual agents in the collective as players

involved in a repeated game. 2 Let Z with elements _ be the

space of possible joint moves of all players in the collective
in some stage. We wish to search for the ( that maximizes

a provided world utility G((). In addition to G we are
concerned with utility functions {g,), one such function for

each variable/player _/. We use the notation_ to refer to all

players other than _/.

2.1 Intelligence and the central equation
We wish to "standardize" utility functions so that the

numeric value they assign to a ¢ only reflects their ranking

of ( relative to certain other elements of Z. We call such
a standardization of an arbitrary utility U for player r/the

"intelligence for _/at ( with respect to U". Here we will

use intelligences that are equivalent to percentiles:

,) _--f d,,. (¢')O[V(()- V(¢')], (1)
where the Heaviside function f3 is defined to equal 1 when

its argument is greater than or equal to 0, and to equal
0 otherwise, and where the subscript on the (normalized)

measure d# indicates it is restricted to (J sharing the same

non-rj components as 4. In general, the measure must reflect

the type of system at hand, e.g., whether Z is countable

or not, and if not, what coordinate system is being used.
Other than that, any convenient choice of measure may be

used and the theorems will still hold. Intelligence value are

always between 0 and 1.
Our uncertainty concerning the behavior of the system is

reflected in a probability distribution over Z. Our ability

to control the system consists of setting the value of some

characteristic of the collective, e.g., setting the functions of

the players. Indicating that value by s, our analysis revolves

2The full mathematics of the COIN framework, however,
extends significantly beyond what is needed to address such

games. See [28].



aroundthefollowingcentralequationforP(G [ s), which

follows from Bayes' theorem:

where _'g -= (e9,1 (_ : _/1), eg,_ (¢ : rn),''' ) is the vector of the
intelligences of the players with respect to their associated

functions, and g'G - (ec(_ : _/1), ev(_ : _/2),'"" ) is the vector

of the intelligences of the players with respect to G.

Note that eg,(_ : r/) = 1 means that player r/ is fully

rational at _, in that its move maximizes its utility, given

the moves of the players. In other words, a point _ where

eg, (_ : r/) = 1 for all players _/ is one that meets the def-
inition of a game-theory Nash equilibrium [9]. Note that

consideration of points ff at which not all intelligences equal

1 provides the basis for a model-independent formalization
of bounded rationality game theory, a formalization that

contains variants of many of the theorems of conventional

full-rationality game theory [25]. On the other hand, a _ at

which all components of e'G = 1 is a local maximum of G

(or more precisely, a critical point of the G(ff) surface).
If we can choose s so that the third conditional probability

in the integrand is peaked around vectors _'g all of whose

componentsare close to 1, then we have likely induced large

intelligences. If in addition the second term is peaked about

e'a equal to _'9, then g'G will also be large. Finally, if the

first term is peaked about high G when e'a is large, then our
choice of s will likely result in high G, as desired.

Intuitively, the requirement that the utility functions have

high "signal-to-noise" (an issue not considered in conven-
tional work in mechanism design) arises in the third term.
It is in the second term that the requirement that the util-

ity functions be "aligned with G" arises. In this work we
concentrate on these two terms, and show how to simulta-

neously set them to have the desired form.
Details of the stochastic environment in which the col-

lective operates, together with details of the learning algo-

rithms of the players, are reflected in the distribution P(_)
which underlies the distributions appearing in Equation 2.

Note though that independent of these considerations, our
desired form for the second term in Equation 2 is assured

if we have chosen utility utilities such that _'_ equals e'a ex-

actly for all _. We call such a system factored. In game-

theory language, the Nash equilibria of a factored collective
are local maxima of G. In addition to this desirable equi-

librium behavior, factored collectives automatically provide

appropriate off-equilibrium incentives to the players (an is-

sue rarely considered in game theory / mechanism design).

2.2 Opacity
We now focus on algorithms based on utility functions

{gn} that optimize the signal/noise ratio reflected in the
third term, subject to the requirement that the system be

factored. To understand how these algorithms work, given

a measure d#(_n), define the opacity at ¢ of utility U as:

. IU(_) - U(¢_, ¢,)[ (3)f_v(¢ : _h s) - di'J(i' [ _)IU(¢ ) U(;-n, _)[ '

where J is defined in terms of the underlying probability

distributions, a and (_, _,) is defined as the worldline whose

3Writing it out in full, J(l' ] _) - J(i,, ¢' [ ¢'n, s)/P(_n ]

components axe the same as those of _ while its _/ com-

ponents are the same as those of _ ([28]).
The denominator absolute value in the integrand in Equa-

tion 3 reflects how sensitive U(_) is to changing _n. In con-

trast, the numerator absolute value reflects how sensitive

U(_) is to changing _-,. So the smaller the opacity of a util-
ity function g,, the more g, (¢) depends only on the move of

player _/, i.e., the better the associated signal-to-noise ratio

for r/. Intuitively then, lower opacity should mean it is easier

for _/to achieve a large value of its intelligence.
To formally establish this, we use the same measure d#

to define opacity as the one that defined intelligence. Under

this choice expected opacity bounds how close to 1 expected

intelligence can be [28]:

E(eu(_ : r/) [ s) _< 1 - g, where

K < Z(nv(_ : _,_) I s). (5)

So low expected opacity of utility gn ensure that a necessary
condition is met for the third term in Equation 2 to have the

desired form for player r/. While low opacity is not, formally

speaking, also sufficient for E(ev(¢ : _1) [ s) to be close to 1,

in practice the bounds in Equation 5 are usually tight.

2.3 Difference Utilities

It is possible to solve for the set of all utilities that are

factored with respect to a particular world utility. Unfortu-

nately, in general it is not possible for a collective both to
be factored and to have zero opacity for all of its players.
However consider difference utilities, which are of the form

v(_) = C(_) - r(f(_)) (6)

where F(f) is independent of ¢,. Any difference utility is
factored [26], and under benign approximations, E(_,, [ s)

is minimized over the set of such utilities by choosing

F(/(_)) = E(G [ _'n,s) , (7)

up to an overall additive constant. We call the resultant
difference utility the Aristocrat utility (AU), loosely re-

flecting the fact that it measures the difference between a

player's actual action and the average action.

If possible, we would like each player _/to use the associ-
ated AU as its utility function to ensure good form for both
terms 2 and 3 in Equation 2. This is not always feasible how-

ever. The problem is that to evaluate the expectation value

defining its AU each player needs to evaluate the current

probabilities of each of its potential moves. However if the

player then changes its utility function to be the associated
AU it will in general substantially change its ensuing behav-

ior. (The player now wants to choose moves that maximize
a different function from the one it was maximizing before.)

In other words, it will change the probabilities of its moves,

which means that its new utility function is in fact not the

AU for its actual (new) probabilities.
There are ways around this self-consistency problem, but

in practice it is often easier to bypass the entire issue, by

_*n, s), with:

P(_, I¢_, _)P(¢_ I_,, _)_(_) + (4)
J((,, (' I (;, _) - 2

P(¢_I _'-,,s)P(¢, I¢:,, _)_(¢,)
2



givingeach_/autilityfunctionthatdoesnotdependonthe
probabilitiesof r/'s own moves. One such utility flmction is
the Wonderful Life Utility (WLU). The WLU for player 7/

is paxameterized by a pre-fixed clamping parameter CLn
chosen from among _7's possible moves:

WL_], -- a(_) - C((-_, CL,) • (8)

WLU is factored regardless of the choice of clamping param-

eter. Furthermore, while not matching AU's low opacity,

WLU usually has fax better opacity than does a team game.

3. THE COIN FRAMEWORK FOR SYSTEMS

WITH MARKOVIAN EVOLUTION

We consider games which consist of multi-step "episodes".

Within each episode the entire system evolves in a Marko-
vian manner from the initial moves of the players. We are

interested in such games where some of the players r/ are

not agents whose intial state is under control of a learning

algorithm that we control, but rather constitute an "envi-
ronment" for those controllable agents (i.e., where some of

the players correspond to the state of nature).
Let A be the Markovian single step evolution operator of

the entire system through an episode,

= AG-1 (9)

Each component (_, for example, could be a one-dimensional

real number. The row vector A n would then be O's update

rule. Alternatively, each agent could be represented by one

of N symbolic values. In that case, G would be given in a

unary representation as a vector in 7_"_'t"l (i.e. a Haax ba-

sis). Considering such large spaces are necessary to describe
arbitrary, nonlinear dynamics as Markovian evolution. Here
we will concentrate on the former case, where the moves of

the players are all real numbers.
The full multiple time step evolution of an episode is given

by single step operator in the usual way: Let

A

A 2

A 3
C=

AT
where T is the number of time steps per episode. This opera-

tor applied to our initial state _ yields the entire "worldline"

(, or time history, of the system.

(= c5. (lO)

We consider difference utility functions of the form

9,7(0 = a(C(o) - rn(f,C_) (11)

where G is the world utility function to be optimized. We

will choose Fn so that the product FnC(o is independent of

agent r/'s actions. This is a necessary and sufficient condition

for the associated difference utility 9n(_') to be factored with

respect to the world utility G for any and all choices of

F n. In general, F n can be chosen in such a way to optimize
learnability. Here though, for simplicity, we choose F n = G.

Accordingly, application of the Fn operator is an instance
of transforming the argument of the (second term of the)

utility functions of the agents, i.e., it is a TAU process.

It is important to note that the particular form of C given
above is not necessary for the results and methods of this

paper to apply. In fact, there is no reason even to view the
COIN-based choice of the 9n as optimizing G for a multi-

step game involving a "dynamics" process in some sense. It

can be viewed as simply optimizing some G(C(o) for some

"abstract" function C. As we will see, a major advantage of

our approach to optimizing functions of this form is that C

only needs to be run once to set the values of gn. Moreover,

this single running of C is automatically done "by nature" as

the system runs. There is no extra burden on the individual

agents to perform calculations involving C, for example, to
evaluate outcomes of counter-factual moves.

4. LINEAR EVOLUTION

4.1 Avoiding re-evolution of the system
We now consider the operator Fn for the case of linear evo-

lution (i.e. C is a linear operator). For simplicity episodes
are composed of one time step (i.e. C = A), and agents ini-
tially exist in one of two states (i.e., the players under our
control can make one of two moves). As mentioned above, a

sufficient condition for r/'s difference utility 9n to be factored

is that the combination F,_C_o is independent of _/'s initial
action. One way to accomplish this stax_s by clamping _7's

initial action, producing CLn_, where CLn is a clamping

operator represented by a decimated identity matrix with
zero-valued diagonal element at position r/. This clamped

state must then be re-evolved to produce the desired com-

bination, C(CLn_).
Unfortunately doing this means re-evolving the entire sys-

tem, which may be computationally prohibitive, especially if

it must be done for each agent. We define, therefore, a post-
evolution clamping operator Fn such that FnC : C(CL,7),

and therefore no re-evolving is needed once C(o has been

evaluated (by nature). It follow that

Fn = C(CL,)C-'. (12)

The spectral structure of the operator Fn is readily deter-

mined. The eigenvalues axe )_ = 1 - 6_,_ where 61.i is the

Kronecker delta. Corresponding eigenvectors are _ = c_

where {c_} axe the columns of the linear evolution operator
C. Since they span the space the post-evolved state can be

expanded in terms of these eigenvectors of Fn:

i:

Application of F n to the post-evolved state in this basis is

straightforward. The result is Fn(, = _ - an_ where an is

the projection of (, in the direction of gn. Furthermore, since

eigenvectors of Fn correspond to columns of C, the matrix
C -_ acts as a projector onto this basis. Using this fact and

recalling that _ = C_, it can be shown that an = (_ i.e. it

equals agent O's action at t = O. Thus, Fn can be completely

expressed in terms of observed post-evolution quantities:

In this way we can calculate the result of clamping the initial
state and re-evolving without performing that re-evolution.
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Figure 1: Performance for 50 agents with linear dy-
namics when the environment is set to zero at the

beginning of each episode. Results for TAU g are
represented by +, results for 75% observability TAU,
g_5% are [3, then applying L to the first as well as
second terms gives the utility 75% with results de-g,_/ ,
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Figure 2: System performance for 50 agents with
linear dynamics in a random environment. Key is
same as Figure 1. The small degradation in perfor-
mance due to randomness from the environment.

4.2 Observability restrictions
In practice, the full worldline of the system may not be

fully observable to each agent. Such limited observability

of a particular component may be determined by the prob-
lem. In other cases, due to communication constraints each

agent is only allowed to observe a certain number of compo-

nents, and must select which such components to observe,

for example to optimize some auxiliary quantity like opac-

ity. Similarly, the dynamics may not be known exactly to

the agent; some rows of C may be uncertain to an agent,

or simply cannot be determined. In these kinds of situa-

tions the gn described above cannot be evaluated at the end

of an episode by agent _/, even if the value G(_ is globally

broadcast to all agents.

The TAU approach outlined above is well-suited to ad-
dress such situations. Formally, a decimated identity oper-

ator L can be defined whose diagonal elements are {0, 1}

depending on whether or not they are observable. The cor-

responding factored utility for agent 17 is

9,_(_) = G((_) - G(LF,7(_), (15)

where in general L may vary with rl. Given global broadcast

,oo I

I

8o

,oo _ ..............:"£..........................................:

Figure 3: Comparison of average noise for factored
75% (lower

g75% (upper graph) and nonfactored 9,,i

graph) utility functions with 75 % observability. The
first 100 time steps are the training period.

to all agents of the value of G(_), for each agent to evaluate

this type of y, only requires that those components of F,_

that are non-zero (and therefore can vary) after application

of the L operator be observed.
This difference utility has two main sources of noise, one

from potentially poor choice of the clamping operator, and
the other from the use of L in the second (subtracted) term

but not in the first. To address that latter source of noise we

can impose limited observability on the first term in addition

to the second one, getting

g,(_) = G(L_) - G(LF,(_). (16)

The new utility is not factored with respect to G. Ac-

cording to the central equation however, it may still result

in better performance than when we don't have L in the first

term, if the improvement in opacity more than offsets the
loss of exact factoredness. In addition to the potential for

such far superior opacity, this utility has the added advan-

tage that now we don't even need to rely on global broadcast

of G(L_) to evaluate gn-

4.3 Experiments
Numerical simulations were performed with 50 agents. Af-

ter an initial 100-episode training period, agents selected

initial actions in each subsequent episode with the same re-

inforcement learning algorithm used in our previous work.

All players underwent linear dynamics within each episode.
The world utility function was a spin glass,

We collected statistics by averaging runs over many ran-

domly set matrices A and coupling constants Jij. These
runs were for systems whose first 25% and 75% components

at the end of the episode are observable, given some canon-

ical ordering of agents. We considered both the case where

the environment was initialized to zero (Figure 1) and where

it was initialized randomly (Figure 2). We examined world

utility value vs. episode number for six utility functions:

1) TAU g for a fully observable system;

2) TAU g for 75 % observability, g_S%;

3) The modification g_% giving a non-factored system,

again with 75 % observability;
4) g25% for a factored system with 25 % observability;
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Figure 4: Comparison of average noise for factored
25% (lower

925_ (upper graph) and nonfactored g_!

graph) utilities with 25 % observability.

5) 25% for a non-factored system with 25 % observability;g,,!
6) The team game, where every gv = G.
Even the results for limited observability clearly outper-

form the corresponding team game in which there is full

observability. Furthermore, for 75% observability, the non-

factored utilities (L in both terms) consistently outperform

their factored counterpart. In these runs factoredness fell to

approximately 90%, while noise levels in the utility functions
were as shown in figures 3 and 4. The improvement in per-

formance due to better signal-to-noise more than outweighs

the degradation due to loss in factoredness.

5. NONLINEAR EVOLUTION

Generalizingtheseresultsto arbitrarynonlineardynamics

requireshigh dimensional representations.In particular,in
the case where allagents'statesare binary,the number of

jointstatesgrows as 2N where N isthe number of agents.
The successivebitsin such a representationcan be indicated

as {x_} E /3 ----{-cc,o¢} where we have N bits altogether.

Alternatively, we can expand the joint state in the basis of
Walsh functions (1, {x_}, {xix)#i}, ...) which spans the set

of all functions taking elements of the space B to B.

Doing this reduces the original nonlinear dynamics to lin-

ear dynamics, at the price of expanding the size of the space.

As an example, in the case of a quadratic update rule, we

can represent (o in terms of second order Walsh functions

{x_xj#_}. Evolution of the system is accomplished by appli-
cation of the associated evolution matrix C or A, yielding

= C(o. To obtain factored utility functions, analagous

post-evolution operators Fn can be constructed. To ensure
that the second term in the difference utility is independent

of _ all terms involving xn will have to be subtracted. In
the quadratic case, N such terms will have to be subtracted

whereas in the linear case there was only one term. We find

N

i

where _., is the column of C corresponding to the Walsh

function xix,, i ----1, .., N. Results of experiments for this

case with 50 agents are presented in Figure 5.

5. TAYLOR SERIES METHOD

To address the more general nonlinear problem, we con-

sider a slightly different framework. In this case, each agent

_o_ooI

_e,ooo I
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soOo I
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÷
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Figure 5: System performance for 50 agents execut-
ing quadratic dynamics. The environment has been
initialized to zero. Key is same as in Figure 1.

is assigned a real-valued number r,. The state of the sys-

tem (t is a vector with these numbers as components. Each

agent can choose among three actions which results in r, be-

ing modified by {_A, 0}. Nonlinear update rules (_ = _(o)

are functions of these real-valued variables.

Construction of factored utilities

g,_(_) =- G(c-'(_)) - G(c-"(CL(o)). (19)

requires that c-'(_) be independent of _ choice of action.

One way to accomplish this to clamp (apply CL) to _ and

reevolve the system. To avoid re-evolving the system, we

approximate C(_L_) with a Taylor Series expansion about

the unclamped ¢0 initial state.

_C;L(0) -- _(o) + A((o - CL(0)' CS(_) (20)

Varying A provides us a small parameter to control the ex-

passion. It should be noted that while this method requires

that c_ _) be differentiable, the world utility G need not be.

Figure 6 presents results for a quadratic update rule withJ
randomly generated coefficients c-(_) -- _-_i,j al,j_o_o. The

agents are given a random initial starting point with -1 <

r, < 1. Because gis quadratic, G(_) is a quartic polynomial
in N dimensions. Since the coefficients (al,j } have random

signs, the function G has as many increasing directions as it
decreasing directions. The goal of the system is to traverse

this high dimensional surface, find an increasing direction,

and then follow that direction to infinity.

In light of the central equation we plot the average intel-

ligences of the agents. For three possible actions, the best
action has an intelligence of 1 while the worst choice gives

0.33. A random walk (no learning) gives a value of 0.67 on

average. We find that a team game has the same intelligence
as a random walk. The TAU utility g displays a much higher

intelligence which is also reflected in better performance.
It is interesting to adjust the ratio of 4- signs in the co-

efficients of the polynomials. If we introduce, for example,

more negative coefficients than positive, we expect the sur-

face to preferentially turn down. The task for the agents
becomes more challenging. We find, in fact, that three of

the limited observability utilities perform worse over time

(i.e. their world utility decreases). The team game also per-
forms worse over time. In fact, not only does the team game

give poor performance, but it fails altogether. The lowest
noise TAU utilities g and 9_ % still give robust performance.
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Figure 6: System performance for N = 50 agents
using the Taylor Series method. The dynamics is

governed by a quadratic function of the agents' "po-
sitions". The world utility G is a quartic in N di-

75%

mensions. (upper two graphs are 9 and gn] ; middle

25% and 975%; lower two are g 2_% and a teamtwo are g_y
game G.) The initial training period is not shown.
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Figure 7: Percentile intelligence for agents using
TALT g (upper graph) versus a team game (lower
graph). For three actions, a random walk (no learn-

ing) would give an average intelligence of 6? %.
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Figure 8: Taylor Series method where the quadratic
coefficients have more - than + signs. (graphs: up-

?5%
per pair are g and g_y ; middle three are g75% g25%,

25% _ In this case,and the team game; lower is g_y .)
three of the limited observability utilities and the

team game perform worse over time (i.e. their world
utilities decrease).
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Figure 9: Percentile intelligence for agents using
TAU g_ (upper graph) versus a team game (lower
graph), when the surface preferentially turns down.
The degradation in intelligence as compared to Fig-
ure ? reflects the greater difficulty of the problem.

To further study this dramatic difference in performance,

we compared the average intelligence of the agents for g and
the team game. The results are show in Figure 9. In the

case of the team game, again, there is no appreciable change

in intelligence from the initial training period to when the

agents are invoking learning algorithms. Conversely, for the

g utility, the agents perform at a higher intelligence than
the team game albeit lower than the situation in Figure 7.

7. CONCLUSION

We present a detailed extension of the COIN framework

to systems the undergo Markovian evolution. We find con-

sistent, robust improvement of performance as compared to

the corresponding team game. The approach is applied
to systems with linear and quadratic (nonlinear) update
rules. Results from numerical simulations are presented.

This framework also naturally includes the case of limited

observability. We found that even COIN-based utility func-
tions constrained by limited observability often outperformed

conventional team game utilities having full observability.

We also found a new class of nonfactored utilities that con-

sistently outperformed their factored counterpart, due to



improvedsignal-to-noisecharacteristics.
Toaddressthegeneralnonlinearcase,wedevelopeda

TaylorSeriesmethod.Inthiscase,thesystemofagentscan
beimaginedtotraverseanN-dimensional surface. We find
that the system's performance can depend on the character-

istics of the surface being optimized. We show that in some

situations a team game will fail altogether (i.e. its perfor-

mance will degrade over time) while the corresponding TAU

utility continues to perform well.
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