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Abstract

Observer-based sliding mode control is investigated for application to aircraft
reconfigurable flight control. A comprehensive overview of reconfigurable flight
control is given, including a review of the current state-of-the-art within the
subdisciplines of fault detection, parameter identification, adaptive control schemes, and
dynamic control allocation. Of the adaptive control methods reviewed, sliding mode
control (SMC) appears very promising due its property of invariance to matched
uncertainty. An overview of sliding mode control 1s given and its remarkable properties
are demonstrated by example. Sliding mode methods, however, are difficult to
implement because unmodeled parasitic dynamics cause immediate and severe
instability.  This presents a challenge for all practical applications with limited
bandwidth actuators. One method to deal with parasitic dynamics is the use of an
asymptotic observer in the feedback path Observer-based SMC is investigated, and a
method for selecting observer gains is offered An additional method for shaping the
feedback loop using a filter i1s also developed. It is shown that this SMC prefilter is
equivalent to a form of model reference hedging A complete design procedure is given
which takes advantage of the sliding mode boundary layer to recast the SMC as a linear
control law. Frequency domain loop shaping is then used to design the sliding manifold.
Finally, three aircraft applications are demonstrated. An F-18/HARV is used to
demonstrate a SISO pitch rate tracking controller. It is also used to demonstrate a
MIMO lateral-directional roll rate tracking controller. The last application is a full linear
six degree-of-freedom advanced tailless fighter model. The observer-based SMC is seen
to provide excellent tracking with superior robustness to parameter changes and actuator
failures.
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Chapter I

Overview

1.1 Introduction

Reconfigurable flight control is an area of research that has seen exponential
growth within the control community in the last two decades The early works in
reconfigurable flight control-- just a few research papers--began to appear in the 1960°s
and 1970’s The 1980°s saw a growing interest with a few dozen papers, and the 1990’s
saw an explosion of effort in reconfigurable flight control There are hundreds of
reconfigurable-related papers from the 1990’s, many of them from the latter part of the
decade. Considerable progress has been made, but the problem is a difficult one and
continues to see increasing interest on the part of researchers worldwide.

It 1s difficult to find a precise definition in the literature of reconfigurable flight
control. There is an entire body of work in the area of adaptive control in which the
term reconfigurable never appears. The basic purpose of an adaptive control law is to
control a system with unknown and/or time-varying parameters. However, this is
exactly what a reconfigurable control law 1s intended to do. In fact, all the
reconfigurable control approaches use some type of adaptive control scheme or adaptive
control redistribution.  Strictly speaking, a reconfigurable control law is adaptive
Likewise, an adaptive control law is one that reconfigures itself. On the surface,
reconfigurable and adaptive seem to be synonymous terms. However, there does appear

to be a difference between the terms when one considers what each one implies
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Reconfiguration in the literature always implies a response to some type of system
failure or damage This failure may be the loss of a control effector (i.e. a control
surface locked in a hard-over or zero position, a broken linkage allowing the control
surface to float, degraded controller effectiveness, or degraded actuator rate response)
The failure may be damage to an aerodynamic surface resulting in large changes to the
stability and control derivatives. The failure could also be related to the thrust or thrust
vectoring or could be simply a failed sensor. Whatever the failure type, reconfigurable
flight control implies that a sudden, large, unknown failure has occurred. Adaptive
control does not always connote this kind of failure. Changes to system parameters are
generally implied (or explicitly stated) to be smooth and non-catastrophic—usually due
to mechanical wear, unmodeled dynamics, and structured uncertainty due to
environmental variations throughout the operating envelope. With this in mind, an exact
definition of reconfigurable flight control 1s offered Reconfigurable control is an
automatic control system which is able to compensate for sudden, potentially large,
unknown failure events in real-time using on-line adaptive control laws and/or adaptive
redistribution of control effort with the objective of guaranteeing system stability and
achieving some level of required performance and handling qualities.

The motivation for developing reconfigurable flight controls is clear. Failures
during flight are inevitable—especially in combat aircraft If the flight control system is
capable of stabilizing the aircraft and providing acceptable control, it may be possible to
return the damaged aircraft to base, salvage the airframe, and save lives “Lessons
learned from the Vietnam Era show 20% of aircraft losses were due to flight control

damage. Loss of hydraulics, actuator damage, and surface damage are responsible for
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most of the flight control system losses '

In addition, high performance fighter aircraft
tend to be so inherently unstable that a pilot is incapable of controlling it without the
stabilizing influence of the control system. This, combined with the increasingly
complex workload on the pilot, dictates the need for a highly fault-tolerant control
system Commercial transport aircraft can also profit from the potential safety benefits
of reconfigurable flight controls. “In the majortty of cases surveyed, major flight control
system failures .. have resulted in crashes, with a total of over 1200 fatalities "

The approach for designing a reconfigurable flight control system has undergone a
fundamental shift in philosophy in the last five to eight years Initially, the concept was
to design a control law robust enough to guarantee system stability in the face of the full
range of potential failures. Then, upon the event of a failure, the system would identify
the fault, isolate the failure mode, estimate new system parameters, and select new
control law gains and/or control input distribution to regain some level of performance.
The schedule of gains for each condition was calculated off-line. Today, most
reconfigurable control schemes being proposed are fully adaptive—continuously
reconfiguring themselves using dynamic on-line algorithms which do not require any
a priori schedule of gains. Some perform continuous estimation of system parameters.
Others do not even require this, deriving adaptive laws based on performance-related
measures only. In the words of one set of authors, the control system is “self-
designing »* This shift in philosophy is leading to classes of controllers that are highly
robust to both “normal” parameter variations as well as damage/failures. They are more

flexible, cost efficient, and general in nature. It is almost certain that future advanced
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aircraft flight control systems will incorporate some form of on-line reconfigurable

control law.

1.2 Thesis Overview

The purpose of this research is to demonstrate a design strategy for a multi-input,
multi-output (MIMO) flight control system which is:

e able to provide satisfactory performance for a coupled-axis, statically
unstable, high performance aircraft with a highly redundant control effector
suite

e robust to model uncertainty, smooth parameter variations, and sensor and
process noise

e able to adapt to sudden, unknown, potentially large system parameter
changes due to a failure event

» able to provide satisfactory handling qualities and present no tendencies for
pilot-induced oscillation (PIO) before and after a failure event

e based on current app;oaches utilizing sliding modes.

First, an overall view of reconfigurable flight control is given. Chapter | contains a
comprehensive look at the current state of all key aspects of reconfigurable control.
Based on this review, the sliding mode control method i1s chosen as a key focus area.
Chapter 2 provides a brief introduction to sliding mode control. Chapter 3 investigates
potential solutions to key implementation issues associated with sliding mode
controllers. Based on this work, a tutorial design procedure along with several
application examples is given in Chapter 4. Conclusions and recommendations for

future research are found in Chapter 5.
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1.3 Overview of Reconfigurable Flight Control

There are four main aspects of flight control reconfiguration that must be

addressed for a complete treatment of the subject.

¢ Failure detection

e System parameter estimation

e Flight control law reconfiguration

¢ Control allocation
These four subdisciplines have traditionally been treated as separate problems because
each has fundamentally different objectives. However, recent works"’ are addressing
the interaction between them and demonstrating the need to consider the system as a
whole. For example, it is shown later that the control allocation process can create a
condition in which system parameter identification becomes impossible without
considerable preconditioning. In the sections that follow, each of these components of
reconfigurable flight controls are introduced individually. In this respect, the following
introduction follows the traditional approach. However, the problematic interactions

between the components (where they are known to exist) are also introduced.

1.3.1 Failure Detection
In the time-sequence of events that occur after a failure, detection is logically the

task that must be accomplished first. This task has traditionally been the job of the pilot.
It is up to the pilot to recognize that something is wrong and to initiate efforts to
compensate for the failure. While this method may not be suitable for high performance
applications, it still finds its place in practical applications. In a proof-of-concept flight

test program,” an MD-11 is flown using a propulsion-only emergency control system.
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To activate the system, the pilot essentially flips a switch. This requires the pilot to be
the one to detect and isolate the failure. Although this approach works well in this
application, automatic failure detection is often required.

While little emphasis is placed on fault detection in the current literature, the early
efforts in reconfigurable controls include fault detection as a primary concern. A key
component in the Self-Repairing Flight Control System (SRFCS)' study, conducted by
the Air Force Wright Aeronautical Laboratory (AFWAL), McDonnel Douglas, General
Electric, and Alphatech® in the early 1980s, is their so-called Failure Detection and
Isolation (FDI) procedure. This includes a local FDI algorithm to detect actuator failures
and a global FDI algorithm to detect surface failures. The global FDI compares the
outputs of a nominal system model and the actual aircraft This error signal is passed
through a set of hypothesis-testing filters. The output of each filter represents the
statistical likelihood that the failure hypothesized by the filter has occurred. This
approach was flight tested on a NASA F-15 and was shown to have “high potential for
the concepts evaluated.”” In the same time period, the Control Reconfigurable Combat
Aircraft (CRCA) program, conducted by Grumman, Lear Astronautics, Charles River
Analytics, and AFWAL, was using a similar approach 8 Again banks of Kalman filters
operate in parallel and test a predetermined set of failure hypotheses. The CRCA
program concluded with piloted simulations and flight tests in which the method
performed well, but extensive adjustments were needed throughout the testing. This
multiple model approach has the advantage of being able to provide very fast and
efficient detection of failures among a set of preplanned conditions. Unfortunately, as

the number of hypothesized failures grows, it becomes increasingly difficult to classify
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all the possible combinations of failure conditions This leads to either an unreasonably
large set of classifications or an unacceptably large number of gaps in potential failure
modes. Also, since failure detection relies on models of the nominal, unfailed system,
any differences between the actual system and the nominal system model can result in a
false detection of a failure False alarms are a major difficulty with this method.
Despite these difficulties, the basic idea of this method is further developed in recent
works and is termed the Multiple Model Adaptive Estimation (MMAE) method '
MMAE, which encompasses a entire control scheme has been successfully flight tested
on the VISTA/F-16

Another approach appearing in the current literature for fatlure detection involves
the use of the sliding mode control technique. In particular, a sliding mode observer 1s

designed with either an additive perturbation parameter'"

or a multiplicative
parameter.”” This parameter is then adaptively estimated. Using thresholds on this
parameter, actuator failures are determined.

Probably the largest reason for the lack of extensive work in fault detection is the
fact that many of the adaptive algorithms being proposed do not need it The algorithms
either continually estimate system parameters (and thus automatically “see” a failure) or
do not require the parameters explicitly at all. Most current works do not even make

mention of fault detection. Those that do require knowledge of a failure event typically

assume that this knowledge is provided to them “somehow.”

1.3.2 Parameter Estimation
System parameters are those elements of a dynamic system model which define

its dynamic response In linear state space where x = state variables, # = input vector,
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and y = output variables, the system parameters are the components of the A, B, C, and
D matrices, as shown in equation ( 1.1)

x(1) = A x(t) + Bu(t)
y(t) =Cx(t) + Du(t) (1.1)

For aircraft, these components are the stability and control derivatives. System
parameters might also be variables in transfer functions (e.g., time constants, damping
ratios, natural undamped frequencies, etc.) as in equation ( 1.2 ).

8] (S+1/T91)(S+1/T92)

(s)=Keg
-0, P (52 +265p0gpS +m§p)(s2 +2c;phcophs+m12)h) (1.2)

Of course, the actual plant parameters are never known exactly, even with careful
modeling. Unmodeled high order dynamics, linearization approximations, rigid body
approximations, operating envelope effects, axis coupling, control effector limits,
hysteresis effects, and stochastic randomness may all be present in the actual plant.
However, the model used for designing the control system can not encompass all these
effects perfectly This i1s a common problem for all control designers and is addressed
by careful attention to modeling the dominant plant dynamics and concerted efforts to
ensure controller robustness. A key point in a traditional design problem ts that the work
of identifying the system parameters is all done off-line. The control algorithm may be
required to switch through a schedule of gains, but all these gains are calculated a priori
based on off-line estimates of the plant parameters.

In a reconfigurable control design, the controller must be able to handle large,
sudden, unknown changes to system parameters These changes greatly exacerbate the

design problem Some adaptive design methods require knowledge of the plant; but
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after a system “failure,” the new effective plant is unknown. This leads to the
requirement for on-line system parameter identification. There are many parameter
estimation techniques in use; however, in reconfigurable control applications, the
requirement of the algorithm to run in real time narrows the choices of algorithms to
only the most computationally efficient. Some on-line parameter estimation techniques
include:  Lyapunov design approach, gradient methods (with instantaneous cost
functions and integral cost functions), pure least squares, pure least squares with
covariance resetting, modified Yleast squares with forgetting factor, gradient methods
with projection, least squares with projection, and hybrids.'"® The most common ways of
performing on-line system parameter estimation in the current literature include: time
domain least squares parameter estimation, frequency domain parameter estimation,
reduced-order transfer function estimation, and neural nets. Each of these methods are
introduced in the following sections.

All parameter estimation techniques are faced with two difficult problems- noise
and data information content.'” Noise poses a large obstacle in accurate parameter
estimation because it is difficult to distinguish between noise and a sudden change in a
system parameter. In the time domain, large data records are required and special
techniques, like “forgetting factors,” are used. Data information content is an especially
prevalent problem in aircraft applications. Aircraft frequently spend large amounts of
time 1n a steady state condition with relatively constant state and control variables. This
lack of persistent excitation leads to a lack of information content in the signals used by

the parameter estimation algorithm and can cause the calculations to become ill-

conditioned. In the most extreme case, if the input signal u =0 Vt > 0, it is clear that no
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useful information will be available for the identification algorithm. In fact, it is well
known that it 1s impossible to establish parameter error convergence to zero without
imposing some kind of conditions on the input to the system.'® Another effect that leads
to a lack of information content is data colinearity due to the control system or control

821 Unfortunately, when the states and controls are nearly

allocation routine.
proportional to one another, or if the control deflections are linearly correlated, it is
impossible to tdentify individual stability and control derivatives from the measured data

17,18

alone. These two data content problems--persistent excitation and data colinearity--

are major issues in parameter identification.

1.3.2.1 Time Domain Least Squares Parameter Estimation
Clearly the most commonly used method for system identification is some

variation of a least squares approach in the time domain. There are many references
which utilize this approach.®'*??3%  The basics are as follows:*’
Consider £ =1...n discrete measurements of a scalar signal y(k), and a regressor
vector w(k), where
y(y=wl)e (13)
and @is the vector of unknown parameters to be determined. For a linear system in state

space, w consists of stacked state variables. At time instant », a least squares criterion 1s

defined:

HEUOE kﬁ_ [ y(k)-wT (k) e(n))zxn—k +a(9(n)—e(n - 1))2 (14)

When o = 0 and A = 1, this is the standard least-squares parameter identification scheme.

The constant A is the so-called exponential forgetting factor and is often included to
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minimize the cumulative effects of noise. When the constant o # 0, variations of the

parameter vector & from one time step to the next are penalized. This is an example of
one of several common modifications which can be made to the least squares approach.
This optimization problem has a \;vell known standard solution which can be given in
“batch” form or in regressive form. This formulation ts able to follow time-varying
parameters and is a popular starting point for most reconfigurable control efforts. The
main problem that plagues this approach is the need for persistently exciting input
signals. One solution to this is active noise injection, called dithering. This, however,

can have undesirable effects upon handling qualities.

1.3.2.2 Frequency Domain Parameter Estimation
Another approach is to frame the problem as a least squares error minimization in

the frequency domain.'” This algorithm is typically able to converge to the correct
parameter values in less than one period of the dominant dynamic mode. The basics of
the technique are as follows.

Take the Fourier transform of the linear, time invariant state space equations to obtain

jo Xx(0)= Ax(0)+Bu(a) s
y(@)=Cx(w)+Du(w) (1s)

where A e R™", BeR"™™. Next, form the cost function for the r' state equation of

the vector equation ( 1.5). Thisisgivenin( 1.6).

.
1 . _ .
J, =_2~;|,mk %o (k) - A X(k) - BU(K) | (16)

where A, and B, are the 1™ rows of matrices A and B; X (k) is the (" element of the

vector X for frequency @y, and X(k)and u(k)are the Fourier transforms of the state
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and control vectors for frequency @ These transforms are calculated recursively using

the discrete Fourter transform in the following manner,

Xi(@) = X (@) +x, e o

1.7
X (o) = X At (17)
where At 1s the sampling interval, and iAt represents the current time at sample /.
Define the vector of unknown model parameters in the ™ row as
ér E[‘lxr,l Ar,Z oo Ar,n Br»l Br,Z ot I3r,rn]T ( 18)
Also, define
jo, % () ') aT(Q)
jo, X (2) XT(2) u'(2
jo X () x'(f) u'(f)

Then, the problem can be cast as a standard least squares regression problem with
complex data,

Y = X0+¢ (110)
where € 1s the complex equation error in the frequency domain. The least squares cost

function in equation ( 1.6 ) now takes the form

Jr:%(v—xé)*(v—xé) (1.11)

Finally, the parameter vector estimate which minimizes this cost function is given by

8, = [Re(X"X)|" Re(X"Y) (112)
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Note that ér e RO*™*T “and equation ( 1.12 ) must be solved for each row of the state

vector each time the routine is called. Fortunately, the matrix X X is the same for each

row, so the inverse [Re(X‘X)]-l g RO only needs to be calculated once per pass.

The existence of this inverse is not guaranteed, and in fact, Re(X X ) is nearly singular

for the first few time steps due to a lack of information content in the data during the

initial seconds.

There are several advantages which make this method attractive:

Using a carefully chosen limited frequency band for the Fourier transforms
restricts the analysis to the band of frequencies where the system dynamics
occur. This automatically filters out all unwanted high frequency data due
to noise and higher order system dynamics. Also, excluding zero
frequency eliminates trim values and measurement biases, so it is not
necessary to estimate bias parameters. For aircraft (where the nigid body
dynamics typtcally lie in the band of approximately 0.01-1.5 Hz), the
frequency band which seems to work well 1s 0.1-1 5 Hz.

The algorithm requires no initial values for the parameters and does not
need to be regularized with a priori values or constraints.

The algorithm is robust to noisy state measurements and data dropouts

The algorithm does not require persistent input excitation; and it is not
upset by intermitter&t input excitation.

The algorithm has fixed memory requirements regardless of data record

length.
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The method has low computational requirements due to the recursive

Fourier transforms and the simplicity of the algorithm.

After trying to duplicate this work,'” some additional comments about this method

are 1n order. Some of these findings present obstacles which must be overcome if this

method is to be used in a reconfigurable control setting

As with any parameter estimation algorithm, the stability of convergence of
the parameter values is highly dependent on the control input excitation
signal. This signal must be frequency-rich in order to achieve acceptable
results*® Inputs such as a step, a sinusoidal doublet, or a series of sine
waves with several distinct frequencies, produce reasonable results as long
as they excite the dominant system modes. However, more frequency-rich
inputs produce better results. Also, the excitation must be of sufficient
duration to achieve convergence Experiments with short, periodic pulses
yield very poor results.

The convergence of the parameter values are also dependent on the range
of frequencies chosen for the Fourier transforms. Both the range of
fréquencies and the fineness of the frequency spacing affect the solution
convergence. Since both of these are arbitrary, it is not clear how to select
the optimal frequency band and spacing. Experiments show that the
frequency range used for an F-16 needs to be completely different than the
range used for a DC-8. Unfortunately, simply choosing a wider frequency
band is not necessarily the best answer. A wider frequency range increases

the computational and memory requirements (for a given bin spacing) and

Chapter 1. Overview 1.3 Overview of Reconfigurable Flight Control



reduces the accuracy of the algorithm Low frequency bins tend to “pick
up” bias signals High frequency bins tend to pick up noise and high
frequency modes Ideally, the frequency range chosen should be just large
enough to capture the dominant system dynamics being modeled. This
could be an interesting task in a reconfigurable control setting where the
system dynamics could potentially have modes considerably different than
that of the healthy vehicle

The algorithm assumes constant system parameters. If a parameter
changes suddenly (or gradually) during the estimation process, the
algorithm converges to incorrect values This is because the algorithm has
“infinite memory,” by nature of the recursive Fourter transform being used.
This problem could be overcome by restarting the recursive Fourier series
at given time intervals and assuming the parameters remain constant
throughout this time interval If the Fourier transforms are not reset, the
parameter estimates will be some average of the changed and unchanged
dynamics, weighted by the information content in the data.

The algorithm assumes zero initial conditions for the states Nonzero
nitial states cause the solution to converge to completely incorrect values.
When using relatively low frequency bins (as in the case of aircraft
parameter estimation), any constant bias (zero frequency component) in the
signal “spills over” into the adjacent frequency bins, thus polluting the
frequency domain data used for the parameter estimation. Non-zero initial

states appear in the signal as just such a bias. One way to overcome this
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difficulty s to subtract a low-pass filtered version of the original signal,
leaving only the frequency components to be used for the parameter
estimation. The low pass filter introduces a small time lag, but that is not

an issue because the value being computed is low frequency in nature.
Overall, this method appears attractive—especially for initial flight test work * It
is interesting that the infinite memory of the Fourier transforms is both a key strength
and a key downfall of the method. For constant parameters, the infinite memory means
persistent excitation is not required. Unfortunately, it also means it can not track time-
varying parameters in its current form. The initial efforts to modify this method to
accommodate varying parameters are somewhat promising, however, there are

unresolved implementation issues

1.3.2.3 Reduced-Order Transfer Function Estimation
A method which is attractive in a reconfigurable control setting is reduced-order

transfer function estimation. Rather than trying to estimate all the parameters for the full
system model, a lower order model 1s assumed and its parameters are estimated. This
concept can be incorporated in both the time domain and frequency domatn least-squares
approaches.”” Also, a more simplistic ad hoc approach can be applied. For example
refer to Figure 1-1.  If the system is pulsed with a step input, by measuring outputs like
rise time, period, maximum amplitude, response slope, and delay time, it is possible to
estimate the parameters in a standard second order transfer function with delay, as in

(1.13).
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Figure 1-1: Reduced Model Order, ad hoc Approach
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. . . 40-43
This approach is used successfully in several references.*

1.3.2.4 Neural Nets
Neural nets are receiving a great deal of attention in the current literature and are

being used in a hugely diverse range of application types. Even though neural nets are
finding their way into a multitude of applications, there seems to be some resistance to
their use in systems employing a human operator This is probably due to at least two
factors. First, due to their highly nonlinear structure, stability convergence is often
difficult to prove for certain kinds of networks. It 1s also sometimes difficult to extract
the “knowledge base” contained in the net after training and to predict results for cases
outside the training set. Second, even though many networks can be proven to model a
linear system to any arbitrary degree of accuracy,** there is little incentive to favor a

neural net over traditional linear control methods for which there 1s a wealth of theory
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and experience. However, in cases where the system is complex and nonlinear, neural
nets are finding their place. They appear in the literatqre dealing with reconfigurable
controls due to the inherent nonlinear nature of the problem Functional link neural nets
combined with an adaptive critic algorithm are utilized by Cox efal** in a system
identification/adaptive algorithm scheme. Although not exactly a system parameter
identification application, neural nets are also being used successfully to remove the

. . . . . . 24,34,35,47,48
inversion error tn dynamic inversion algorithms.

1.3.2.5 System ldentification for Correlated Effectors
Whether a time domain approach or a frequency domain approach is used,

correlation of the control effectors is a problem. All approaches utilize some type of
regressor matrix which must be inverted When the control effectors are correlated,
there will be collinear columns in the regressor matrix—thus making accurate parameter
identification impossible.'® There are at least two ways the effectors can become
correlated

First 1s feedback control. Feedback control correlates the effectors’ displacement
with the aerodynamic angles. One way to deal with this problem is to break the
parameter identification into two steps. First perform a singular value decomposition on
the regressor matrix, remove all small singular values, and estimate the reduced set of
parameters.  Next, reconstruct the full parameter estimate with some a priori
knowledge 18213449
A second way control effectors can become correlated 1s the use of control

allocation. Redundant control suites require some means of distributing control

demands to the multiple effectors Unfortunately, almost all common control allocation
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schemes result in highly correlated effectors. There are several ways to deal with this
problem. First, use the extra degrees of freedom to add decorrelating excitation For
example, when using a psuedo-inverse allocation approach, randomly vary the weighting

- ST 18,1
matrix tn the optimization cost function ™ ’

(see Eqn ( 1.22), pg 34). Another approach
1s to use a priori models in the control allocation and create a reduced set of pseudo-
effectors.'” The control effectiveness matrix for these pseudo-effectors is then identified
rather than for the full effector suite Another alternative is to provide the control

allocation algorithm with enough information to compensate for the modeling errors

rather than trying to provide the control law with correctly identified parameters."’

Accurate system identification 1s a complex problem Even under the best
conditions, identification is difficult and takes time. Then, with the addition of issues
like persistent excitation and correlated control effectors, an already difficult problem
becomes much worse. System identification, if required by the control law, is a key

bottleneck in the reconfigurable control problem.
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1.3.3 Reconfiguration Control Algorithms
Adaptive control strategies can be loosely grouped into two categories, indirect

and direct adaptive control In indirect adaptive control, the process/plant model is
constructed (usually by means of an on-line observer/parameter estimator), and an
appropriate control law is then calculated based on this model This is also called
explicit adaptive control'® because the design depends on an explicit plant model. Direct
adaptive control, on the other hand, synthesizes the controller utilizing performance
criteria only without the explicit construction of the plant model ** This is sometimes
called implicit adaptive control'® because the design is based on an estimation of an
implicit plant model These definitions sound straight-forward; however, the distinction
between direct and indirect methods can become easily confused In fact, a direct
adaptive scheme can be made to appear identical to an indirect adaptive scheme “by
including a block for calculations with an identity transformation between updated
parameters and control parameters. In general, for a given plant model, the distinction
between the direct and indirect approach [only] becomes clear if we go into the details of

»l6

design and analysis. There are several works which compare different adaptive

. 22,50
schemes. Bodson etal ™

compare three model reference adaptive schemes 1)
Indirect method, 2) Direct method based on output error; and 3) Direct method based
on input error They provide a nice comparison, but draw no strong conclusions 1In a
later paper, Bodson efal® compare four adaptive schemes in light of actuator
saturation.  Steinberg’ compares seven different non-linear adaptive control laws.

Again this work provides a good top level overview of the methods, but makes no strong

conclusions.

Chapter |- Overview 1.3 Overview of Reconfigurable Flight Control

20



1.3.3.1 Indirect Adaptive
While the indirect controller may appear to be more complex, it does allow some

separation between the system parameter estimation and the controller synthesis (the
certainty-equivalence principle).* The overall concept of an indirect control scheme is

illustrated in Figure 1-2
l disturbance

/

Reference u () 20
Input ————» >

\j

Controller ‘ . Plant

Parameter
Identification

Figure 1-2: Indirect Adaptive Controller
Two indirect methods which receive the most attention in the literature are
receding horizon optimal control (RHO) and multiple model estimation. Eberhardt et al.
use a RHO controller on the Innovative Control Effector (ICE) aircraft combined with a
least squares parameter ID algorithm utilizing a lower order equivalent system flying

qualities model."”** Pachter ef al. use a RHO controller with a one-step-ahead actuator

rate constraint enforcement.”” RHO control with a modified least squares parameter ID
is also demonstrated on an F-16/MATV.? In Ward et al.>®, a RHO controller with least
squares parameter ID is used in an inner loop, and a polynomial neural net is used for an
outer loop shipboard landing task of an unmanned airvehicle Maybeck ef al. use the
method of Multiple Model Adaptive Estimation (MMAE).'*'>  Adaptation occurs via a
control redistribution, and the parameter estimates are provided by the MMAE

algorithms. Napolitano ez al’' also use multiple Kalman filters to estimate the model of
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the damaged aircraft and use these results in an adaptive control law. Boskovic et al>*
recast the aircraft model in terms of a damage parameter. They then use multiple
observers to estimate this damage parameter. The control law involves multiple
reference models and output feedback. Other examples of indirect control methods are

~ 53,54
model reference adaptive controllers,

and a simple adaptive PID controller with
modified least square parameter D" Another interesting approach is to form a multiple
objective cost function which includes optimal control and parameter identification in a
single cost function.® Since parameter identification and control performance are
competing objectives, this approach allows a direct tradeoff between the two. Rather
than performing continuous parameter tdentification, one method proposes taking the
pilot out of the control loop, inputting control steps/doublets, and estimating lower order

plant models.*""** This model is then used in an adaptive multi-loop scheme with inner

loop linear dynamic inversion and outer loop quantitative feedback control.

1.3.3.2 Direct Adaptive

Direct adaptive methods almost always include some form of model reference

following as illustrated in Figure 1-3.

! Reference
Model
disturbance
Reference / ] +
fnout _ u®) vy - :‘5
p "1 Controller g Plant
/ error
Adaptive
Mechanism |

Figure 1-3: Model Reference Adaptive Control System
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There are, in general, four elements in the MRAC system.**

o The plant, which may be nonlinear, time-varying, with unknown parameters.

e The reference model, which i1s usually a lower order linear dynamic model

which generates a desired closed-loop system output response

¢ A controller with time-varying components.

e Some type of adaptive algorithm which adjusts the controller based on the

~error between the model reference outputs and the actual plant outputs.

One of the direct methods that has dominated the literature 1s the method of
dynamic inversion (DI). As the name implies, the controller attempts to invert the plant
in order to cancel its dynamics and then replace these dynamics with those of a reference
model There are several successful examples of this approach. Dynamic inversion with
a neural net to regulate the inversion error is demonstrated on the Tailless Advanced
Fighter Aircraft (TAFA) for the RESTORE program.** This approach was successfully
tested with full piloted simulations.®® Others have also demonstrated DI with neural nets
to remove the inversion error.***"** Bacon et al*® employ non-linear dynamic inversion
using acceleration and position feedback. Another example of a direct adaptive method

d.57'58

is an approach called backstepping. Several works utilize this metho Ferrara

1 use a classical backstepping approach for the first (n-1) steps, and then use a

eta
second order sliding mode controller to find the control for the n™ step. Other
approaches include decentralized adaptive neuro-fuzzy design® an adaptive
proportional plus integral control for the AFTI/F-16 with gain adjustment based on

errors between the model reference and actual output,“ and a structured model reference

adaptive technique in which the kinematic differential equations are assumed to be
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known exactly--which reduces the amount of uncertainty for which adaptation is
required.®> Finally, a method which is receiving notable attention is the method of
sliding mode control (SMC). Shtessel ef al. demonstrate a multi-loop application of
SMC on an F-16°% and the ICE aircraft.*® This method provides some of the best
tracking results of any of the other works, and it does so without any parameter
identification. Actuator limits are handled by adaptively varying the sliding surface
boundary layer. Sliding mode control is well known for being very robust (in fact,
invariant) to certain kinds of uncertainty. This makes i1t a very attractive choice for a

reconfigurable control problem.

1.3.3.3 Others '
There are other schemes which address adaptation to large system failures but do

not fit well in either a direct or indirect adaptive category. For example, Burken’
proposes an emergency augmentation system for an MD-11 transport. A control law
which utilizes asymmetric thrust capability is designed off-line  If the aircraft
experiences control actuator failure, the pilot turns on the emergency control
augmentation system. In another work®’, Burken ef al. examine two methods as applied
to the X-33. In the first method, system failures are modeled as disturbances, and an
LQR controller is designed to handle these disturbances. No reconfiguration takes
place—it is simply a robust design. In the second method, reconfiguration is
accomplished by a quadratic programming control reallocation and a nominal control
law based on the healthy system. Lyshevski®® presents a robust control law based on
dynamic programming and Lyapunov to handle system failures Again no active

reconfiguration takes place.
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1.3.4 Control Allocation
A conventional aircraft creates moments about its three axes via three control

effectors: elevator, ailerons, and rudder. While the ailerons and rudder do not create
strictly decoupled moments, the three conventional control effectors can sometimes be
loosely considered decoupled for design purposes. Control allocation for this kind of
configuration is not an issue. A pitch moment is created exclusively by the elevator; a
roll moment by the ailerons; and a yaw moment by the rudder. If the coupling of the
allerons and rudder is not negligible, the control allocation problem becomes one of
scheduling the ailerons and rudder such that a decoupled moment is generated (e.1. roll
moment without yaw). This is traditionally accomplished mechanically by the use of
aileron-rudder interconnects.”

With the advent of sophisticated, highly unconventional aircraft with a large suite
of coupled control effectors, the problem of control allocation has become a significant

design issue. The aircraft shown in Figure 1-4 is a conceptual design for which

24,30,34,35,47,52,70

considerable work is currently being done in the literature. Note the
multiple, coupled control effectors available to generate moments.
aft body split flaps T\ axi-symmetric pitch/yaw

thrust vectoring

~ trailing edge flaperons

A ailerons

2

passive porosity strip
(directional/rol! control)

forebody blowing
Figure 1-4: Boeing Tailless Advanced Fighter Aircraft
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In order to creeite a desired moment about a given axis with an unconventionél design,
the moment demand must be divided up among several control effectors according to
some control allocation scheme. Of course, issues like relative control power, preferred-
positions, and rate and position saturation must all be considered. Control allocation
often becomes an issue in reconfigurable control applications because it 1s often a
control effector which is assumed to be failed or degraded. This, then, can necessitate an
on-line re-allocation of the controls. Also, highly redundant control effector suites are
typically assumed in reconfigurable applications because some level of control
redundancy is required in order control the aircraft after a failure

In general, the problem to be solved in control allocation ts the following:
Bu=my (114)

where B is the R™™ control power derivative matrix, my is the desired moment vector,
and u is the control vector for which a solution is sought * Since control allocation is
used for systems with multiple control effectors, it is assumed that the dimension of u is

greater than the dimension of my4. Note, the “moments” in the moment vector need not

all be actual moments in this context. It is understood, without loss of generality, that
“moments” are taken to mean “the desired control effect.” In the unconstrained case,
Equation ( 1.14) has, in general, an infinite number of solutions. However, when
control constraints (position and rate limits) are considered, there may exist a unique
solution, no solution, or an infinite number of solutions. The determination of the
control vector u, given the desired moment, is the linear control allocation problem
Control allocation is, by itself, a large and challenging field of interest and is

receiving considerable attention in the literature  Several of the most common
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approaches are- ganging, direct allocation, linear and quadratic programming, pseudo-
inverse, cascaded generalized inverse, and daisy chaining. Each of these, as well as

some of their variants, are introduced below.

1.3.4.1 Ganging
The simplest control allocation i1s a static scheme. The controls are “ganged”

together by some predetermined static distribution matrix. Due to its simplicity, this
scheme 1s often used when the main focus of the research is the demonstration of some
control law The weights in the allocation can be somewhat arbitrary, although certain
actuators can be favored for some given reason This method does not optimize any
dynamic cost function and can not span the entire attainable moment space. However,
its simplicity makes it an attractive approach in many instances. There are a number of

. 27,28,40,41,47,48.61,71,72
examples of recent works which use ganged controls 272%%4147486L71,

1.3.4.2 Direct Allocation (Attainable Moment Subset)
The Direct Allocation method is based on the Attainable Moment Subset (AMS)--

the set of all “moments” which can be produced by a set of control effectors constrained
to move within their given limits, u Supup % Note that this is a position limit

and does not account for rate limits. The AMS is found by mapping the m-dimensional
control space into the desired moment space. For the 3-moment problem, Durham®”
gives a geometric interpretation of this subspace as a 3-dimensional closed surface
polytope with vertices, edges, faces, and facets. There are 272 m1[2!(m-2)!] facets in the
control space. . Stnce most of these facets map to the interior of the AMS, only m(m-1)

facets lie on the exterior boundary. Each facet 1s a parallelogram with four corners

called vertices and four sides called edges. There are m(m-1)+2 vertices in the AMS ”*
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First, the AMS must be calculated for the given system Then, the solution on the
boundary of the AMS is found in the direction of the desired moment. This represents

the maximum attainable moment in the given direction, and the associated control vector
*

is given the designation “d  If the desired moment lies within the AMS, the desired

moment is attainable, and the control vector uq4 i1s found by scaling the boundary solution

down while preserving the desired direction, according to

_ |l
le —ud

(1.15)

where “a” is found by solving equation ( 1.16 ). If the desired moment lies outside the
AMS, the desired moment is unattainable. Note that since this method defines the entire
attainable moment space, if the moment lies outside the AMS, it is unattainable by any
allocation method within the given control effector constraints. Solutions that do not
violate effector constraints are called admissible; solutions that do violate effector
constraints are called inadmissible. 1f the solution turns out to be inadmissible, the
solution is taken on the boundary of the AMS in the desired direction. This method
turns out to be computationally intensive due to the difficulty of finding the AMS
boundary solution. Because of this, there are a few different approaches to the actual

application of this method. Three are introduced here.

1.3.4.2.1 Sequential Facet Search
The most difficult part of the Direct Allocation method is identifying the point of

intersection of a line in the direction of the desired moment with the bounding surface of

the AMS. The brute force way to find this intersection is the sequential facet search. A
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* % *
facet is defined by three vectors, ™ .M j,and m,_y At the intersection of a facet with a

line in the direction of the desired moment, mgy , the simple vector equation is:

* * *
amg =m; +bm;_ +cm_y

]
or

(1.16)

*

»*

*
oo & jor e -

During the process of identifying all the facets on the AMS, the solutions of

% * * 1
[’"i Smyy 3mi—kr are calculated and stored for each facet. Then, the values of a, b,

and c can be evaluated for a given my. A candidate facet is then selected and tested to
see if it intersects the line in the desired direction If it does, it will satisfy the
conditions”

a>0, 0<b<l 0<c<] (117)
If the candidate facet is not the correct one, the next one is checked, and so on.
Unfortunately, this search can be unreasonably large. For example, with 20 controls,
there are almost 50 million facets in the subset of constrained controls.” Of course, the
search for the correct facet is narrowed considerably if done in a selective manner
Durham offers a more efficient algorithm” to perform the facet search. It is
considerably better than sequential searching from a random location, but it is still

computationally cost prohibitive for real time on-line implementation
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1.3.4.2.2 Edge-Bisecting Facet Search
Recently, Durham presented another more efficient method for locating the

desired facet.”® 1In this method, the AMS subset is first transformed such that the
direction of the desired moment is aligned with the x-axis  The edge of the
2-dimensional figure that crosses the x-axis is identified and its z-component is
calculated. The polytope is then rotated about the x-axis and another edge is identified.
This 1s repeated until the z-component of the identified edge changes sign. The last two
edges identified (one “behind” the x-axis and one “in front” of it) are candidates for
defining the desired facet The facet is tested according to the conditions in ( 1.16 ) and
(1 17). If the facet is the correct one, the problem is solved. If not, the direction of
rotation 1s reversed and a smaller rotation angle is used. This process is repeated until

the correct facet is identified.”® This method of bisecting edge searching results in

computational requirements on par with other control allocation methods currently in -

use. The number of computations increase roughly linearly with the number of controls
(as in other methods), whereas the sequential facet search computations increase roughly

quadratically_76

1.3.4.2.3 Spherical Coordinate Transformations
Peterson and Bodson present two options for finding the correct facet based on a

spherical coordinate transformation.”*  The first option requires more on-line
calculations but requires less memory. The second option eliminates virtually all on-line
computations but requires a significant amount of memory. The spherical coordinate
transformation effectively turns the AMS into a 2-dimensional system, where special

techniques can be used to accelerate the search. Each option is comprised of off-line and
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on-line computations. In Option 1, ranges are computed for the coordinates of the facets
(in spherical coordinates) off-line. These ranges define search boxes in which the facets
are located. These boxes are used on-line to quickly assess whether the desired moment
is likely to lie within a given facet. If the test is successful, the facet ts found quickly
and the solution is obtained. Option 2 makes use of a lookup table. The azimuth and
elevation angles are quantized and facet numbers are associated with a given pair of
spherical coordinates. The creation of the table is performed off-line. The size of the
table can easily reach 1x10° elements, depending on the fineness of the quantization.
The on-line computations to find the correct facet then consist of converting the desired
moment into spherical coordinates followed by a simple table lookup. This guarantees a
known fixed amount of time to locate the desired facet.’* Both methods offer
considerable computational improvements over the sequential search of facets based on
Durham’s 3D tests. An interesting note, however, i1s that although the spherical
coordinate table lookup method provides very fast on-line performance, it is completely
unsuitable for a reconfigurable control setting If a control effector fails or 1s degraded,
the entire lookup table would need to be recalculated Since this is a large off-line task,

it 1S not a reasonable candidate for used in an adaptive environment.

1.3.4.3 Linear Programming
Page and Steinberg® provide an excellent summary of the Linear Programming

approach. This summary is duplicated below. The Linear Programming method has two

steps. First, the following linear program is solved,
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minj = W(']FuS
u

Ug
—Uu
subject to u

—Bu +ug

where u; is a vector of slack variables, and Wj is a positive weighting vector

| Bu +ug |

(118)

If3>0,

the desired moment is unattainable and the solution (denoted «') is that which minimizes

the weighted 1-norm distance between Bu' and mq. If the solution to equation (1 18)

yields J = 0, then the desired moment is attainable and a second linear program is solved:

minl] = Wl;ruS

subject to u

—u+ug

Bu:md

_u+us ]

[ 0]

~ Umax

\Y

Umin

~ Upref

| “pref |

(1.19)

where u; 1s again a vector of slack variables, W, is a positive weighting vector, and upeer

is a vector of control preferences. In this case, the weighted 1-norm distance between

the control vector solution (#) and the control preference vector (tprr) is minimized.

There are a number of examples of works which use this metho
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1.3.4.4 Quadratic Programming
The Quadratic Programming method is similar to the Linear Programming

method, except it has a quadratic cost function. Again, it is a two step process.’ First,
the equation

minJ = —;— (Bu —md)T Wq (Bu —my)
! (120)

subject to  uyy S U < Upay

is solved, where W, is a positive definite symmetric weighting matrix. If J> 0, the

desired moment is unattainable and the solution (denoted ') is that which minimizes the
weighted 2-norm distance between Bu and my If the solution of equation ( 1.20 ) yields

J =0, the desired moment is attainable and a second quadratic program is solved:

) 1 T
minJ = 5— (u—- upref) Wy (v - upref)
u

(1.21)

subject to U0 S U S Upax

Bu = my
where W_ is a positive definite symmetric weighting matrix. In this case, the weighted

2-norm distance between the control vector solution (z') and the control preference
vector (uper) is minimized.  There are a number of works which use this

4,34,66,67,70
method. ™™ "

1.3.4.5 Pseudo-Inverse
There are several variants of the Pseudo-Inverse. In each, the basic idea is fo

minimize the same quadratic cost function that the Quadratic Programming solved.*
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) 1 T
minJ = E (- ”pref) W, (u _“pref)
u

(122)

subject to  Bu = my

Note that this is posed with no limits on u. With —o <u < oo, the solutionto ( 1.22 ) 1s

u = tprer + Wy BT BWBT) T myg =B uper) (123)
This solution is a biased weighted pseudo-inverse, for which it gets its name. For the

special case of identity weighting ( W, = 1), this is referred to as the Pseudo-Inverse

method. With constraints on the control effectors, equation ( 1.23 ) may produce an
inadmissible solution. There are two common ways of dealing with the saturated
actuators. First, only the individual commands that have violated the given constraints
are scaled down so each is at its corresponding limit. Note that this individual clipping
does not preserve the direction of desired moment. The second method works to
preserve the direction of the resulting moment by scaling all commands by a single
factor until no constraints are violated by any effector. This method is called the
Direction Preserving Weighted Pseudo-Inverse method. There are a number of works

1 H H : 4,5,19,21,24,25,35,76,80-83
which use some variant of the pseudo-inverse allocation.

1.3.4.6 Cascaded Generalized Inverse
This approach is similar to the Weighted Pseudo-Inverse except in the way it

handles violations of effector constraints. If an actuator command reaches its limit, it is
set to its lumit, its effect is subtracted from the desired moment, and it is removed from
the problem--which is then solved again.* This cascading process it repeated until 1) no

new controls saturate (the desired moment is attainable); 2) all remaining controls
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saturate (the desired moment is unattainable); or 3) fewer controls remain than the

number of desired moments. When (3) occurs, the left pseudo-inverse solution is used

u=BTB)"'BTmy (124)

There are several examples of works which use this method *"***

1.3.4.7 Daisy Chaining
In the Daisy Chaining method, the available controls are separated into two or

more groups. In order to meet the demand of the desired moment, one group 1s activated
while the others remain constant. If any elements of the operating group reach their
limits, that group of controls are held at their last position and the next group of controls
are activated.”” At first glance, this approach sounds similar to the Cascaded General
Inverse, but it is different in that entire groups of controls may remain completely
unused when daisy chained As an example, consider two groups of controls: three
aerodynamic controls, u;; and three thrust vectoring controls, u;. The control

effectiveness matrix is then partitioned into two 3x3 matrices, By and B,.
|
Bu =By Byl " |=Bu+Byu, (125)
2

Stince in this application, B; and B, are square and assumed to be invertible by design,

their inverses are unique. For a given desired moment, the aerodynamic controls will be

used first until the point of saturation. That is, while #1__ Su <t

u =Bilmg  uy=0 (1.26)

Chapter I: Overview 1.3 Overview of Reconfigurable Flight Control



If any of the aerodynamic controls reach their limit, the group of aerodynamic controls

are held at that position ( ¥I(sat) ), and the thrust vectoring controls are brought on-line.

M =Uisag 4 = B3 (Mg — Byiggeany) (127)
A notable problem arises in the Datsy Chaining method when control deflection rates are
considered “Cooperative control efforts are those in which all available controls are
simultaneously varied to meet a time-varying demand. The total rate of change of the
moment produced is a linear combination of the individual control rates. For a given
rate of change of the required moment, in magnitude and/or direction, a cooperative
effort among all available controls will require lower individual control rates than will a
noncooperative effort. Daisy chaining is a noncooperative allocation scheme and
potentially will command unattainable deflection rates that would not be commanded by

cooperative control allocation methods.”® There are several examples of works which

use this method %%’

1.3.4.8 Discrete Time Methods
As introduced above, all the methods account for position limit constraints on the

control effectors. They do not, however, account for rate limits. Rate hmits are
typically incorporated within a discrete time framework by considering how far an
effector can travel within a single time step.*  Therefore, the control effectors are

constrained by:

where
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Au_ = maXlL'l;axAt, (U _”k)] 128
Au_ :min[\):naxAt, (umax—uk)] e

and At = tay - t, Au = Uy - Uk, Umin and umax are effector position limits; and

u_, and u’'_ are the negative and positive effector rate limits. Each of the control

allocation methods discussed above can be modified to include these discrete time

effector rate constraints.

1.3.4.9 Control Allocation Performance Measures
Much of the early comparisons between the different control allocation methods

involve an evaluation of the ability of the allocation method to reach 100% of the
volume of the Attainable Moment Subset. Bordignon and Durham®’ offer methods to
compute the volume of the AMS reachable by different allocation schemes They show
that, while the Direct Allocation method can access 100% of the AMS, the pseudo-
inverse methods can only access 13-42% of the AMS, and daisy chaining only reaches
about 22%. They conclude that the Direct Allocation method must be superior since it
can achieve moments the other methods can not. This seems to be a reasonable
conclusion; however, recent studies show otherwise. Page and Steinberg5 ran several
different control law designs with four different control allocation schemes in order to
investigate potential adverse interactions between the control laws and the control
allocation algorithms. They conclude that “the choice of control allocation technique
can have a dramatic impact on system performance.” They show by example that
unexpected interactions with the Direct Allocation method (which produces admissible

solutions for 100% of the AMS) occur in some cases which drive the effectors to
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saturation and greatly degrade the system performance. For these same cases, the
Weighted Pseudo-Inverse technique (which produces admissible solutions for only 10%
of the attainable moment subset), did not cause saturation, and performed very well
One conclusion of their work is that it 1s important to integrate the control allocation
effort with the adaptive control laws because unexpected interactions can occur A
follow-on study compares the open-loop and closed-loop performance of sixteen
different control allocation methods using a single dynamic inversion control law * It
shows that because the allocation approach is generally designed to meet an
instantaneous moment demand and not to optimize any closed-loop properties over time,
the open-loop measures of control allocation performance do not necessarily translate to
closed-loop performance. The Direct Allocation method again did not perform as well
as might be expected and the Discrete Time Weighted Pseudo-Inverse method provided

the best closed-loop tracking performance for the application investigated
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1.4 Literature Summary

Section 1.3 has attempted to summarize the varied approaches to reconfigurable
control system design that are described in the literature. It is obvious that the
requirements of failure detection, failure isolation, system identification, and control law
reconfiguration present significant challenges to the control engineer and to the practical
implementation of a reconfigurable flight control system. It is particularly evident that
most, if not all, of the approaches reviewed require varying amounts of time to reach a
“reconfigured” state. With the advent of modern combat aircraft with highly unstable
unaugmented dynamics, this reconfiguration time can become a critical issue in the
viability of the design approach Of all the works reviewed, those which utilize sliding
mode control appear to have the most promising results. In thesé works, the tracking
performance after failure 1s impressive; there is no reconfiguration time at all, and no
parameter identification is required. For these reasons, sliding mode methods are
selected for investigation for their applicability to the design and implementation of a

practical reconfigurable control system.
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Chapter 2

‘Sliding Mode Control

2.1 Introduction to Sliding Mode Control

Of all the reconfigurable control schemes appearing in the current literature, those
based on the concept of sliding modes appear to be the most promising. While results
from many of the other reconfigurable control methods are very good (the aircraft
remains stable, and tracking performance, while degraded, ranges from acceptable to
very good), the recent works utilizing sliding mode control (SMC) show no performance

636466 This is because these controllers are invariant to matched

degradation at all
uncertainty/disturbances. If the controller is invariant to certain system parameter
changes, there is no need to perform system failure detection or parameter identification.
Since parameter identification is the main bottleneck in control reconfiguration,
employing a controller that does not require it provides a large advantage Not only this,
but its wvariable structure allows SMC to adapt to parameter disturbances
“instantaneously.” An ideal sliding mode controller with no parasitic dynamics or
actuator limits easily handles noise, parameter changes, and unmodeled nonlinearities
with absolutely no degradation in tracking performance. However, since real systems
always have parasitic dynamics and actuator limits, the actual implementation of an
SMC design becomes challenging. The general concepts of sliding mode control,

including basic theory, properties, design techniques, implementation difficulties, and

several examples are offered this chapter.
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2.1.1 Sliding Mode Control History
The basic concepts of sliding mode control first appeared in the Russian literature

in the early 1930’s. Kulebakin (1932) used essentially a sliding mode controller in the
context of voltage control for a DC generator on an aircraft. He called it “vibration
control” of the voltage signal. Nikolski (1934) proposed sliding mode relays for
controlling the course of a ship. He actually used many of the terms currently in use
today, including phase plane, switching line, and shding mode. Emelyanov and
Barbashin continued the pioneering work in Russia in the early 1960°s. It wasn’t until
the mid 1970’s that the ideas of sliding modes appeared outside Russia when a text by
Itkis* and a survey paper by Utkin’® were published in English.”' Vladim Utkin is one
of the key figures who championed the concepts of sliding modes through the 1970’s
and 1980°s, and continues to publish numerous works in the area. The 1980°s saw a

. . . . . . . 2-94
large increase in interest in SMC including several often-cited survey works **”

797 are also regularly cited Utkin has several texts on the

Several newer survey works
subject.*°® Slotine includes a chapter in his text on non-linear control;”” and Edwards &

Spurgeon have a recent text’" devoted entirely to SMC Applications of SMC in the
literature are too numerous to list By 1993, general application areas included: robotic
control, motor control, aircraft and spacecraft control, flexible structure control, load
frequency control of power systems, servomechanisms, pulse-width modulation control,
guidance, process control, phase-locked loop control, power converters, and remote
vehicle control.”>  Sliding mode controllers are even being used for controlling the
convergence rates for neural net learning algorithms.'”” Other interesting applications

which have appeared in very recent works include. direct robust exact differentiation,'*'
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large-scale, time-delay systems;'’” missile autopilot; multiple unmanned air vehicles

104,105 | 31,63-66,106

in close-formation flight; and of course, reconfigurable flight contro

2.1.2 Concept of the Sliding Mode
Sliding mode controllers are a subset of a class of controllers known as Variable

Structure Controls (VSC)--although the terms are often used interchangeably. VSC
systems are characterized by a control structure that changes according to some
predefined rule which s a function of the states of the system. In order to illustrate this

concept, consider the double integrator in equation ( 2.1 ) with a feedback control law in

equation (2.2 ). See Edwards & Spurgeon®' for much of the following development

(1) =u(t) (21)
u(t) = -k y(t) (22)

This results in a pure undamped harmonic motion as shown in Figure 2-1 with
y(0)=0,y(0)=1, and k=4. The phase plane portrait of this system is shown in
Figure 2-2  Obviously, this control law would not be appropriate for this system since
the state variables do not move toward the origin for any value of gain chosen The gain

only changes the orientation and eccentricity of the ellipse in the phase plane.

1 2

IWAWAWA
IWTRYRVERENY.

0 0 2 0 y2

Time (sec)

Figure 2-1: Time History of Oscillator Figure 2-2: Phase Plane Plot of
Oscillator
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Consider, instead, a Variable Structure Control law as shown in (2 3 ).

u([):{— k,y() if yy<0 (23)

-k, y(t) otherwise

This causes the control law to change depending on the quadrant of the phase plane in
which the state variables are moving. When in quadrants 1 & 3, the gain is k;; when in
quadrants 2 & 4, the gain is k. The resulting motion, for y(0)=0,y(0) =1, k;, =05,

k, = 4, is shown in Figure 2-3 and Figure 2-4.

1 1
A y /\//
T y
012345867 89 101112131415 ¥ o )
Time (sec) y
Figure 2-3: Time History of VSC Figure 2-4: Phase Plane Plot of VSC
System System

This simple example shows that by introducing a rule for switching between two control
structures, a stable closed-loop system can be obtained. This occurs even though neither
of the two control structures individually are able to provide convergence of the state
variables to zero.
Next, instead of using the phase plane quadrants for the switching rule, consider
using a switching function:
o(y,y) =my+y (24)

Where m is a positive scalar.
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Then, the control law 1s defined in terms of the switching function as follows-

u(t) = {4 if o(y,y)>0 (25)

I if o(y,9) <0

The resulting motton (with m = 1) for this system is shown in Figure 2-5 and Figure 2-6

y O
-1 T T —T T T T T T -1
o 1+ 2 3 4 5 6 7 8 9 10 0 1
Time (sec) y
Figure 2-5: Time History for SMC System Figure 2-6: Phase Plane

Plot for SMC System

This is called a Sliding Mode controller because, after reaching the switching function,
\ .
the state trajectory follows (or “slides along”) the switching line to the equilibrium point.

This 1s the goal of any sliding mode controller: drive the states to the switching surface
in a finite time and constrain the states to remain on the surface ¢ = 0 for all subsequent
time. As tllustrated in Figure 2-7, the time period where the states are moving toward

the sliding surface i1s known as the reaching phase, and the phase where the states follow

the surface o = 0 1s called the ideal sliding mode
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Shiding Mode

\‘\\ Sliding Surface

\

Figure 2-7: Phases of Sliding Mode Control
This 1s also clearly illustrated in the time history\ of the switching function from the

previous example. In this case, the system reaches the sliding mode in about ¢=0 8 sec.

12
10

08 _ Reaching Phase

|
|
02 j Sliding Mode

0 1 2 3 4 5
Time (s)

Figure 2-8: Time History of Sliding Surface

In order to maintain the motion on the sliding mode, the control effort requires
infinite frequency switching because the control law 1s undefined on the surface ¢ = 0.
If this infinite frequency switching were possible, the motion would be constrained to

the sliding mode, and the dynamics of the closed-loop system would be that of the
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switching surface o = 0. For this example, setting ¢ = 0 and rearranging gives the

motion for the closed-loop system after reaching the sliding mode:

y(t) = —m y(t) (2.6)

This 1s a first-order decay which depends only on the design parameter m. To further
illustrate the fact that the dynamics depend only on m, consider adding a non-linear term

to the double integrator system

y(t) = —a sin(y) + u(t) (2.7)

This new system looks like a normalized frictionless pendulum. Using the exact same
sliding mode controller as before and including the non-linear plant term, the resulting

phase plane plot looks like.

0.0

0.5 -

00 05 10
y

" Figure 2-9: SMC Phase Plane Plot for System with Non-linear Term

The previous solution of the double integrator (a=0) 1s shown for comparison purposes.

Note that there is a difference between the two cases during the reaching phase;
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however, once on the sliding mode, both systems exhibit identical closed-loop response.
The non-linear term (a sin(y)), which can be interpreted as a structured modeling error or
disturbance, has been completely rejected. Although not proven here, there are four
basic notions about SMC that can be observed®’
s The hine (or hypersurface) that describes o = O defines the transient
response of the system during the sliding mode.
o During the sliding mode, the trajectory dynamics are of a lower order than
the original model.
e While on the sliding mode, the system dynamics are solely governed by the
parameters that describe the line o = 0.
e The trajectory of the sliding mode 1s one that is not inherent in either of the

two control structures alone

A formal statement of the sliding mode control problem is now developed.

2.1.3 Sliding Mode Control Problem Statement
Consider the uncertain system with m inputs and » states given by:

(t) = Ax, t) + B(x, Ou(t) + f(t,x,u) (28)

where A € RV and B ¢ R™™ -

; B is full rank, and 1<m <n. The function
[ RxR" xR™ - R" represents the parameter uncertainty or nonlinearities present in

the system and is assumed to be unknown but bounded by some known functions of the

state.
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The objective is to define:
e m switching functions, represented in vector form as o(x) with the desired
state trajectories
s avariable structure control
u(x,t) = psgn(o) (2.9)
such that any state outside the switching surface is driven to the surface in finite

time and remains on this surface for all subsequent time

2.1.4 Equivalent Control Concept
Since the control action in the ideal sliding mode is discontinuous, the resulting

differential equation can not be analyzed with traditional methods. The approach which
is almost always cited in the literature is the classic method proposed by Filippov'® for
differential equations with discontinuous right hand sides. While Filippov’s construction
provides a theoretical basis for solving the discontinuous problem, a more useful
approach is Utkin’s concept of the equivalent control % Loosely speaking, the
equivalent control is the confinuous control action needed to maintain the ideal sliding
motion One of its key strengths is that it allows a continuous analysis and provides a
means to prove certain properties of the sliding mode.

Assume the switching surface is reached at some time #; and an ideal sliding
motion is established. By definition, this means o(¢) = 0 for all 7 > ¢,, which tmplies that

6(f)=0forall r >, . Since, as will be shown later, the order of the switching surface 1s

designed to be exactly one degree fess than the relative order of the plant, the input u

will appear in the derivative of the switching function Setting this equal to zero and
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solving for u results in the so-called equivalent control. As a simple example, recall the
problem of the normalized pendulum:
y(t) = —asin(y) +u(t) (2.10)
The switching line is defined as:
o(t) = my(t) +y(t) (2.11)
Taking its derivative and substituting equation ( 2.10 ) gives:

6(t) = my(H) +y(t)

. 2.12
=m y(t) —a sin(y) +u(t) ( )
Finally, setting 6 = 0 and solving for u gives uc:
u, (t)=asin(y)-my() (tx=t,) (2.13)

In general, assuming a linear, time invariant state space model and a switching surface
o(x) =S x (214)
where S € R™" is full rank and chosen by design to meet dynamic closed-loop

requirements, it is easy to show that the equivalent control is uniquely defined by:”!
teq () = —~(SB) 'S A x(t) (2.15)

If the control action is purely discontinuous as tn equation ( 2.9 ), ueq can be thought of
as the averaged control signal applied. It can also be shown to be equivalent to the low
frequency component of the discontinuous signal by passing that signal through a low
pass filter ' The equivalent control, however, is not actually applied in practice—at
least, not alone If the plant model is exactly correct (i.e. there are no unmodeled
dynamics or disturbances), ueq will maintain the sliding mode assuming the switching

manifold has been reached (by definition). This will be demonstrated in an example
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later. However, the discontinuous control function is required to maintain the sliding
mode in the presence of model uncertainties and disturbances It is common to see the
equivalent control included in the control law, as in (2.16).

u(x,t) = ueq + p sgn(o) (2.16)
This has the advantage of reducing the activity of the discontinuous portion of the
control. Even so, it is not usually implemented because 1t adds complexity to the
controller. It is common to see it included in initial problem developments and then set
equal to zero for the implementation. One of its main strengths is its use in proofs

concerning sliding mode properties and stability.

2.1.5 Properties of the Sliding Mode
Unfortunately, very little can be found in the literature about the properties of

transient response while in the reaching phase. Hung et al.” make only a brief comment
about it in their survey paper. Utkin’® and Edwards & Spurgeon91 also discuss it briefly
but do not offer a full treatment. Chol, ez al.'®® offer some of the best treatment of the
reaching phase, but is too tnvolved to include here Since the reaching phase 1s typically
very short, and since the states are moving toward a stable manifold, the reaching phase
1s usually neglected and its properties are of little interest.

For the following analysis, assume a linear, time invariant state space plant and
assume the switching surface is defined by equation ( 2.14 ) with the square matrix SB
nonsingular. The ideal sliding motion is found by substituting the equivalent control,
equation ( 2.15), into the state space equation, which yields a free motion independent

of the control action:

)'c(t):(ln—B(SB)"'S)Ax(t) Yt>t, and Sx(t,)=0 (2.17)
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SMC Property 1: The sliding motion given in equation ( 2.17 ) is of reduced order and

the eigenvectors associated with any nonzero eigenvalues of the system matrix
Aeq:(ln—B(SB)_lS)A (2.18)

belong to the null space of the matrix S.
Proof: See Edwards & Spurgeon.”’
It follows that A.4 can have, at most, n-m nonzero eigenvalues.

Next, the invariance property 1s developed. Let the disturbance function f (from
equation (28)) be fitx,u) = D £(t,x) where the matrix D € R"™ is known and the
function & @ R, x R" — R is unknown. This function can be interpreted as an

exogenous disturbance acting on the system or uncertainty in the system matrices A and

B. The uncertain linear system can then by expressed as.

x(t) = A x(t) + Bu(t)+ D&(t, x) (219)
Any uncertainty in form given above with R(D) < R(B) is called matchec.i uncertainty.
Any uncertainty which does not lie with the range space of B is called unmatched
uncertainty o1
Using the term in equation ( 2.17 ), define for convenience:

P,=(L, -B(SB)" S) (2.20)

Edwards & Spurgeon’*

call this a projection operator and show that is satisfies two
important properties:

SP,=0 and PB=0 (221)

With these definitions in place, the invariance property can be stated:
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SMC Property 2: The ideal sliding motion is completely insensitive to the uncertain
function £(t,x) in equation ( 2.19 ) if R(D) < R(B).
Proof (from”'): The equivalent control for ( 2 19) assuming( 2.14 ) is found as before

and is given by
Uoq(t) = ~(SB) IS A x() +SD &(t))  for t>1g (2.22)
Substituting this into (2.19 ) gives
x(t) = Py Ax(t) + PiD&(t, x) Vt>ts and Sx(tg) =0 (223)

Now, if R(D) c R(B), then D can be decomposed into D = BR, where R € R™ s a
matrix of elementary operations. As a result, it follows that P;D = P(BR) = (P;sB)R = 0
by the property given in equation ( 2.21 ). The sliding motion equation then reduces to
() =P;Ax(t) Vitxtg and Sx(ts)=0 (224)
which 1s independent of the exogenous signal.
This is a very important result and is the primary reason sliding mode control is
attractive for a reconfigurable control setting. Note, it says nothing about invariance to

unmatched uncertainty In fact, SMC 1is nof invariant to unmatched uncertainty;

however, measures can be taken to ensure a certain level of robustness.

2.1.6 The Reachability Problem
So far, nothing has been said about guaranteeing that the system will reach the

sliding mode or that it will remain on the sliding mode once it gets there. In fact, this is
actually the primary concern and is the area that recetves the most attention when

developing the control law. Existence of the sliding mode requires stability of the state

trajectory to the sliding surface o(x) = 0, at least in some neighborhood surrounding the
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surface. This neighborhood is known as the region of attraction. ”

If the sliding mode
is globally reachable, the domain of attraction is the entire state space. The most
common approach for proving stability, at least in the SISO case, i1s a Lyapunov
analysis.

Geometrically, in order for the sliding surface to be attractive, the trajectories of

o(t) must always be directed toward it Stated more formaily,

lim <0 and lim6>0 in some domain 2 < N"° (2.25)

c-0* 0"

This can be stated in a more succinct manner as

6o <0 (2.26)

This is called the reachability condition®'

As illustrated in Figure 2-10, if state
variables are within the domain Q, they will be attracted to the switching surface and

remain on the surface if the reachability condition is met

Figure 2-10: Phase Plane Plot of Domain of Attraction

Noting that (in the SISO case) %%02 =60, it follows that the positive definite

function
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V(cx):lzcs2 (227)

is a good candidate Lyapunov function. If it can be shown that V(o) <0, the system is

guaranteed to reach the sliding surface asymptotically.”!

A stronger condition which guarantees an ideal sliding motion in a finite time is

the so-called n-reachability condition given by-

66 <-nlo| (228)
- .. 91 . l d 2 . . .
where m 1s a small positive constant Noting that ~2—a—t-0 =00, and integrating

equation ( 2.28 ) from O to 4, it follows that

lO’(ts) —|G(O)| <Mt (2.29)

This, then can be solved for the time (t;) required to reach the sliding surface (¢ = 0):
(230)

Typically, what is done in a design analysis 1s the candidate Lyapunov function

1 :
V(o) :502 ts assumed. The control law has parameters (for example, p in equation

(2.9)) which need to be determined. System uncertainties are parameterized and
replaced into the state equation, which then appear in the Lyapunov function. Then the
control parameter(s) are found in terms of the given uncertainty bounds such that the

sliding mode is globally attractive.

2.1.7 Design Approaches
There are many design approaches in the literature—too many, in fact, to present

here. In theory, there are an infinite variety of control strategies to achieve the sliding
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mode. There are diagonalization methods, hierarchical methods, relays with constant
gains, relays with state dependent gains, linear feedback with switched gains, linear
continuous feedback, and univector non-linearity with scale factor.” All approaches
consist of two basic steps: 1) design of the sliding surface(s), and 2) design of the
control law to achieve the sliding mode. Two common approaches which are the most
intuitive and which will be employed in this work are given below
One of the most commonly cited approaches is some variation of the so-called
regular form approach. Edwards & Spurgeon’' present this most succinctly, so their
development is essentially duplicated here:
Consider the nominal linear model of an uncertain system, given by
x(t) = Ax(t)+ Bu(t) (231)
where rank(B) = m and (A,B) is a controllable pair. Define an associated switching
function
o(t) = S x(t) (2.32)
This system can be transformed into regular form via a change of coordinates defined by

an orthogonal matrix T, such that:
z(t) = T, x(t) (233)

where T, is found by a QR decomposition of the input distrtbution matrix, that is,

0
T, B {Bj (234)
Then, defining
TrATrTz[A” :”] (235)
21 22
and
STrT :[Sl Sz] (236}
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The system can be expressed in the well-known regular form:

Zl(t) = A Zl(t) + A Zz(t)

zo(t) = Agy z1(t) + Ay z2(t) + By u(t) (237)

and
o(t) = Sy zi(t) + Sz za(t) (238)
Note that in this form, it is easy to identify matched and unmatched uncertainty.
Anything appearing in the input line 1s “matched.” Therefore, the closed-loop response
is insensitive to variations in Ay, Az, and B;.
During the sliding motion, the switching function must be identically zero, so
Sizi(t) + Sz z2(t) = 0 (239)

It can be shown that S, is nonsingular, so z; can be solved for on the sliding mode.

(1) = -8, S1 21

Mt (240)
where M € R™"™ is defined as
M=S,"S, (2.41)
The sliding mode is then governed by equations ( 2.42 ) and ( 2.43)
zi(t) = Ay 21 (t) + A 22(1) (2.42)
zp(t) = Mz (t) (2.43)

This is an (n — m)™ order system in which z; acts in the role of a linear full-state

feedback control signal. Closing this loop gives the free motion of the system:

7(t) = (A1) + A M) 7 (1) (2.44)
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Notice, once again, that the terms which contain the matched uncertainty do not
appear—thus demonstrating again SMC’s invariance to matched uncertainty. Notice,
too, that the problem of selecting the sliding surface has turned into a standard linear
full-state feedback problem. In order to ensure the reaching condition, it must be
ensured that z; is asymptotically stable. Further, since all the unmatched uncertainty
appears here, it is desired that this system be made as robust as possible. Edwards &
Spurgeon detail two standard methods: robust eigenstructure assignment and quadratic

minimization (the standard LQR problem).

Another method for SMC design is based on the ideas of feedback linearization.
Fernandez & Hedrick™ and Slotine” approach the problem this way, as does Yuri

Shtessel, a very prolific SMC proponent in the recent literature *°!%107120

A major
assumption with this approach is that the system must be square—equal number of
inputs and outputs, and it must be feedback linearizable. If the system is square and
feedback linearizable, it is possible to decouple the outputs with the given inputs. This

turns the design into m simple SISO-like designs.

Consider a non-linear square MIMO system

x=f(x)+G(x)u

y = h(x) (245)

where x € R y € R”, u € R” . Assume the functions f(x), A(x) and columns g,(x)

nxm

Vi=i,m of the matrix G(x) € R™" are smooth vector fields. Further, assume the

system is completely linearizable in a reasonable domain x € I". The control system will

be designed to track a real-time reference profile, V(1) .
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This system can be transformed to a normal form”

yl(ﬁ) Lt hy(x)

PAEUN B R FICOR IR

ym(fm) Lfrm hm(x)

i a A (2.46)
Lg, (L} Tho) Ly, (LFh) o Ly (L)
1,~1 r,~1 r,—1
) =| be(bF h2) Ly, (b ho) o L (U Tha) b g0 wxer
.—d ._I : Z_l
Lo (L7 ') Lo, (L 'hpn) - Ly (LF ')

Where Lth and L, (Li'h,) Vi= 1,m are corresponding Lie derivatives '*°

Next design m independent shding surfaces (note, these have orders exactly one
less than the relative order for the corresponding state variable):

(-1

G, =€ o

te, ,e" P+ e eV +c e, Vi=lm (2.47)

1,r,~2 1

w _ de . : . .
where e =y, ()~y (1), e’ = T [he coefficients ¢, ,,Vi=1,m and Vj=0,r, -2,
are design parameters which are chosen to achieve the desired eigenvalue placement of
the decoupled differential equations of the output variables. It is also common to include

an integral term, cjeldr, in the sliding equations to account for potential steady state

error which can occur when utilizing a sliding mode boundary layer (to be discussed
later)

The control law which can be used is

u, =u, +p,sgn(c,) (248)

In order to prove system stability, assume the candidate Lyapunov function

t 1

\Y :loz take the derivative of the sliding functions, oi, and solve for p, which

provides global attractiveness to the sliding surface in finite time.
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2.1.8 Implementation Issues
While sliding mode controllers are very attractive from a robustness standpoint,

there are some implementation issues which must be addressed. In fact, much of what
appears in the literature for sliding mode control 1s related to the issue of
chatter 102G ywiehout a solution to the chatter problem, SMC would be
relegated to only a very few applications where the control action can attain the high

frequency switching required, such as control of electric motors and power converters.

2.1.8.1 Chatter
Chatter 1s defined by many authors as the high frequency action of the actuators.

Young & Utkin’’ take a more purist stand on the definition of chatter. The high
frequency action of the control—by their definition—is not chatter, but rather the
expected result of the SMC control law (recall the control output is undefined on the
surface ¢ = 0). An infinite frequency switching is actually required while on the sliding
mode. This results in a smooth ideal sliding along the sliding manifold with smooth
state trajectories. However, due to parasitic dynamics in the real system, such as

actuator dynamics and time delays, the switching can not take place at the required

frequency, and the state trajectories chatter along the sliding manifold Afier working
with some example models, it is found that not only do actuator dynamics result in
chatter, but they can drive the system unstable. At first, this may seem to contradict the
invariance property (since the actuator dynamics are part of the control action).
However, recall that the invariance property is only valid while on the sliding mode.
Theoretically, this requires an infinite frequency switching. Actuator dynamics prevent

the controller from maintaining the sliding mode. There are several methods proposed
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in the literature to deal with the chatter problem. Two of the most common approaches
are briefly introduced.

The simplest and clearly most popular approach is the so-called boundary layer.
The basic idea is to replace the discontinuous signum function with an arbitrarily close

approximation The signum function looks like:

1 fo>0
-1 ifo<0

v =sgn(o) = {

Several such approximations include.

1
1
I
1
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Some research has been done to determine the performance of these different
approximations to the signum function. Results show that there are no significant
differences between them in the application to SMC.”' The result of using one of these
continuous approximations is the states become attracted to a small boundary layer
surrounding the switching surface, rather that to the switching surface itself.
Convergence proofs show stability to the boundary layer and the states remain arbitrarily
close to the switching surface. Figure 2-11 demonstrates the effect of a saturation

element boundary layer on the state trajectories.

>

Ideal SMC Boundary Layer SMC

Figure 2-11: State Trajectories for Ideal Sliding Mode and Sliding Mode with
Boundary Layer

Of course, the ideal sliding mode is lost and the resulting motion is often referred to in
the literature as pseudo-sliding. While invariance is also lost, the system still retains
much of its robustness. The boundary layer can be made arbitrarily small to approach
ideal sliding Typically in the design process, the boundary layer thickness is tuned to
achieve an acceptable balance between maximum performance/robustness and reduced

chatter. This approach has the advantage of being very simple to implement and is the
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: 1,63,66,103-105,121,129-131
choice of many authors "> ’

One disadvantage 1s the resulting control
becomes essentially a high gain controller——something that is typically avoided in
control design.

Another method to reduce chatter in SMC systems 1s an approach called second-

idi 59,1 22,127,128
order sliding modes, or 2-SMC *>17111312%

The basic idea of this approach is to
use the first derivative of the control as a pseudo-control during the design. Therefore
all the high frequency switching will occur in 1, and when this signal is integrated, the
actual control will be continuous. There are also higher order sliding mode controllers
which have been proposed.'*® This technique works well, but a key disadvantage is that

derivatives of the states appear in the switching function—which means these

derivatives must be measured or calculated

2.1.8.2 Actuator Limits

Little attention is given in the literature concerning the effects of actuator limits in
SMC. Unfortunately, actuator limits can have large, undesirable effects on the system.
The type of actuator limits that are typically assoctated with degraded control
performance are rate and position saturation. If a rate limit 1s encountered, it appears as
a degradation of actuator bandwidth. The result i1s added phase lag—a condition which
almost always results in chattering or loss of the sliding mode. If a position limit is
encountered, global stability can not be guaranteed. Probably one reason position limits
are not discussed 1s the very nature of the SMC control law. Consider, again, equation
(2.9) : u(x,t) = psgn(o). The maximum position this control will see is +p. If p is less
than the maximum allowable control effort, there will not be any position saturation.

Since p is a design parameter, it should be chosen to be less than the maximum
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available. However, since p is typically a function of the maximum expected
uncertainty or disturbance, it is possible to desire more control authority than what is
available. This results in a reduced region of attraction, and if the states are outside
of this region, stability can be lost. This i1s demonstrated in one of the examples in
Chapter 3. Madani-Esfahani ef al. °? investigate the problem of estimating regions of
asymptotic stability (RAS) in variable structure systems with hard bounds on the control
action. The paper is highly theoretical and shows that, using their approach, the RAS
cannot be found analytically using a single Lyapunov function.

The problem of finite bandwidth actuators with rate and position limits is a major
implementation issue and comprises the major of the effort in this research. Chapter 3 is

develops the problem further and outlines some potential solutions.
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2.2 Application Example: Inverted Pendulum on a Translating Cart

In order to demonstrate the basic concepts of sliding mode control, the classic
problem of an inverted pendulum on a translating cart 1s considered:

System parameters:
Cart mass =M
Pendulum mass =m
Pendulum length =L

State variables
Cart position =X
Pendulum angle =

Control inputs:
Horizontal Force =u
Pendulum Torque =1t

If the horizontal friction force and the frictional torque on the pendulum are included, the

. . . . 111
non-linear equations of motion are given by.

(M+m)X+F_x+(mLcos8)8-mL6?sin0=u

. ) . (2.49)
JO+F,0-mLgsin0+(mLcosB)xXx =1

Linearizing about the equilibrium point, 6=0, the linearized state space equations are:

~ -

0 0 1 0
z) 0 0 0 I (21
22| |, S ~JF, mLF, zy
Z3 - J(M+m)—m2L2 J(M+m)—m2L2 J(M+m)—m2L2 Z3
74 0 (M+m)mLg mLF, -M+m)E 24
IM+m)-m2L?  JM+m)-m?L?  J(M+m)-m?L? | (2.50)
[ 0 0 l '
0 0
J -mL m
+
JM+m)-m*L*  JM+m)-m?L? | ¢
-mL (M +m)
IM+m)-m?L?  J(M+m)-m?L?
L .
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The full non-linear simulation block diagram is given in Figure 2-12

..........

Cow et saacer * Vasece

(| FB uo>

Figure 2-12: Pendulum/Cart Nonlinear System Block Diagram

The numerical values for the parameters used in this example are:

Parameter Nominal Value \‘/‘alu.e after
Failure”
CartMass M~ | 30kg ~ ~ 300kg
PendulumMass, m | 050kg  50kg
RodLength,L ¢+ ~~ 04m ~~  08m
Linear Friction Coef, F, |~ 60kgs ~  250kgls
Angular Friction Coef, Fy 0.005 kg-m2 0.05 kg-m2

Initially, consider a SISO system with the force as the only input (t = 0). Then, the state

space representation of the linearized system is

#]1 Jo o 1 0 Tz 0
z,| [0 o 0 1 |z 0
2 — 2 + [U]

Z, 0 -1.6345 -2 00042 |z, 0.3333
z, 0 286037 S -00729|z, -0.8333
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A sliding mode controller is designed using the regular form approach.
- Design the sliding surface
- Change coordinates of given system to regular form (see Edwards & Spurgeon’', p.66
for m-file)
- Perform QR decomposition on input distribution matrix to get T,
- Obtain A,y and Byeg using T,

- Obtain matrix sub-blocks in the regular form equations

0 I 0 0
~03714 0 08621 03448
| 09285 0 03448 01379
0 0 -03714 0.9285
x, 0 03448  0.1379 | 09285 [x, 0
X:|_| 84543 -03276 —0.1310| 0.1179 fx, | |0 |
i, | 133817 07974 03190 | -0.3528 | %, 0
K. | 1271650 46185 18474 |-20643| %, | |-08975

- Use linear quadratic cost function to design the switching function matrix coefficients
(see Edwards & Spurgeon,”' p.74 for m-file)

- Transform weighting matrix to regular form coordinates

The weighing matrices in the original coordinates are the standard weights in an LQG

problem. For this example, the values chosen are:

10 0 00
0 10 00

Q= R =0.01
0 0 1 0
0 0 0 1

- Compatibly partition weighting matrix with regular form description
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- Form reduced order system description and associated weighting matrix
- Solve the LQR problem

- Transform solution back into original coordinates

S=[3.1632 10.1219 27436 2.1745] (inoriginal
coordinates)

Calculate Ue: U, =—(SB)"' SA x
U, =0 643035 95233 11.1136] x

- The final control parameter to design is the gain p. In the following examples,

the value of p varies depending on the particular case being run Its value will be called
out in each example. The block diagram of the sliding mode controller just designed is

given in Figure2-13.
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Figure2-13: Pendulum/Cart SMC Controller Block Diagram
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For the sake of comparison, an LQR controller is designed using the same weights

as above. The resulting feedback control gains for the LQR controller are:

Kior = [-31.6 —179.1 —38.7 —35.8]

The next series of figures are ones which demonstrate the basic operation of the

SMC just designed. A simulation with the linear model and no noise is used. These

demonstrate the effects of equivalent control and the boundary layer.

Figure 2-14.
Figure 2-15:
Figure 2-16.
Figure 2-17.

Figure 2-18:

LQR Regulator (Linear Model)

SMC Regulator (Linear Model) with u = Ueq

SMC Regulator (Linear Model) with u = 20 sat(c/0.005)

SMC Regulator (Linear Model) with u = Uy + 5 sat(c/0.0001)

SMC Regulator (Linear Model) with u = Ueq + 5 sat(c/0.1)
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For the sake of comparison, this plot shows the results of a simulation using a standard
LQR regulator using the same weights given above. As expected, an LQR controller
does an acceptable job. This same controller is used on the full non-linear system
simulation and achieves exactly the same results. That plot is not given because it looks

essentially the same as this one
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Figure 2-14: LQR Regulator (Linear Model)
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This SMC controller uses only the equivalent control—it has no discontinuous control
element Note, U, will not reach the sliding mode by itself A typical discontinuous
element is used during the reaching phase (0 <t <0.15 sec) and turned off as soon as the
sliding mode is reached. As expected, U maintains the slhiding mode for this case
because the simulation model is exactly the same as the design model, and there is no
noise. When this same control is applied to the non-linear simulation (or if noise is

present), stable control is lost.

15 T T T T — T T T B —
1\ -
E osl| .
x \\
0_
05 1 1 I ] 1 1 1 1 1
(4] 1 2 3 4 5 6 7 8 9 10
10 T T ¥ — T — T T ——
5| i
> 0
[
2
s )
-10 ~1
-15 1 i 1 Il ) 1 4 1 L
1 2 3 4 S 6 7 8 9 10
T T T T T T T —F T
20k 1
_ 1of .
Z
e O
]
2 .10 .
-20 | |
1 1 1 [ i 1 L H 1 1
4] 1 2 3 4 S 6 7 8 9 10

Time, (sec)

Figure 2-15: SMC Regulator (Linear Model) with u= U,

Chapter 2- Shiding Mode Control 2.2 Application Example: Inverted Pendulum on a Translating Cart

70



This SMC controller uses no equivalent control. Notice the high activity of the control
(near infinite frequency) This is because this case uses a fairly small boundary layer.
As the boundary layer approaches zero (ideal sliding mode), the frequency of the control
activity becomes infinite. This same controller is used on the full non-linear system

simulation and achieves exactly the same results.

1.5 T T T T 1 — T T T T

x (m)
o
o
T

9,(deg)

Time, (sec)

Figure 2-16: SMC Regulator (Linear Model) with u = 20 sat(c/0.005)
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This SMC controller uses both the equivalent control and the discontinuous element.
Note that the magnitude of the discontinuous part is constderably less than that required
for the previous example. That is because the continuous equivalent control is doing
much of the work. The boundary layer is very small in this case to show the effect of
approaching the ideal sliding mode. This same controiler 1s used on the full non-linear

system simulation and achieves exactly the same results.
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_15 1 L — 1 . i 1 1 1
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Figure 2-17: SMC Regulator (Linear Model) with u = U,q + S sat(c/0.0001)
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This SMC controller uses both the equivalent control and the discontinuous element.
This case differs from the previous case in the size of the boundary layer. In this case
the boundary layer 1s increased to the point that control appears completely continuous.
If the boundary layer is increased too much, the performance becomes noticeably
degraded. This same controller is used on the full non-linear system simulation and

achieves exactly the same results.
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Figure 2-18: SMC Regulator (Linear Model) with u = U, + 5 sat(c/0.1)
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Next the invariance property of the sliding mode controller is tested. If the
physical properties of the system are varied, the controller proves to be remarkably
robust. However, it is not much more robust than the LQR controller—which also
performs very well. This result is to be expected. SMC systems are not invariant to
unmatched uncertainty. If the system in regular form is examined, it is clear that the
physical properties all appear in the unmatched terms of A.q. This means, that while the
SMC will be invariant to variations in the Az and A,; terms, it will only be as robust to
changes in Ay and Ay, as the system in equation ( 2.44 ) can be made to be—which was
designed using an LQR approach. The plots for these cases are not presented, but both
the LQR controller and the SMC controller perform very well with state noise, a non-
linear system simulation, large state inttial conditions, and varying system parameters.
In general, the SMC controller is more robust, but not by much

In order to properly test the invariance property, matched disturbances need to be
input into the system The simplest way to unplement this is to inject disturbances
directly at the control input. A white noise is added directly to the control input
Additionally, at £ =5 sec, a single step bias with an amplitude of 10 is injected at the

control input. This might simulate a control “hard over.”

The results of this simulation for the LQR system and the SMC system are given
in the next two figures.
Figure 2-19 LQR Regulator (Non-linear System) with Control Input Disturbances

Figure 2-20: SMC Regulator (Non-linear System) with Control Input Disturbances
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This is the LQR controller using the same weights as previously. Whitte Gaussian noise
is injected at the control input. A disturbance bias of 10 is added to the control input at
t=5sec. Pendulum angle tracking is noisy. Cart position has a noticeable bias after

S sec

uforce (
\
o ©
T
} )}

Time, (sec)

Figure 2-19: LQR Regulator (Non-linear System) with Control Input Disturbances
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Next, the control torque is included in the system to make the system square.
Using the idea of feedback linearization outlined above, a sliding mode controller which

decouples the outputs is designed. The resulting design is’

o, =(x,-%x)+10(x, —x) c,=(0, -0)+10(6,-0) Switching surfaces

0-x 08
u = 50 sat t=10sat| — Control laws
0.4 04

As before, a LQR controller is also designed for comparison purposes.

For the following plots, the command signal for x 1s a sine wave and the initial
state of x(0) = 0. The command signal for 6 is a cosine and the initial state of 6(0) = 1.
All cases are run with the non-linear system

The first plot is the SMC baseline case with a healthy plant. The next four plots
show the results when the plant model experiences a “failure” as defined above.
Figure 2-21. Decoupled SMC Tracking, Baseline Case
Figure 2-22: LQR Tracking with System Failure
Figure 2-23: SMC Tracking with System Failure

Figure 2-24- SMC Tracking with System Failure (Insufficient px & p0)

Figure 2-25- SMC Tracking with System Failure (Insufficient p0)
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This plot shows the SMC controller with: u =50 sat(g—z-) and 1=10 sat(g—:). A

non-linear system simulation is run with no system failure.

Very nice decoupled

tracking is demonstrated. The baseline LQR simulation performance looks the same
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Figure 2-21: Decoupled SMC Tracking, Baseline Case
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This plot shows the resuits of the LQR controller with failures The disturbance bias at

S sec has magnitude of SO A non-linear system simulation s run with system fatlure at

3 sec. Tracking performance is severely degraded.

— - Reference
~—— Actual

x-Posttion (m)

150

100

50

Commanded Force (N)
Commanded. Torque (N-m)

0 2 4 6 8
Time (sec)

10

N

g-Position (rad)
o

100

A
(=)

o

-50

-100

-150

Reference
/J\ _ Actual
7 AN

10

0 2 4 6 8

10
Time (sec)

Figure 2-22: LQR Tracking with System Failure
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This plot shows the SMC controller with: u=175 sat[g—’;) and t=75 Sat(%)

The disturbance bias at S sec has magnitude of 50. A non-linear system simulation is

run with system failure at 3 sec. Very nice decoupled tracking is demonstrated. Notice

the gains on the discontinuous control elements are higher than the baseline case. This is

because a larger value is needed to provide the reaching condition in the face of the

increased uncertainty.
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Figure 2-23: SMC Tracking with System Failure
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This plot shows the SMC controller with: u =50 sat(;”;) and t=10 sat((g%) The

disturbance bias at 5 sec has magnitude of 50. A non-linear system simulation is run
with system failure at 3 sec. Note the controller is still tracking x after the failure at 3
sec (although some degradation s apparent), but the disturbance bias at 5 sec causes x to
diverge. The significance of this plot is that it demonstrates that if the disturbance level
is higher than designed for, the SMC will not be able to stabilize the system—and, in

fact, may drive a statically stable state unstable
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This plot shows the SMC controller with:  u=175 sat(

Ox and 7T =10sat %o .
04 04

The disturbance bias at 5 sec has magnitude of 50. A non-linear system simulation 1s

run with system failure at 3 sec. Note the controller is tracking x throughout, but 6

breaks tracking shortly afier the system failure The significance of this plot is that it

demonstrates the ability of the controller to track one state even though another

(coupled) state 1s not on its sliding mode.
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Chapter 3

Parasitic Dynamics and SMC

3.1 Introduction

As introduced in Chapter 2, unmodeled parasitic dynamics and physical limits are
a significant implementation problem for sliding mode controllers. In order for the
system to remain on the ideal sliding mode, an infinite frequency switching must occur.
Real actuators and sensors prevent this infinite frequency switching, and the sliding
mode is lost (along with all its desirable characteristics). In order to demonstrate the
effects of actuator dynamics on a SMC system, the problem of the inverted pendulum on
a translating cart is revisited. The single control input case with the regular form design
isused. In all cases, the linear system model is used in the simulation. There s no noise

and no bias disturbance. In each case, the initial state of the cart position is x(0) =-1.0

and the initial state of the pendulum angle is 8(0) = -10 deg.  The control law is:

u=>50 sat(%) with the same sliding surface as the first example in Section 2.2 Three

cases are presented. The only difference between them is the bandwidth of a simulated

actuator: Figure 3-1: SMC Control, No actuator; Figure 3-2: SMC Control, With

Actuator: i(s) = —30—; Figure 3-3: SMC Control, With Actuator: —§—(s) S :
u, s+20 u s+13

c
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This is the baseline case with no actuator. Of course, excellent regulation of the states is

evident.
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This is the case with an actuator possessing a bandwidth well beyond the highest plant

eigenvalue magnitude. Already, undesired oscillations appear.
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By reducing the actuator bandwidth, the controller is unable to control the states. In fact,

it drives both states unstable.
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One approach to solve the actuator problem is to include the actuator in the initial
design process. In this approach, the actuator is lumped together with the plant, and the
sliding manifold is defined with the increased order associated with the addition of the

actuator dynamics For example, consider the following system.

u p o k y
s+p s+a

Figure 3-4: Simple Plant with Actuator

Including the actuator dynamics, the input-output differential equation for the system is:

y+(pta)y+(pa)y =pku (31)

Define the sliding manifold as

c=my+y (32)

The order of this manifold is consistent with a traditional SMC—one degree less than

the relative order of the state variable to be controlled. If the actuator had been

neglected, the order of the manifold would have been zero instead of one. Next, find the
equivalent continuous control, ue, needed to maintain ideal sliding motion by setting

6 =0 and solving for u (see Section 2.1.4)
m(p+a)-1}. (a)
=| ———|y+| = 33
Heq ( mpk )y k y (33)

Substitute u, from (3.3 ) into the original differential equation (3.1) to obtain the

closed loop, unforced system dynamics.
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L1
y=-—y (3.4)
m

Note that none of the parameters (p, k, or a) appear, implying that, When on the sliding
surface, the system output is invariant to changes in both plant and actuator parameters.
Indeed, simulations of this simple system confirm that this is the case. An interesting
note is that, while the system output, y, is invariant to changes in both the actuator and
plant parameters, the intermediate state, 8, is only invariant to changes in the actuator
parameters. This can become an issue if there are physical limits for § and can result in
system instability if those limits are reached

The simple solution to the actuator problem would appear to be the inclusion of
the actuator in the SMC design. The resulting system 1s robust to both actuator and plant
variations. Unfortunately, this is difficult to implement in practice because of the
increased order of the sliding manifold associated with the additional dynamics In
general, the order of the manifold will increase by the same order as the modeled
actuator dynamics. This means, for a second order actuator, at least two derivatives of
the output signal are required. For a real system with measurement noise, these
additional derivatives make this approach very unattractive. While it is true that the
SMC is very effective at rejecting the input noise, it does so by high frequency control
commands. A noisy signal passed through two derivatives and an SMC would have

highly undesired characteristics at the actuator input.
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Young, Utkin, and Ozgiiner’s classic survey paper, “A Control Engineer’s Guide
to Sliding Mode Control,”* briefly discusses the actuator bandwidth issue.

In plants where control actuators have limited bandwidth, e.g,
hydraulic actuators, there are two possibilities: First, the actuator is outside
the required closed-loop bandwidth. Thus the actuator dynamics become
unmodeled dynamics.... While it is possible to ignore the actuator dynamics
in linear control design, doing so in VSC requires extreme care. By ignoring
actuator dynamics in a classical SMC design, chattering 1s likely to occur
since the switching frequency is limited by the actuator dynamics even in the
absence of other parasitic dynamics. Strictly speaking, sliding mode cannot
occur, since the control input to the plant is continuous.

Second, the desired closed-loop bandwidth is beyond the actuator
bandwidth. In this case, regardless of whether SMC or other control designs
are to be used, the actuator dynamics are lumped together with the plant, and
the control design model encompasses the actuator-plant in series. With the
actuator dynamics no longer negligible, often the matching conditions for
disturbance rejection and insensitivity to parameter variations in sliding
mode which are satisfied in the nominal plant model are violated.

They then offer several approaches to deal with the problem of parasitic dynamics

¢ Boundary Layer Control. By increasing the boundary layer thickness, the
effective linear gain is reduced, and the undesirable oscillations about the
sliding manifold can be eliminated in some cases. While this method is
often proposed, Young et al. are quick to point out that this is not a
recommended approach. A worst case boundary layer control design is
usually required, resulting in poor SMC disturbance rejection properties.
For a tracking task, this means poor tracking. Further, boundary layer
control can not always stabilize the chatter.

o Observer-Based SMC. An asymptotic observer is placed in the feedback

path for the SMC. This observer acts as a high frequency bypass loop and
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can eliminate chatter due to the unmodeled actuator dynamics Section 3.3
investigates this approach further.

¢ Disturbance Compensation. An SMC disturbance estimator 1s used. The
control law consists of a conventional linear feedback component and a
discontinuous component based on the estimated disturbance.

e SMC Design with Prefilter. Actuator dynamics are incorporated as a
prefilter to the SMC. A form of this approach is utilized by Shtessel and is
demonstrated in Section 3.2. It is actually more of a po.stﬁlter, but the
concept is similar. He does not refer to his method as this, but the
approach falls into this general category

e Frequency Shaping. The sliding manifolds are defined as linear operators
and are “introduced to suppress frequency components of the sliding mode
response in a designated frequency band.”

Of these different approaches, the two which appear most straightforward and applicable
to the problem at hand are the observer-based and postfilter-based designs. A large body
of work is available in the literature utilizing the postfilter approach, so this method is
investigated first. It has some drawbacks which are discussed in the next section The
observer-based design is developed in Section 3.3. This approach is the one used in the

final design methodology of this work.

3.2 Postfilter Design with Dynamic Boundary Layer

Shtessel and his associates have a number of papers addressing the issue of finite

63-66,106,110

bandwidth actuators with rate and position limits. Actuator dynamics are

handled by defining the sliding manifold in terms of the derivative of the output states,
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creating a pseudo command which is the derivative of the desired actuator command.
Note, this is similar to the approach of a 2-SMC. The actual actuator command is then
obtained by integfating the pseudo command through a model of the actuator. It should
be emphasized that this approach requires measurement of the actuator output. Again,
although not referred as such, this method is essentially an SMC postfilter. As will be
demonstrated in the examples to follow, this method works very well for a first order
actuator with a known bandwidth. In order to handle rate and position limits, they use
what they call “reconfigurable sliding modes.” Probably a more accurate description is
“dynamic boundary layer.” The main idea is to dynamically adjust the boundary layer
thickness to keep the controller operating in the lincar region of a boundary layer
saturation element. By increasing the boundary layer thickness, the tracking
performance is degraded but the states remain within the boundary layer, stability it
maintained, actuator limits are not violated, and integrator wind-up is avoided. For

known limits, this method works very well, as will be shown in the following examples.

3.2.1 Application Example: Pitch Rate Tracking for an F-16

In order to exercise the
idéas of Shtessel’s dynamic
boundary layer and validate the
operation of an example SMC, the

exact same model from Shtessel’s

work® is used.
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Consider the linearized longitudinal short period mode approximation of an F-16 at

Mach = 0.7, and h = 10,000 ft.

o] ~[o] = :
[_]:A[}LB&G §,=-205,+20u (35)

where

A=A,+AA, B=B,+AB

n

[—1.1500 0.9937 }

0.0400 0.0031
3.7240 —1.2600

1.8560  0.4200
—0.1770 0.0885

B, = AB = SIER)
~19.5000 9.7500

The “failure” simulated at t = 5 sec represents a 50% loss of horizontal tail area

]1@_5)

The pilot command, u,, consists of 0.1 rad/s pitch rate pulses of 1.0 sec duration with
polarities of - + - and + at times of 0.0, 3.0, 6.0, and 9.0 seconds respectively. These

commands are filtered by a reference model which is given in state space as:
-1.2693  0.9531 -0.1770
A= B, =
~-9.4176 -57307 —-19.5000

The designed SMC control law is:

o=(4, ~9)+5(a, ~9)+25 [(q, —q) d=

ooz

Chapter 3: Parasitic Dynamics and SMC 3.2 Postfilter Design with Dynamic Boundary Layer

92



The block diagrams for the overall model and the SMC controller are given below.

Reference Model y = Cx¢Du

Command o uat A 1 Mode!
actuator ircra ode
Selector Conltroller
with himits

Figure 3-5: F-16 SISO Longitudinal System Block Diagram

x' = Ax+Bu -
q
y = Cx+Du | yRef qRef X = Ax+Bu alpha
Piot lnput P{a uc Piuc u » alpha
1
q
E

Saturation

boundary layer

subsystem

Figure 3-6: F-16 SISO SMC Controller Block Diagram

The simulation results for the healthy aircraft are shown in Figure 3-7. The results for
the failed aircraft (failure at t = 5 sec) are shown in Figure 3-8. In both cases, actuator

dynamics are included, but actuator limits are not. The results are excellent tracking in

both cases.
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Figure 3-7: F-16 SISO Pitch Rate Tracking, SMC, No Failure, No Limits
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Figure 3-8: F-16 SISO Pitch Rate Tracking, SMC, With Failure, No Limits
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Next, actuator positions and rate limits &__ =037rad, &__ =10rad/s are

modeled. All the following plots use these limits. At this point, the boundary layer is
static-—Shtessel’s dynamic boundary layer is not 1n use yet.

First, the case with same input profile as the baseline cases 1s given. The only
difference between this case and the previous case is the inclusion of actuator limits in
the simulation actuator models. The results are shown in Figure 3-9. Notice that some
minor rate limiting occurs, but the position limit 1s never reached. The result 1s slightly
degraded tracking performance. This tends to be typical—some rate limiting is usually
tolerated.

Next, 1n order to cause the system to hard limit, the input profile is changed to
0.2 rad/s pitch rate pulses (instead of 0 | rad/s). The results are shown in Figure 3-10.
Once the actuator hits the position limits, the system no longer tracks the input and it
becomes unstable. This also tends to be typical—with a static boundary layer and
nonredundant control effectors, position limits are almost always fatal to SMC when

encountered.
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Figure 3-9: F-16 SMC, u, = 0.1 rad/s, With Failure, With Limits, Static BL
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Figure 3-10: F-16 SMC, u, = 0.2 rad/s, With Failure, With Limits, Static BL
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Shtessel ef al.**>"'* propose a method to account for actuator limits in the SMC
design. They use a dynamic boundary layer. The boundary layer thickness, €, is
calculated to satisfy the following inequalities which guarantees compliance with

actuator displacement and rate limits and avoidance of integrator windup:®

Integrator Windup: ]0,| <E, Yi=1,

(3.6)
n o, L —
Actuator S, +(1/ag)\ v, +p,| —|1<d Vi=13
. . . 1 eq, 3 £ m (37)
Deflection Limit: '
Actuator Rate Limit: o ap |2 l<s Vi=13
ctuator Rate Limit: eq, TP, ‘. <8, =1, (38)

The next case is the same as the previous case except it includes this dynamic
boundary layer The results are shown in Figure 3-11. The dynamic boundary layer
keeps the system stable and achieves remarkably good tracking performance in the face
of the actuator limiting. Tracking performance is degraded somewhat, but this is to be
expected when limits are reached.

Next, the actuator bandwidth is decreased. Both the actual actuator model
bandwidth and the design actuator model term in Eqn (3.7 ) are halved (as = 10).

Results are shown in Figure 3-12. Results are comparable to the last case.

Chapter 3: Parasitic Dynamics and SMC ~ 3.2 Postfilter Design with Dynamic Boundary Layer

99



100

Pitch Rate (rad/s)
Actuator [nput (rad)

Tracking Error (rad/s)
Actuator Deflection (rad)

Actuator Deflection Rate (rad/s)

Sliding Surface (o), BL Thickness (¢)

Time (sec)

Figure 3-11: F-16 SMC, u, = 0.2 rad/s, With Failure, With Limits, Dynamic BL
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Unfortunately, the actuator model term in Eqn (3.7) 1s a design parameter and
has a static value. If the actual actuator dynamics do not match this, there could be
problems.  Figure 3-13 shows the results when the actuator model bandwidth is
decreased but the design parameter in Eqn ( 3.7 ) remains the same. The system fails.

This presents a problem when considering an application for a reconfigurable
design. Afier an actuator failure, the actuator dynamics are not known. Therefore, the
very situation demonstrated here is likely to happen Also, the rate and position limits
are not known after a failure. Although not shown here, it turns out that off-design
limits also result in an unstable SMC.

Another major drawback to this method is the assumption of a first order actuator
in the control law. 1f a second order (or higher) actuator is used, the current control law
fails. It seems plausible to re-derive the control law postfilter assuming a second order
actuator. However, this would require the second derivative of the output states for the
sliding manifold—which is unreasonable from a practical standpoint. Plus, this solution
would only be valid for a second order actuator

The conclusion is this: for actuators with known order, bandwidth, and limits, this
method works exceptionally well. The results are the most impressive of any in the
current literature. In fact, these results initially defined the direction of this research.
However, the issues relating to changes in the true actuator dynamics have proven to be

difficult to overcome.
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3.2.2 Application Example: Bank Angle Tracking for a DC-8

The problem of sensitivity to changes in actuator dynamics can be partially

addressed using a multiple-loop scheme also proposed by Shtessel.®® In this approach,
an SMC is designed to track outer loop flight attitude angle commands. The output is a
pseudo command for an inner loop SMC which tracks angular rates. In addition, a “very
inner” loop is wrapped around the actuator and is controlled by another SMC.

For simplicity in an initial demonstration, a linear lateral-directional model of a
DC-8 is taken from McRuer, Ashkenas and Graham.'” The goal is to design a bank
angle tracker. In this case, the longitudinal variables are not controlled, and the only
actuators are the ailerons and rudder. This results in a square system, as required.
Sideslip angle is also not controlled, but the yaw rate is regulated to zero.

Using the stability and control derivatives for flight condition 8003, the state
space representation of the linear lateral-directional perturbation equations for the

healthy DC-8 are: '**

v] [-0.088 0 ~8242 32.174][v] [-183300 0
p|_|-0.0054 11810 03340 0 |p| | -05490 2110 |5,

0.0026 —0.0204 -02280 0 [r| | 1.1640 0.0652 3,
s 0 ! 0 0 o 0 0
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The healthy actuator dynamics are assumed be

Outer Loop Design. Although an SMC can be used for the outer loop, for
simplicity a basic loop shaping technique is used here. It is assumed the inner loop SMC

has provided decoupled control of the roll rate, so the effective system seen by the outer

. p 4
. - —(8) =
loop is simply the roll rate model reference transfer function: Do 12082422

The result of the loop shaping design gives the outer loop compensator:

(s+2)°

G =1778 .
() (s +20)°

Inner Loop Design: The sliding mode control 1s designed using the derivative of

the actuator position, and then the actual actuator command is calculated using the

model of the actuator dynamics: Sz—A8 (S—SC)_ This means the system being

controlled has relative order T ={2,2}" and the sliding surfaces are given by

g:;'?+C2r7+C3J.;7dT, a,qeRz (39)
where 7= {(p; -p) (-1} .

The control law is.

1 i . =
5, =3, +—[p. satﬁ] vi=12 (3.10)
a; €

Notice, again, this is a postfilter approach assuming a first order actuator. The chosen

design parameters are:
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C, = diag{5}, C;=diag{25}, £ =1, ps,=-50, ps =25

Actuator Loop Design: The sliding surfaces are given by:

o, = (6, =8,)+10[(,, ~8,) dr

o5, = (8, =8,)+10[ (3, -8,) dr

and the SMC control law is

Us, :lOsat(

05.

Os
u, =10satj —-
1 1

A schematic of the overall system is shown in Figure 3-14.
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Figure 3-14: Schematic of DC-8 Lat/Dir Control System

A schematic of the inner loop SMC is shown in Figure 3-15.
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Figure 3-15: Inner Loop Sliding Mode Controller
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A schematic of the actuator loop SMC is shown in Figure 3-16 (note both actuator

controllers are the same; only one is shown).

sigmada

A4
Y

ua

Figure 3-16: Actuator Loop Sliding Mode Controllers

Results for a case with no failure and no noise is given in Figure 3-17. The
controller achieves excellent tracking.

Next, a failure is simulated to test the system’s ability to handle a failure The
“failure” 1s defined as

System A-matrix

0.5a,, 05a, 05a, 05a,
A 05a, 05a, 05a, 05a,,
FAl10.5a, 05a, 05a, O05a,,

a’4l a42 a43 a44

Atileron Control Power Derivatives

Ysl(m’_) =02 YS, LSI(FA[L) =02 L5‘ Nsl(m” =02 Nﬁ.
Aileron Actuator Bandwidth
o, (0.2) 20
"—‘(S)FAIL =
S, s+(0.2) 20
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Results for a case with a simulated failure at £ = 40 sec and no noise 1S given in
Figure 3-18.  Again, the controller achieves excellent tracking. In fact, there is no
difference in the tracking performance between this case and the un-failed case. The
multi-loop system is invariant to the changes in the A-matnx, the B-matrix, and even to
the reduced bandwidth of the actuator.

Unfortunately, the required control action is completely unrealistic. If actuator
rate and position limits are considered, this system fails. Of course, if Shtessel’s
dynamic boundary layer is employed in the inner loop, stability can be maintained in the
face of actuator limits (with the expected degradation in performance) However, in
order for the dynamic boundary layer to work, the limits must be known While this
approach handles changes to actuator dynamics nicely, it still does not solve the problem
of unknown limits. It also does not solve the problem..C unknown actuator order.
Again, a first order actuator 1s assumed. If a higher order actuator is present, the control
law fails. Another drawback to this approach is the assumption that the states of the
actuator (position and rate) are available. This could present actual implementation

1ssues—especially in a reconfigurable setting.
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Figure 3-17: DC-8 Roll Angle Tracking Results, No Failure
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3.3 Observer-Based SMC

Recognizing the essential triggering mechanism for chattering is due
to the interactions of the switching action with the parasitic dynamics, an
approach which utilizes asymptotic observers to construct a high-frequency
by pass loop has been proposed. This design exploits a localization of the
high-frequency phenomenon in the feedback loop by introducing a
discontinuous feedback control loop which is closed through an asymptotic
observer of the plant. Since the model imperfections of the observer are
supposedly smaller than those in the plant, and the control in discontinuous
only with respect to the observer variables, chattering is localized inside a
high-frequency loop which bypasses the plant However, this approach
assumes that an asymptotic observer can indeed be designed such that the
observation error converges to zero asymptotically.”’

This 1s a good qualitative description of how an observer-based SMC works.
However, what 1s not clear 1s exactly why the observer helps and how to choose the
appropriate observer gains. Initial simulation runs confirmed the utility of the observer-
based design. The observer does, indeed, enable an SMC to run in the presence of
unmodeled finite bandwidth actuators. However, the performance is highly dependent
upon the speed of the observer (the observer gains). In general, if the observer gains are
too high, chatter and instability result. Sensor noise also becomes a problem. If the
observer gains are too low, robustness to system parameter variations is lost.

In order to investigate this further, consider the following system.

Model Control
Reference Controller Distribution Actuators Plant
y
ro+ e Ve U, Va .
— Gr » g?'_‘—> Gc Kb > Ga L
- : P
y

Asymptotic Observer

Go

A A

Figure 3-19: Observer-Based SMC Block Diagram
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Define the following state space representations for the given system:
xeR™, x,eR™, x, e, x, eR™, x,eRM

yeR™ y,eR™ yo Ry eRTY, jeR™, zenr™

Linear Plant Actuators
x=Ax+By, X, = Aa g + By Kpye
y:ny+Dyy3 ya:Caxa+DaKbyC

z=C,x+D, y,

Reference Model Observer
x, =A x +B,r, $=(Ag-GCy)i+ByKyye +Gz
y,=C,x_ +D_r, 5 =Cq %

For the sake of analysis, consider an equivalent plant in which the control distribution,

actuators, nominal plant, and observer are lumped together as shown below.

y
EE—
o koo e
i y

Figure 3-20: Equivalent Plant with Observer
It is easy to show that the state space representation of this system is given by

A BC, Oneny BDy K,
x-fe = 0“3 <n Aa 0,,2 xng Xe + Ba Kb Yc

GCz GDZ Ca (Ao—GCz) Bo Kb +G DZ Da Kb ¥

xe=|xg | (312)
y:[Cy ()my “(a, +n0)}x€ +[DyKb]yC

=<

yz[omy 0 O n Co}xe

It is instructive to now examine the transfer function —yy—(s) and compare it to both the
Cc

original nominal plant transfer function with no actuator and the plant with the actuator
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For the MIMO case, the transfer functions of interest are the ones from the control
outputs to their corresponding output variable. Since a square system is assumed, this
direct correspondence will always exist. The cross-coupling transfer functions are not

needed here

3.3.1 Observer-Based Design, SISO Case
Consider the F-16 SISO system given in Section 3.2.1 with a second order

8 © 202
r & = .
actuator s24+2.07-205 4202

Recall the controlled feedback variable is pitch
rate, q. The Bode plots of the nominal system and the nominal system with the actuator
are shown in the Figure 3-21. While this plot does not show anything surprising, there
are two things to point out when considering a sliding mode controller for this system.
First, the relative order of the nominal plant s 1. Therefore, if the actuator dynamics are
neglected, the order of a traditional 1-SMC sliding manifold has to be 0 (1 degree less
than the relative degree of the controlled state). Unfortunately, the real system has the
actuator, so the actual relative degree of the system is 3. Therefore, the SMC can not be
guaranteed to stabilize the system with the actuator. Second, if the actuator is included
in the design, the sliding manifold would need to be 2™ order. While an SMC could be
designed to stabilize this system, the second derivative of the pitch rate would be
required. Now, compare the estimated output from the equivalent system shown above

with the nominal plant output. The observer poles are arbitrary selected to be very fast,

(A =-500, -501). The resulting Bode plots are shown in Figure 3-22.
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Since the controller is operating o‘n the estimated state, the behavior of this transfer
function is of particular interest. At frequencies below the bandwidth of the actuator, the
observer state will follow that of the actual plant+actuator response. At higher
frequencies, the magnitude of the observer state will approach that of the nominal state,
but with a large increase in phase lag. This system, including the observer, cannot be
stabilized by the SMC. However, an interesting observation can be made. The
estimated state signal once again has the same relative order as the original system. As
long as the nominal plant used in the observer has the same relative order as the nominal
system plant, this will always be the case. Since it is critical to know the relative order
of the plant for which the SMC is to be designed, using an observer provides a large
benefit. This ts also encouraging because the knowledge of the actual order of the
actuator dynamics is no longer needed. In addition, no measurement of actuator output
is necessary. However, just using an observer does not guarantee system stability. The
observer must be tuned such that the effects of the actuator are attenuated before being
fed back to the SMC. Now, consider slowing down the observer.

The Bode plots in Figure 3-23 show the results for observer frequencies of 500,
100, 50, 20, 10, S, and 1 rad/s. On the magnitude plots, the effect of decreasing the
observer speed is to cause the plots to approach that of the nominal system with no
actuators. In general, the differences between the two cannot be completely eliminated,
but they can be minimized to a degree depending on the relative dominant frequencies of
the actuators and the plant. On the phase plots, note there is an observer speed below

which the phase does not exhibit the large lag. In general, the observer poles must be
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Figure 3-23: F-16 Bode Plots, Y Various Observer Speeds
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below this frequency in order for the SMC to stabilize the system The phase lag/lead
shape near the bandwidth of the actuator is common and results in a characteristic
lead/lag shape in the closed loop. These Bode plots are very useful for determining the
appropriate observer gains during the design process. First, design the SMC for the
nominal plant neglecting the actuator dynamics. Next, include the actuator dynamics
and examine the Bode plots of the equivalent system with the observer. Start with
observer speeds near the bandwidth of the actuator and decrease the observer speeds
until further reduction does not produce any further benefit. Double-check the results by
examining a step response of the controlled variable of interest.

As an example, consider again the F-16 SISO pitch rate tracking problem with the

actuator defined above. The SMC is already designed. Now tune the observer
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Observer speeds of 20, 10, 5, 1 and 0.1 rad/s are tried. The Bode plots and resulting
closed-loop step responses are shown in Figure 3-24 and Figure 3-25. There 1s almost
no difference on the Bode plots between observer poles at 1 and 0.1. Based on the Bode
plots alone, observer poles at 1.0 appear to be the best choice. This design tends to give
too much overshoot; however, and the final choice of 5 is made based on the actual step

responses.

40
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Figure 3-24: F-16 Bode Plots, Y Choosing Observer Speed
Y.
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Figure 3-25: F-16 Pitch Rate Step Responses, Various Observer Speeds

3.3.2 Observer-Based Design, MIMO Case
Assuming the system is square and feedback linearizable, the controlied outputs

can be decoupled and independently managed by the controller. In light of the desire to
shape the observer feedback loop appropriately for the SMC, it logically follows that an
independent observer may be needed for each feedback channel. Indeed, simulation has
indicated that this is the case, especially when the feedback variables have sufficiently
different time-scales. The MIMO case then becomes simply a set of independent SISO
cases, and the approach outlined above is used for each feedback channel. Parameter
coupling can still be somewhat of a problem, so some care must be given to ensure the
observer for one channel does not cause adverse interaction with another channel. An

example of this is seen later in the ICE aircraft application.
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Consider, now, a system with multiple observers (in this case, three),
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Figure 3-26: Multiple Observer-Based SMC Block Diagram

with the following state space definitions

x€R™, x,eR™, x,eR, x,eRY, x,;eR" x,eRML ;e R

yeR™ |y eRM, y eR™Y, y eRY, JeR™Y, jeR™, jreR™

7€ RMA | 2, e RM2 | z3eRM | pe R

Linear Plant
x=Ax+By,

y=Cyx+Dyy,

2] =Cyx+Dyy ya
2 =Cppx+Dp y,
23 =Ci3x+Dy3 y,

Reference Model

X, =A,x, +B,r,

yf:Cl'x'+Dl'rp

Observer 1
%1 =(A01 -G Cyr )i + By Kpye +Gy z)
Vi =Cot ¥y

Actuators
X =Aax, + B, Ky,
Ya = Ca xgz + DK}, Ve

Cor € R™™" with zeros in the rows

corresponding to states not output by
Observer 1. Gy = Observer gains

(3.13)
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Observer 2
’%2 :(Aol ~-GCp )‘;2 +Boy Kpyc+Gpz)
32 =Cq X;

Observer 3
%3 =(Ae3 ~G3Cp3 )i +Bo3 Kpye +G3 23
y3 =Co3 X3

Qutput Feedback
Vy=y1+yy+y;3

120

Co2 € R™™ with zeros in the rows
corresponding to states not output by
Observer 2 Gy = Observer gains

Co3 € R™™ with zeros in the rows
corresponding to states not output by
Observer 3 G; = Observer gains

Again, an equivalent plant in which the control distribution, actuators, nominal plant,

and observers lumped together as shown in Figure 3-20 can be expressed as

Xe=AeXe +Be ye Pﬂ
Xa

y:[Cy Omyx("a*nol+no2+n03) xe+{DyKb]yc Xe = :rl (314)
X2

y=Cexe X3 ]

where

[ A B C, Opn,, Oy, Onn, |
Onaxn Aa Onamol 0na.xn02 Ona LU
Ae={G;C, G D, Cy (Aol ~Gy Czl) 0“01"'02 Onol‘"oz.

G2C12 GZ DzZ Ca
G;3C3 G3D;3C

n xn
L 03 ol

x
Ry2*M)

BD, K,
B. K,

Be=|B, K, +G, D, D, K,
B,,K,+G,D, D, K,
B3 Ky +G3 Dyg Da Ky

Cezomyxn 0myxna CO]

C C

02

03

(A62-G,Cp) 0, s
(863 -G3C53)

a3 g2
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Again, this system gives the designer the ability to look at the —y—(s) transfer
Ye

functions and tune the observers as needed

3.3.3 Observers with Failed Plants
In general, it is seen that slowing down the observer helps mitigate the effects of

parasitic dynamics. Consider now the behavior of the observer when the actual plant is
significantly different than the nominal plant. In this case, it is assumed that the

observer continues to use the nominal model in its calculations while the actual plant has

. y . .
suffered some failure. The same ;—(S) transfer functions used for tuning the observer
C

provide useful insight here. The Bode plots in Figure 3-27 show the SISO F-16
example The nominal system and a failed system (a 50% loss of horizontal tail area)
are shown. The actuator dynamics are neglected. Also shown is the equivalent system
assuming a very fast observer (A =-500,-501). Note that at low frequencies, the
observed state closely matches that of the actual failed plant. However, the observed
state then transitions to the nominal system and matches the nominal system at
frequencies above the observer frequency. This implies that as long as the observed
state is close to the actual state around the closed-loop bandwidth, the controller will

exhibit acceptable performance.
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Next, consider slowing the observer down to the speed determined earlier as
optimum for reducing the effects of the parasitic dynamics (A = -5, -6). Again, the
observer follows the nominal system at frequencies above the observer frequency.
Below that frequency, the observed state follows neither. The result in the closed loop is

very poor tracking and a steady state error.
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These results lead to the conclusion that a very fast observer is desired for
robustness to system parameter changes. Unfortunately, fast observers do not help
eliminate the effects of the actuator. Therefore, these competing design objectives must
either be somehow balanced, or another method of dealing with parasitic dynamics must

be sought.

3.4 Model Reference Hedging
Observer-based SMC helps deal with the problem of unmodeled parasitic

dynamics. However, the addition of the observer does not directly address the issue of

control saturation The observer does help with rate saturation to some degree because
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of phase lag reductions at medium to high frequencies. However, position saturation is
still an issue—especially when the system does not have redundant control effectors
[nitially, in an attempt to deal with control saturation, a method called model reference
hedging is pursued The concept of hedging has been successfully demonstrated in a
dynamic inversion design approach.”* The concept in words is this. “The reference
model is moved backwards (hedged) by an estimate of the amount the plant did not
move due to system characteristics the control designer does not want the adaptive
control element to ‘know’ about.”"*® The actual accelerations are subtracted from the
expected accelerations (assuming no actuators). This difference represents the amount
of desired acceleration which was not achieved due to the actuators and should capture
nonlinear saturation of the actual actuators. This difference is then subtracted from the
reference model acceleration. Since all this is done in a dynamic inversion setting, these
accelerations are pseudo-commands for the dynamic inversion controller, and Johnson ef
al. call this “Pseudo-Control Hedging.” The concept has great merit and is very
successful in their work.

In order to employ this method in an SMC design, some modification to the actual
implementation is required. Rather than subtracting the acceleration difference from the
reference model pseudo command, the following approach is used. The actual
controlled variable output is subtracted from the expected output (through a nominal
system with no actuators). This signal (yn) represents the amount of unachieved
performance due to the actuator. This passes through a hedge gain (Ky) and is subtracted

directly from the model reference states as shown below.
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Figure 3-29: 2" Order Hedged Reference Model

If a 3" order reference model is used, the hedge signal enters the reference model as

Kuyn
1 + = th
L - r—>

shown below.

Figure 3-30: 3™ Order Hedged Reference Model

In order to investigate how hedging affects the system, an analytical expression
for the system with hedging included is needed. Consider, initially, a model architecture

as shown below.
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Figure 3-31:

Hedged System Architecture

In this system, the hedge plant, Gy, is simply the nominal plant model (assuming it is

stable). The subsystem block labeled “Hedged Reference Model” is the subsystem

shown in either Figure 3-29 or Figure 3-30. Note that hedging occurs on individual

control variable channels, so it is possible to write the transfer function for the hedged

reference model. It can be shown that this transfer function (for a 2™ order reference

model) is given by
my
x[h = 2
ST 4+ mps+my

=G, (s) xc -Gy (s

2
28 +mys
X~ 5 |Kn ¥n
§7 +ms+mg (3A15\)

YKy vh

3.4 Model Reference Hedging

Chapter 3: Parasitic Dynamics and SMC



This indicates that the hedged reference signal consists of two parts, a reference model
part and a hedge signal passing through a “hedge filter,” G¢. With this definition, the

block diagram can be redrawn as:

X

\

y
yC' ua ya
G, } G, —» >~
P

Equivalent Model Reference Hedging

b Gy %}l Gy,

4

y Muitiple Asymptotic Observers
7
- z
Gol -t M. !
+
- z
Ot— Go | DN ?
+
3 «
- V4
GoB . 3

Figure 3-32: Equivalent Hedged System Architecture

Next, define the following state space representations for the given system:

xeR", x,eR™M, xoeR™, x eRM, xpeRM xpeRY, ke RN, ke R™2, g e R
yeR™, 3y e R™, yoeR™, y eR™, ypeR™, yre®R™Y, je®R™, p,er™r, jyenr™

- m
zle‘.lel, Zzemmﬂ, Z3E(Rm13, th‘R y

Actual Linear Plant Actuators Linear Compensator
x=Ax+By, X, =Aax, +BaKpy, X, = Acx.+Be
y = Cy x+ Dy Va

Ya=Cax, + DKy, v, Ve =Cex.+D_e
2 =Cyyx+Dyyy,
z2;=Cpx+Dpyy,
z3 :Cz}x+DLJYa

Reference Model Hedge Plant Hedge Filter
x, =A, x +B, x, )'Ch ZAhxh+Bth)’c if:Afxf*"BthYh
V. =C.x, +D, x, v =Chxp+DpKyye  Yr=Coxr +DeKnon
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Observer 1
%1 =(Ag ~GyCy )i +By Kyy, +Gy 2y
y1=Cot X

Observer 2

X;2(A0 —G1Cpy )i, +Byy Kyy, +Gyz;
y2 =Co x;

Observer 3

%3=(Ag3 ~G3Cp3 )3 +B3Kyy, +G3123
y3 =Co3 X3

Output Feedback

Vh=Yi V2t y3tyy

128

Co1 € R™" with zeros in the rows

corresponding to states not output by
Observer 1. Gy = Observer gains

Coz € R™™ with zeros in the rows
corresponding to states not output by
Observer 2. G; = Observer gains

Co3 € R™" with zeros in the rows
corresponding to states not output by
Observer 3. G3 = Observer gains

Again, this can be cast into an equivalent system in which the control distribution,

actuators, nominal plant, observer, and equivalent hedge are lumped together as shown

below.

Q
\
o°

Ye

Figure 3-33: Equivalent Plant with Observer and Hedge
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The equivalent system is defined in state space as

xe =Ag xe +Be yc

y=|C

Vp=Cexe+De ye

y 0'"y x(ny #ngp +ngy *igy + g *"h)_xe+[D)'Kb]yc

where
[ A BC, Onxn, Onxa,,
0n,xn A, 05 xn,, 0. xn,
G1Cu G Dy G (Ag -6 Cy) 0, xn,,
A, =16 Cp Gy D, G, 0, ,xn,, (Ap2-G3 Cp)
G3Cy3  G3Dy G 0y xn,, 0, ,xn,,
Onfxn On[xna 0nfxnol 0nfxn02
[ O"h"" Of‘n""a O"h"“on Onn""oz
B D, K, 1
B, Ky
Boy Kp +Gy Dy D, Ky
Be = Bg Ky +G2 Dy D, Ky
B, Kp +G3 Dy3 D, Ky
B¢ Ky, Dy, Kp
i By, Ky,
Ce={0myxn Omyxn, Cqp Co2 Co3 Cr DKy Gy

[ x

xa

5

Xe = £2

i

xf

_xh
(l“)(noj
0“:"“01
O“MX“M
No2 X0 o3

(A3 - G3 Cp3)

O“rxnm
0nhxn03

0

nxng

Onaxnf
Onolx“f
O"ozX"r
0

gy Xng

A

npXng
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(316)

ﬂ)(nh
l'la)(nh

0
Ny Xty
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Now the effects of hedging can be examined on the Bode plots of the transfer

-

. y . . . . .
functions “y—h‘(s) as is done with the observer. For the sake of illustration, consider a
C

SISO model of the F-18/HARV longitudinal system for a pitch rate tracking task.
Details for the system are given later in Section 4.5. The important aspects of the system
for this discussion are that the nominal plant is stable and has a relative order of 1 for
pitch rate; it has second order actuator dynamics; and it has a single observer which is
very fast (A =-1000, -1001). The observer ensures the SMC sees a relative order of 1,
however, it is running too fast to eliminate the instability caused by the parasitic
dynamics of the actuators. Note, the F-16 model used in previous tllustrations cannot be
used here because it has an unstable plant—which causes yields an unstable hedge

signal.

The Bode plots below show the nominal system and the )y;h(s) feedback signal.
C

Also shown is the transfer function Ky Gu(s)-Ge(s) which is the hedge signal. In this
example the hedge gain is very low to show the system behavior with no hedging. Note
the large phase lag. The SMC designed for this system cannot stabilize it In this
example, the hedge plant, Gy, 1s simply the nominal system open loop transfer function
for pitch rate, q. The hedge filter, Gy, is the transfer function defined earlier in

Eqn. (315).
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Next, increase the hedge gain to see its effect on the system. This is shown in the
Bode plots below. Of course, increasing hedge gain does not change the loop shape of
the hedge signal—it simply shifis its magnitude curve vertically As Figure 3-32
indicates, the hedge signal is additive to the observer signal. Therefore, as it approaches
the observer magnitude curve from below, it increases the magnitude of this latter curve.
The result is that the large drop-off in the magnitude curve (due to the actuators) is

reduced. Note, also, that the phase no longer has the characteristic increase in phase lag

This system is stable and has acceptable tracking performance.
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The hedge plant and the observer plant have the same relative order. This means
that when the hedge gain is large enough to eliminate the drop-off in the magnitude

curve, the additive effect of the hedge signal is too large at high frequencies. Note how

y . : : . : .
the y—h(s) magnitude curve is above the nominal system at high frequencies. This can
c

result in overshoot in the closed loop response. If the hedge signal had additional roll-
off at high frequencies, this effect could be eliminated.

After examining several different systems, it is noted that the hedge signal has
basically the same loop shape for each system. It resembles a derivative at low

frequencies; it peaks; and it rolls off at the relative order of the plant at high frequencies.
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This is not surprising considering the hedge filter has the same form in all cases—it
looks like a high-pass filter. All real plants have a high frequency roll-off When these
two are placed in series, the result is this characteristic “hump” shape. The question then
is this: can the same beneficial effects of hedging be achieved with a simplified
“equivalent hedge” transfer function? This s highly desired because, in its current form,
hedging can only be used with a stable plant

Consider a hedge filter of the form (a high-pass filter).

S

Gge(s) =
£(s) s+ar (3.17)
And a hedge plant of the form (a low-pass filter):
b
Gp ) = h (3.18)

s” +aps+ by

The hedge plant, Gy, in Eqn ( 3 18 ) has relative order 2 and is intended to be used with a
system with a relative order of 1. The extra pole is added in order to have the additional
high frequency roll-oft, which is noted as being desirable in the previous discussion.
This appears to be a good rule. The hedge plant should be one relative degree higher
than the nominal system plant. Figure 3-36 shows a comparison of this simplified hedge
model (Ky-Gy-Gg) with a hedge signal using the nominal plant. In general, the simplified
model can be designed to be fairly close to the original hedge .system. In addition,
desirable high frequency roll-off is obtained and lightly damped zeros are eliminated
Note that since the simplified models operate on individual pseudo-command channels,

the input to the hedge plant is simply y. (instead of Byy:). In other words, the take-off
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point for the input to the hedge model in the block diagram tn Figure 3-32 moves to a
position before the control distribution block. The appropriate changes to the state space

matrices (Eqn. ( 3.13)) are easily made.
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Figure 3-36: Simplified Hedge System, 2©

ua
Consider now, using this stmplified hedge system with the F-18/HARV model
demonstrated above. The results are shown in Figure 3-37. Compare this plot with the
original hedge scheme results in Figure 3-35. The results here are very good. In fact
these results are better than the original hedge scheme. The observed state being fed

back is very close to the original nominal plant with no actuators.
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3.4.1 Creating the Hedge Model
The following technique is proposed for creating the hedge model. Begin by

~

plotting the Bode plots of ;l—h(s) and the nominal system as before with zero hedge gain.

The basic form of the desired hedge model loop shape is as follows:
e +20 dB/dec slope at low frequencies
e -20*r dB/dec slope at frequencies where the actuators distort the magnitude
curve (r = relative degree of nominal system with no actuators)

e -20*r-20 dB/dec slope at high frequencies
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Phase (deg); Magnitude (dB)

This shape can be accomplished (for a system with relative degree 1) using the hedge

plant and hedge filter given in Eqns (3.17 )and (3.18 ) with the pole in the hedge filter

at the high frequency end of the magnitude distortion and the two poles of the hedge

plant at the low frequency end of the distortion. For example, in the F-18/HARV

example given above, the hedge filter and hedge plant are G (s)=

G,(9)=

40
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. This is illustrated below in Figure 3-38.
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Obviously, the selection procedure of the pole locations for the hedge system is not
exact. Some tuning is usually required. However, the basic rules of thumb given above
are a good starting place. Some key factors which affect the optimum pole placement of
the hedge system include: system plant parameters, actuator dynamics, and observer

speed. Once the hedge system loop shape is set, adjust the hedge gain as required.

3.4.2 Selecting Hedge Gain
Note that the hedge gain in the simplified hedge model shown above is much

higher than that in the original hedge approach (Ky = 8.0 instead of 0.8). The magnitude
of the hedge gain required is a function of the bandwidth of the hedge plant and filter
Higher bandwidth hedge systems require lower hedge gains; lower bandwidth hedge
systems require higher hedge gains. In general, it ts better to have a lower bandwidth
hedge system because the larger range of acceptable hedge gains makes the overall
system less sensitive to hedge gain—thus easier to design and potentially easier to
implement an adaptive hedge scheme.

If the observer 1s very fast, or if no observer is used, there is a minimum hedge
gain which will stabilize the system. Using this method of examining the Bode plots of

b

C

(s), it is easy to determine the minimum hedge gain. Examining the Bode plots will

also give an indication of the upper limit for acceptable hedge gain. In general, if the

~

hedge signal moves the magnitude plot of '?‘(5) above the nominal plant magnitude
c

plot, the closed-loop system will have unacceptable overshoot and phase lag. This can

lead to instability if outer control loops are closed around the SMC system. The
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use of Bode plots of %}l(s), combined with time domain step responses of the SMC
C

inner loop control variables provides a useful tool for choosing hedge gains.

©
@®
T

Increasing Hedge Gain .

o
(o]
T

;

Pitch Rate, q (deg/s)
=)
H
T

1 I} ) 1 1 1
Q a5 1 1.5 2 25 3
Time (sec)

Figure 3-40: System with Simplified Hedging, Step Responses
. 3.4.3 Hedging in MIMO Systems

Since the control variables are decoupled by the controller, it is a simple matter
to treat each channel independently and design a hedge model for each separate channel.
However, recall that with the initial concept of hedging, the control output fed into a
nominal model of the plant. This means that the original hedge signal included not only
the primary variable transfer function, but it also included the effects of all the cross-

coupled transfer functions as well. For example, in a lateral directional model (with roll

rate, p; and sideslip angle, f3), the primary transfer function for roll rate would be roll

rate to roll-rate-command, P The cross-coupled transfer function would be roll rate to

U,
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f-command, P When using the simplified hedge plant as introduced in Section 3.4 1,

Up
the effects of the cross-coupling are lost. Unfortunately, if the effects of cross-coupling
are strong, the interactton of commands of one channel with the unmodeled parasitic
dynamics can lead to instability in another channel. Therefore, in MIMO applications,
the cross-coupled transfer functions need to be examined. If necessary, a hedge model
for the cross-coupling term can be designed and the feedback loop properly shaped. The
same guidelines introduced above are also used for the cross-coupled hedge models.
This cross-term hedge signal is then added to the primary hedge signal For example,
see the hedge model shown in Figure 3-41. This shows the hedge model for a lateral-
directional system in which stability axis roll rate, Ps, and sideslip, 3, are the control

variables. The cross-coupled terms are included.

s 1 kY
3 P
$+20 s242541
cross-term hedg e filter, beta hedge plant Beta / up (cross term)
gain
s 1 ubeta
$+20 5242541
hedge filter, beta hedge plant Beta / ubeta
()
s 100 up ¥
s+50 $2+20s+ 100 ]
cross-term hedge filter, Ps hedge plant Ps / up
v gan
~ s 1 ubeta
5450 s2+2s¢1
SN ——— S ——
hedg e Qiter, Ps hedge plant Ps { ubeta (cross term)

i edge gain, beta

hedge gain, Ps

Figure 3-41: Hedge Model Example with Cross-Coupled Terms
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Examples of hedging with cross-coupling are given later in an F-18/HARV and a
tailless fighter aircraft application. The potential effects of neglecting these cross-

coupled terms are also shown.

3.4.4 Observer Gains and Hedging with Failed Plants
Recall from Section 3.3.3 that robustness to failures of the system plant and

tolerance of parasitic dynamics present competing objectives when choosing observer
gains. Fast observers are more robust to system parameter variations, but they do not
eliminate the adverse interaction of the SMC and parasitic dynamics  Slow observers
enable the SMC to operate in the face of parasitic dynamics, but they provide poor
robustness to system parameter changes. Some trade-offs must be made when designing
the observer.

The use of hedging can sometimes help meet both objectives. Since the hedge
system contains no nominal system model, it is less sensitive to system parameter
variations. The basic loop shape of the hedge system is always the same. Therefore, as

long as the parameter variations do not significantly change the location of the distortion

in the ‘)}(S) Bode magnitude curve, the design hedge system poles will provide the

correct hedge loop shape for the failed system. With the correct hedge system loop
shape, the effects of the parasitic dynamics can be mitigated with the correct hedge gain.
After a system failure, the hedge gain will probably need to be adjusted using some kind
of adaptive mechanism.

This is encouraging and means that it is possible to run the observer with fast

eigenvalues. In fact, one may be tempted to eliminate the observer altogether and use
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only hedging. In some cases, this is true. However, in general, hedging alone is not the
best answer To illustrate the effects of observer speed and hedging, consider several
different types of failures: plant parameter variations (changes to system state space A
and B matrices), actuator bandwidth variations; and pure time delay The following set
of figures use the F-18/HARV SISO longitudinal pitch rate tracking model introduced
above and given in detail in Section 4.5. All use the same SMC and include actuator

dynamics.

038t d

08t

0.7

06+

0.5}

0.4}

Pitch Rate (deg/s)

03¢

0.2¢

Fast Observer, K, = 8
0.1t h

Slow Observer, Kh =0 W

1 1 1

[§] 0.5 1 1.5 2 25 3 3.5 4 45 5
Time (sec)

Figure 3-42: F-18/HARYV Step Response, Nominal System, Nominal Actuators,
No Time Delay

Figure 3-42 shows the nominal system step response assuming a “fast” observer with
hedging and a “slow” observer with no hedging. In all the following cases, “Fast

Observer” means observer poles at A =-100,-101; and “Slow Observer” means observer

poles at A = -4,-5. While the SMC alone cannot stabilize the system when actuators are
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included, the observer-based SMC and the hedged SMC model both stabilize the system
as illustrated in Figure 3-42. Note that they provide equally good performance. The
question, then, i1s:  which will provide the most robustness to system failures?
Figure 3-43 shows the same SMC, observer, and hedge systems with a “failed” system

plant.

14 T -

Pitch Rate (deg/s)

_ Fast Observer, Kh =8
Siow Observer, Kh =0

. . . : ) !
0 0.5 1 15 2 25 3 35 4 45 S
Time (sec)

Figure 3-43: F-18/HARY Step Response, FAILED System, Nominal Actuators,
No Time Delay

The failure is a 50% loss of horizontal tail area (which affects the system state space A
and B matrices). As can be seen in Figure 3-43 the hedged system is much more robust
than the system with the slow observer. While this tends to be true in the case of system
variations, it is not true if the actuator dynamics change. For example, Figure 3-44
shows the results for a nominal plant and failed actuators. The actuator failures are a

50% reduction in the actuator bandwidths.
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Figure 3-44: F-18/HARY Step Response, Nominal System, FAILED Actuators,
No Time Delay

As can be seen, in this case the slow observer has better performance than the hedged

~

. . . . . Yh .
system. This is because the location of the distortion in the —(5) Bode magnitude
C

curve occurs at a lower frequency and the hedge signal loop shape is incorrect for the
failed system. Varying the hedge gain does little to help. The hedge system poles
require tuning for the new condition.

Next, consider the case of a nominal plant and actuators and a pure time delay A
50 ms time delay is inserted between the controller and the actuators. For the

simulation, a second order Pade approximation is used.

Chapter 3: Parasitic Dynamics and SMC 3.4 Model Reference Hedging

144



Pitch Rate (deg/s)

_. _ Fast Observer, Kh =8
_ _ Fast Obsenver, Kh =11
Slow Observer, Kh =0

0 05 1 1.5 2 25 3 3.5 4 45 )
Time (sec)

Figure 3-45: F-18/HARY Step Response, Nominal System, Nominal Actuators,
50 mS Time Delay
In this case, neither the slow observer nor the hedged system with a fast observer
provide responses comparable to that of the nominal system. The slow observer has
20% overshoot, and the hedged model is too oscillatory. As illustrated, increasing the
hedge gain eliminates some of the oscillations, but changing the hedge gain alone can

not restore the desired performance. The addition of a time delay has the effect of

4 . o Yh ‘
moving the location of the distortion in the = () Bode magnitude curve to a lower
C

frequency. Again, this type of failure requires tuning of the hedge model poles.
Finally, consider a case that combines all three types of failures. Figure 3-46
shows the case of a failed plant, 50% reduction in actuator bandwidths, and a 50 ms time

delay. Results are clearly unacceptable.
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Figure 3-46: F-18/HARY Step Response, FAILED System, FAILED Actuators,
50 mS Time Delay

As illustrated, the slow observer system is unstable, the hedged system is highly
oscillatory. In order for the slow observer system to be effective, the plant model used
in the observer needs to be adjusted. In order for the hedged system to be effective, the

hedge model poles need to be tuned Hedge gain alone will not help.

The concluston here 1s that design trade-offs need to be made based on the types

of failures expected. In general, hedging provides more robustness to plant variations
Slow observers provide more robustness to actuator bandwidth variations and time
delays. If a system is to be robust to all three types of failures, the observer should be
moderately fast and hedging should be included. In addition, the hedge model can be
tuned such that there is a wider separation between the low and high frequency poles in

the hedge model (br and a, in Eqns ( 3.18 ) and (3.17 ) ) than is required for the nominal
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system This results in a hedge model which provides degraded performance in the

nominal case but is more robust to actuator variations and time delays.

3.4.5 A Hedge By Any Other Name
It is worth noting that the hedging method proposed no longer resembles the

concept of hedging given n the initial reference work."** Note in Figure 3-32 that all the
hedge signal dynamics occur parallel to the observer loop and no longer enter the
reference model. The hedging method here is really a form of observer loop shaping. In
fact, it is recognized that this approach is very similar to Loop Transfer Recovery (LTR)
as used in Linear Quadratic Gaussian (LQG) control  An LQG controller combines an
optimal regulator (LQR) with an optimal observer (Kalman filter) and can result in
arbitrarily poor stability margins.'”> LTR is a method by which optimality of the
observer is traded for increased stability margins. The hedge signal used here also has
the effect of “tuning down” the observer at certain {requencies in order to recover
desirable stability margins.

It can also be shown that the hedge system 1s attempting to invert the actuator
dynamics. This 1s why it 1s so dependent on the actuator bandwidths. When viewed in
this light, one could argue that this is simply another form of an SMC prefilter-type
design. In order to prevent confusion, the method presented here should probably be
given a different name. On the other hand, recall that if the hedge signal enters the
reference model as originally illustrated in Figure 3-29 (which is supposed to implement

the intent of hedging"*

), the final method being proposed is exactly equivalent.
Therefore, this analysis has illustrated in the frequency domain why model reference

hedging works and how to proceed with the design. There are two advantages of this
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approach  First, the actuator states are not required as they are in pseudo-command

4

hedging."** Second, if the simplified hedge plant is used, the model of the nominal

system is not required.

3.5 Robustness Issues

So far, the effects of asymptotic observers and model reference hedging on an
SMC system have been investigated, and design procedures for synthesizing these
models have been offered. General observations about performance and robustness are
made via application examples and inferences from frequency domain Bode plots. A
key issue which remains unanswered is a formal quantitative statement about overall
system robustness. There are several difficulties which hinder the derivation of such a
proof. These are introduced below.

3.5.1 Difficulties with SMC Robustness Proofs

3.5.1.1 Practical design issues with standard Lyapunov proofs
Almost all robustness proofs for SMC involve the use of Lyapunov stability

criteria to guarantee global attractiveness of the sliding manifold (i.e. the reaching

condition) A classic simple example of how such a proof proceeds is given in The
Control Handbook.”* Consider the following nonlinear plant:

X = A(X)x + Bu(x)

0 Urx.7 To
[ b

The sliding manifold is given by

o(x)=[s1 s2]1x
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A variable structure control law is used
u(x) = ki(x) x1 + ka(x) x;

where

ki(x):{a'(x)’ ‘if o(x) x, >0
B