NASA/TM-2002-211807

Computing Jet Screech—A Complex Aeroacoustic Feedback System

Ching Y. Loh Taitech, Inc., Brook Park, Ohio

Lennart S. Hultgren Glenn Research Center, Cleveland, Ohio Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peerreviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized data bases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at *http://www.sti.nasa.gov*
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076

NASA/TM-2002-211807

Computing Jet Screech—A Complex Aeroacoustic Feedback System

Ching Y. Loh Taitech, Inc., Brook Park, Ohio

Lennart S. Hultgren Glenn Research Center, Cleveland, Ohio

Prepared for the Second International Conference on Computational Fluid Dynamics cosponsored by NASA, Dassault Aviation, DSTO, the School of Aerospace, Mechanical, and Mechatronic Engineering, University of Sydney, and the Institution of Engineers, Sydney, Australia, July 15–19, 2002

National Aeronautics and Space Administration

Glenn Research Center

Acknowledgments

The authors wish to thank Dr. J. Panda for fruitful discussions. The Supersonic Propulsion Technology Project Office at NASA Glenn Research Center supported this work.

> This report is a formal draft or working paper, intended to solicit comments and ideas from a technical peer group.

The Aerospace Propulsion and Power Program at NASA Glenn Research Center sponsored this work.

Available from

NASA Center for Aerospace Information 7121 Standard Drive Hanover, MD 21076 National Technical Information Service 5285 Port Royal Road Springfield, VA 22100

Available electronically at http://gltrs.grc.nasa.gov

Computing Jet Screech—A Complex Aeroacoustic Feedback System

Ching Y. Loh Taitech, Inc. Brook Park, Ohio 44142

Lennart S. Hultgren National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio 44135

Abstract. The space-time conservation-element and solution-element method is employed to numerically study the near-field axisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed case, corresponding to a fully expanded Mach number of 1.19, the self-sustained feedback loop is established without artificial means. The computed shock-cell structure, acoustic wave length, screech tone frequency, and sound pressure levels are in good agreement with existing experimental results.

1 Introduction

Underexpanded supersonic jets radiate mixing noise, broadband shock-associated noise, as well as very loud discrete screech tones under certain conditions. Screech is of particular interest not only because of general noise-reduction concerns, but also because of potentially destructive structural interaction leading to sonic fatigue. Many experimental and theoretical investigations of jet noise have been carried out, see the review papers [1,2] for a comprehensive discussion. Mixing noise is directly associated with large-scale structures, or instability waves, in the jet shear layer; whereas, broadband shock-associated noise and screech tones are associated with the interaction of these waves with the shock-cell structure in the jet core. The screech tones arise because part of the acoustic waves generated by the wave/shock-cell interaction propagate upstream and re-generate the instability waves at, or in the vicinity of, the nozzle lip. This feedback loop leading to distinct screech tones is sensitive to small changes in the system conditions, and its explanation is to date mostly based on experimental observations, see [1,2].

Jet noise is a challenging topic in computational aeroacoustics – in particular, near-field noise computation in the presence of shock cells in the jet core – and reliable direct numerical simulation of jet screech noise has up to quite recently not been feasible. It imposes stringent requirements that the scheme must be able to: (i) handle shock waves, (ii) resolve acoustic waves with low dispersion and dissipation errors, (iii) resolve the instability waves in the jet shear layers and their interaction with the core shock-cell structure and (iv) have an effective non-reflecting boundary condition. Successful direct computation of screech for circular jets have been carried out by Shen and Tam [3,4] using the well-known DRP scheme and by the present authors [5] using the recent space time conservation element and solution element method, CE/SE, [6,7]. Further

direct simulation of screech is presented below using the axisymmetric CE/SE Navier-Stokes scheme. The method is described in detail in [5,6].

2 Numerical Method

In general, the CE/SE method systematically solves a set of discretized (secondorder accurate in both space and time) *integral* equations derived directly from the physical conservation laws and naturally captures shocks and other discontinuities in the flow. Both dependent variables and their derivatives are computed simultaneously. As a consequence, the flow vorticity can be obtained without reduction in accuracy. Non-reflecting boundary conditions (NRBCs) are also easily implemented because of the flux-conservation formulation.

With an unstructured grid, the CE/SE procedure is easily adapted to complicated geometries. Here, an unstructured triangle grid is used. Figure 1 shows a typical triangle cell, \triangle ABC, with O being its center and D, E, F being the centers of its three neighboring cells. The flow variables at the current time level

Fig. 1. CE/SE unstructured grid: hexagon cylinder ADBECFA-A'D'B'E'C'F'A' containing three CEs OADBO-O'A'D'B'O', OBECO-O'B'E'C'O', OCFAO-O'C'F'A'O'

n are stored at the center of each triangle cell. Three quadrilateral cylinders (conservation elements, CEs) are formed by the edges that connect the vertices and the center of the triangle and its three neighbors. The solution elements, SEs, are the interfaces between the CEs. An integral form of the conservation laws is applied to the hexagon cylinder that consists of these three quadrilateral cylinder conservation elements and explicitly determines the full solution at O' at the new time level n + 1 using only information stored at D, E, and F (no extrapolations/interpolations across a stencil of cells are needed). Discontinuities are allowed to occur in a conservation element. Details about the unstructured CE/SE method can be found in [8]. The weighted $a - \epsilon$ CE/SE scheme is used with the weighting parameter $\alpha = 1$ and $\epsilon = 0.5$ in the present computations.

3 Computation and Comparison with Experiment

Figure 2(a) shows the geometry of the convergent nozzle in Panda's experiment [9]. The flow is choked (i.e. Mach number M = 1) at the nozzle exit. The jet Mach number which represents the plenum/ambient pressure ratio for the simulation is $M_j = 1.19$ [9]. The computational domain, see Fig. 2(b), spans between

Fig. 2. (a) Geometry of the convergent nozzle and flange in Panda's experiment (dimensions in mm). (b) Computational domain

 $-8.3D \le x \le 6D$ and $0 \le r \le 11.7D$, with x and r being the streamwise and radial coordinates and D being the jet nozzle diameter. The flow inside the nozzle is not computed, rather the steady flow conditions are prescribed at the nozzle exit which is located at x = 0. This inflow plane is recessed by two cells so as not to numerically restrict or influence the feed-back loop. There are totally 230,000 triangle cells. Non-reflecting boundary conditions are applied to the upper and outflow boundaries and a symmetry condition is applied at the center axis. The last 10 streamwise cells have exponentially growing size and serve as a buffer, or sponge, zone to essentially eliminate any small remaining numerical reflection from the downstream outflow boundary. Initially, the entire flow is at rest and at ambient conditions; the jet flow is then impulsively started. The Reynolds number $Re = Da_o/\nu = 570,000$, where a_o is the ambient speed of sound (used as velocity scale) and ν is the kinematic viscosity at the ambient conditions. Figure 3(a) displays numerical pressure contours and numerical Schlieren contours. outside and inside of the jet core respectively, well after the start-up transients has passed out of the computational domain. Distinct screech waves are observed to emit from the 3rd to the 5th shock-cell and are reflected at the flange/nozzle body. The screech wavelength (1.6D) and the shock-cell structure (0.8D spacing) agree well with the experiment [9]; for the latter see Fig. 3(b). Spectral analysis yields a computed screech frequency of 8513 Hz, which agrees well with the experimental value of 8525 Hz. The sound pressure level (SPL) along an inclined line at the outer edge of the shear layer is shown in Fig. 4. This figure

Fig. 3. (a) Isobars at t=410,000 steps, showing screech waves and shock cell structures. (b) Experimental Schlieren picture showing the shock-cell structure [9]

shows Panda's [9] data for the A_2 axisymmetric screech mode, the corresponding result from the simulation as well as the computed total SPL and subharmonic of the A_2 mode. Even though the A_2 SPL level in the vicinity of the nozzle lip is

Fig. 4. Comparison of computed and experimental SPL along the shear layer edge

too low, its early streamwise growth rate is, however, well predicted indicating that the jet shear layer is in general well resolved. Nonlinearity in the shear layer limits the amplitude that can be obtained and once the SPL level 'catches up' the agreement is very good, in particular the SPL level in the streamwise region where the backward radiating acoustic waves are generated is well predicted. The strong subharmonic that appears further downstream is due to (axisymmetric) vortex pairing in the shear layer and as a consequence a second streamwise peak at the A_2 frequency occurs due to nonlinear effects. However, 3-D effects are most likely to have come into play in the experiment at these streamwise locations leading to suppression of the subharmonic. The reason for the low initial SPL values in the simulation is currently being pursued.

Figure 5 shows computed SPL contours for the A_2 mode. As in the experiment [9], a standing wave structure can be observed along the edge of the jet shear layer. The results are in general agreement with the experimental ones except, as pointed out earlier, that the computed SPL levels are too low in the vicinity of the nozzle lip and the existence of a second, or extended, region of elevated values further downstream (x/D > 4).

Fig. 5. Computed A_2 -mode SPL levels for Panda's experiment

Figure 6 displays the computed SPL at the nozzle exit lip wall, x/D = 0, r/D = 0.6. The SPL shows a distinct spike corresponding to the A_2 -mode screech tone observed in Panda's [9] experiment. Note that in our previous work [5], which had a much simplified description of the nozzle external geometry, the A_1 -mode screech tone (not observed in [9]) was also obtained at this condition. This illustrates the sensitivity of the screech phenomenon to geometry changes.

Fig. 6. SPL at nozzle exit (x/D = 0, r/D = 0.6), 75 Hz digital binwidth

4 Summary

It is concluded that the simulation shows a reasonably good agreement with experimental data in the streamwise region where the flow is expected to be predominantly axisymmetric and, hence, that jet screech is successfully simulated using the CE/SE scheme.

References

- 1. C.K.W. Tam: Ann. Rev. Fluid Mech. 27, 17-43 (1995)
- 2. G. Raman: Prog. Aerospace Sci. 34, 45-106 (1998)
- 3. H. Shen, C.K.W. Tam: AIAA Paper 98-0283 (1998)
- 4. H. Shen, C.K.W. Tam: AIAA Paper 2001-0820 (2001)
- 5. C.Y. Loh, L.S. Hultgren, P.C.E. Jorgenson: AIAA Paper 2001-2252 (2001).
- 6. S.-C. Chang, X.-Y. Wang, Chow, C.-Y. Chow: J. Comp. Phys. 156, 89-136 (1999)
- 7. C.Y. Loh, L.S. Hultgren, S.-C. Chang: AIAA J., 39, 794-801 (2001)
- 8. X.-Y. Wang, S.-C. Chang: C.F.D. J. 8, 309-325 (1999)
- 9. J. Panda: J. Fluid Mech. 378, 71-96 (1999)

Characterization ONB The Control Products a subject of program strain of the second	REPORT DOCUMENTATION PAGE			Form Approved	
Fails Description Description <thdescription< th=""> <thdescription< th=""> <thde< td=""><td>OMB No. 0704-0188</td></thde<></thdescription<></thdescription<>				OMB No. 0704-0188	
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED A. THLE AND SUBTITLE Technical Memorandum 4. THLE AND SUBTITLE Is. FUNDING NUMBERS Computing Jet Screech—A Complex Aeronacoustic Feedback System Is. FUNDING NUMBERS 6. AUTHOR(S) WU-708-90-43-00 Ching Y. Loh and Lennart S. Hultgren Is. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Notional Aeronautics and Space Administration Bend Research Center at Lewis Field Cleveland, Ohio 44135-3191 E-13502 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Ib. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration NASA 'TM—2002-211807 11. SUPPLEMENTARY NOTES Prepared for the Second International Conference on Computational Fluid Dynamics cosponsored by NASA, Dassault Available foron the SAA Gener for Center. Responsible person, Ching Y. Loh, Taiteeth, Inc., Brock Park, Ohio 44142, and Leman S. Hultgren, NASA Giene Research Center. Responsible person, Ching Y. Loh, organization code 5800, 216-433-5981 12. DISTRIBUTION MAILABULTY STATEMENT Ibstribution: Nonstandard Unclassified - Unlimited Distribution: Nonstandard Subjet Categories: 01 and 64 Distribution: Nonstandard Available foron day SAX Center for AenoSpace Information, 301-621-0390. Ibs DISTRIBUTION CODE </td <td colspan="5">Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.</td>	Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.				
August 2002 Technical Memorandum 4 TILE AND SUBTITIE S. FUNDING NUMBERS Computing Jet Screech—A Complex Aeroacoustic Feedback System WU-708-90-43-00 Ching Y. Lob and Lemart S. Hultgren WU-708-90-43-00 7. PERFORMING ORGANIZATION NAME(9) AND ADDRESS(ES) Report NUMBER National Aeronautics and Space Administration Base Administration National Aeronautics and Space Administration NASA TM—2002-211807 11. SUPPLEMENTARY NOTES Personation and Space Administration Preprofit Or the School of Aerospace, Mechanical, and Mechatronic Engineering, University of Sydney, and the Institution of Engineers, Sydney, Australia, July 15-19, 2002. Ching Y. Loh, Taitech, Inc., Brook Park, Otto 4442, and Lemar S. Hultgren TU-classified -Unlimited 2.16 OFFREUENDAVAILABELITY STATEMENT The space-fitme conservation-element and solution-element method is employed to numerically study the near-field axisymmetric screech-tone noise of a typical underexpaned directura jet issuing from a sonic nozzle. For the computed active care for the computed shock-ceil structure, acoustic wave length, screech tone frequency, and sound prossure levels are in good agreement with existing experimental results 14. SUBJECT TERMS 15. SUBJECT TERMS 14. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF ABSTRACT 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION OF ABSTRACT	1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE	3. REPORT TYPE AN	3. REPORT TYPE AND DATES COVERED	
4. TITLE AND SUBTICE 5. FUNDING NUMBERS Computing Jet Screech—A Complex Aeroacoustic Feedback System WU-708-90-43-00 6. AUTHOR(S) WU-708-90-43-00 Ching Y, Loh and Lennart S. Hultgren PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration John H. Glenn Research Center at Lewis Field Cleveland, Ohio 44135-3191 E-13502 a. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) In. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) In. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration Washington. DC 20546-0001 In. SUPPLEMENTARY NOTES In. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Prepared for the Second International Conference on Computational Fluid Dynamics cosponsored by NASA, Dassault Availation, DSTO, the School of Aerospace, Mechanical, and Mechatronic Engineering, University of Syndey, Nastrala, July 15-19, 2002. Ching Y. Loh, organization code 5800, 216-433-3981. 12. DISTRIBUTION/AMALABULTY STATEMENT Unclassified Unitimited Subject Categories: 01 and 64 Distribution: Nonstandard Available decronacily at Impl/gitts gracesa agen 13. ABSTRACT (Maximum 200 words) The space-trime conservation-element and solution-element method is employed to numerically study the near-field axisymmetric screech-fore on soles of a typical underexpanded decinual pet Sisting from a solic torazie. For the computed case, corresponding to a fully expanded Mach number of 1.19, the s		August 2002	Te	echnical Memorandum	
Computing Jet Screech—A Complex Aeroacoustic Feedback System WU-708-90-43-00 A DTHOR(S) WU-708-90-43-00 Ching Y, Loh and Lemart S, Hultgren PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) a. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration John II, Glenn Research Center at Lewis Field Cleveland, Ohio 44135-3191 E - 13502 9. SPONSORINGAMONITORING AGENCY NAME(S) AND ADDRESS(ES) NASA TM—2002-211807 National Aeronautics and Space Administration Washington, DC 20546-0001 NASA TM—2002-211807 11. SUPPLEMENTARY NOTES Propared for the Second International Conference on Computational Fluid Dynamics cosponsored by NASA, Dassault Avaiation, SP10, the School of Aerospace, Mechanical, and Mechatronic Engineering, University of Sydney, and the Institution of Engineers, Sydney, Australia, July 15-19, 2002, Ching Y, Loh, Tatiech, Inc., Brook Park, Ohio 44142, and Lemar S. Hultgren, NASA Glenn Research Center. Responsible person, Ching Y, Loh, organization code 5800, 216-433-3981. 12. DISTRIBUTION/AVAILABULITY STATEMENT Ibistribution: Nonstandard Avaiable electronically a http://gitto.grc.manag.co This publication is available from the NASA Center for AeroSpace Information, 301-621-0390. Ib. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 socie) Ibistribution: Nonstandard Avaiable electronically a http://gitto.grc.manag.co This publication is available from the NASA Center for AeroSpace Information, 301-621-0390. Ib. NUMBER OF PAGES 14. SUBJECT TERMS Ibistribution: C	4. TITLE AND SUBTITLE			5. FUNDING NUMBERS	
6. AUTHOR(S) WU-708-90-43-00 Ching Y. Loh and Lennart S. Hullgren PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration John H. Glenn Research Center at Lewis Field Cleveland, Ohio 44135–3191 9. SPONSORINGAMONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration Washington, DC 20546–0001 10. SPONSORINGAMONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SUPPLEMENTARY NOTES NASA TIM—2002-211807 Prepared for the Second International Conference on Computational Fluid Dynamics cosponsored by NASA, Dassault Aviation, DSTO, the School of Aerospace, Mechanical, and Mechatronic Engineering, University of Sydney, and the Institution of Engineers, Sydney, Australia, July 15–19, 2002. Ching Y. Loh, Taitech, Inc., Brook Prax, Ohio 44142, and Lennat S. Hultgren, NASA Glenn Research Center, Responsible person, Ching Y. Loh, organization code 5800, 216–433–3981. 12. DISTRIBUTION AVAILABILTY STATEMENT 12b. DISTRIBUTION GODE 13. ABSTRACT (Maximum 200 works) Distribution: Nonstandard Available devinocity of http://glub.grac.caasa.gav The space-imme conservation-element and solution-element method is employed to numerically study the near-field axisymmetric screech-inone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed case, corresponding to a fully expanded Mach number of 1.19, the self-sustained feedback loop is established without artificial means. The computed solca-cell structure, acoustic wave length, screech tone frequency, and sound pressure levels ar	Computing Jet Screech—A Complex Aeroacoustic Feedback System			WWW 500 00 10 00	
Ching Y. Loh and Lennart S. Hultgren 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration John H. Glem Research Center at Lewis Field Cleveland, Ohio 44135–3191 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration Washington, DC 20546–0001 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration Washington, DC 20546–0001 11. SUPPLEMENTARY NOTES Prepared for the Second International Conference on Computational Fluid Dynamics cosponsored by NASA, Dassault Aviation, DSTO, the School of Acrospace, Mechanical, and Mechanomic Engineering. University of Sydney, and the Institution of Engineers, Sydney, Australia, July 15–10, 2002. Ching Y. Loh, Taitech, Inc., Brook Park, Ohio 44142, and Lemart S. Hultgren, NASA Glenn Research Center. Responsible person, Ching Y. Loh, organization code 5800, 216–433–3981. 12a. DISTRIBUTION/AVAILABILITY STATEMENT Unclassified - Unlinited Subject Categories: 01 and 64 Distribution: Nonstandard Avialable electronically at <u>http://glns.grenasa.grv</u> This pablication is available from the NASA Center for Aerospace Information, 301–621–0390. 12b. DISTRIBUTION CODE 13. ABSTRECT TERMS 11. NUMBER OF PAGES 14. SUBJECT TERMS 11. Number OF PAGES 15. AUB/ERCT TERMS 11. SECURITY CLASSIFICATION OF REPORT 14. SUBJECT TERMS 15. SECURITY CLASSIFICATION OF MEPORT 14. SUBJECT TERMS <td colspan="3">6. AUTHOR(S)</td> <td>WU-708-90-43-00</td>	6. AUTHOR(S)			WU-708-90-43-00	
7. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION National Aeronautics and Space Administration John II. Glenn Research Center at Lewis Field E-13502 9. SPONSORING/MONITORING AGENCY NAME(5) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(5) AND ADDRESS(ES) National Aeronautics and Space Administration Washington, DC 20546-0001 10. SPONSORING/MONITORING AGENCY NAME(5) AND ADDRESS(ES) 11. SUPPLEMENTARY NOTES NASA TM—2002-211807 Prepared for the Second International Conference on Computational Fluid Dynamics cosponsored by NASA, Dassault Aviation, DSTO, the School of Aerospace, Mechanical, and Mechatronic Engineering, University of Sydney, and the Institution of Engineers, Sydney, Australia, July 15-19, 2002, Ching Y, Loh, Taitech, Inc., Brook Park, Ohio 44142, and Lemart S, Hulgren, NASA Glenn Research Center. Responsible person, Ching Y. Loh, organization code 5800, 216-433-3981. 12a. DISTRIBUTION/WAALABILITY STATEMENT Unclassified - Unlimited Subject Categories: 01 and 64 Distribution: Nonstandard Available dectonically at http://fluz.grc.ausa.gov 13. ABSTRACT (Maximum 200 words) The space-time conservation-element and solution-element method is employed to numerically study the near-field axisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed case. corresponding to a fully expanded Mach number of 1.19, the self-sustained feedback loop is established without artificial means. The computed shock-cell structure, acoustic wave length, screech tone frequency, and sound pressure levels are in good agreement with existing experimental results <td>Ching Y. Loh and Lennart</td> <td></td>	Ching Y. Loh and Lennart				
National Aeronautics and Space Administration John H. Glenn Research Center at Lewis Field Cleveland, Ohio 44135–3191 FEPORT NUMBER 9. SPONSORINGAMONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration Washington, DC 20546–0001 10. seconsoningamonitorining Agency Report NUMBER 11. SUPPLEMENTARY NOTES Prepared for the Second International Conference on Computational Fluid Dynamics cosponsored by NASA, Dassault Aviation, DSTO, the School of Aerospace, Mechanical, and Mechatronic Engineering, University of Sydney, and the Institution of Engineers, Sydney, Australia, July 15–19, 2002. Ching Y. Loh, Taitech, Inc., Brook Park, Ohio 44142, and Lennart S. Hultgren, NASA Clenn Research Center, Responsible person, Ching Y. Loh, organization code 5800, 216–433–381. 12a. DISTRIBUTIONAVALLABILITY STATEMENT Unclassified - Unlimited Subject Categories: 01 and 64 Distribution: Nonstandard Available dectonically a <u>http://gitra.gren.asa.gov</u> 13a. ABSTRIBUTIONAVALLABILITY STATEMENT Unclassified - Unlimited Subject Categories: 01 and 64 Distribution: Nonstandard Available dectonically a <u>http://gitra.gren.asa.gov</u> 14. SUBJECT TERMS Jet sereech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed asisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed asisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed asisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed asisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed stock-cell structure, acoustic wave lengt	7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.			8. PERFORMING ORGANIZATION	
John H. Glenn Research Center at Levis Field E-13502 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration NASA TM—2002-211807 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NEMOCINATORING AGENCY REPORT NUMBER National Aeronautics and Space Administration NASA TM—2002-211807 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER National Aeronautics and Space Administration NASA TM—2002-211807 11. SUPPLEMENTARY NOTES NASA TM—2002-211807 Prepared for the Second International Conference on Computational Fluid Dynamics cosponsored by NASA, Dassault Aviation, DSTG, the School of Aerospace, Mechanical, and Mechatronic Engineering, University of Sydney, and the Institution of Engineers, Sydney, Australia, July 15–19, 2002. Ching Y. Loh, Taitech, Inc., Brook Park, Ohio 44142, and Lennart S. Hultgren, NASA Glenn Research Center. Responsible person, Ching Y. Loh, organization code 5800, 216–433–3981. 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Unclassified - Unlimited Distribution: Nonstandard Avialable electronically a http://glin.org/ensageor 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) The space-time conservation-element and solution-element method is employed to numerically study the nea	National Aeronautics and Space Administration			REPORT NUMBER	
Second Cleveland, Ohio 44135–3191 II. SPONSOFING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration NASA TM—2002-211807 II. SUPPLEMENTARY NOTES NASA TM—2002-211807 Prepared for the Second International Conference on Computational Fluid Dynamics cosponsored by NASA, Dassault Aviation, DSITO, the School of Aerospace, Mechanical, and Mechatronic Engineering, University of Sydney, and the Institution of Engineers, Sydney, Australia, July 15–19, 2002. Ching Y. Loh, Taitech, Inc., Brook Park, Ohio 44142, and Lennart S. Hullgren, NASA Glenn Research Center. Responsible person, Ching Y. Loh, organization code 5800, 216–433–3981. 12a. DISTRIBUTION/AVAILABILITY STATEMENT Izb. DISTRIBUTION CODE Unclassified - Unlimited Subject Categories: 01 and 64 Subject Categories: 01 and 64 Distribution: Nonstandard Available electronically at http://glins.grc.nasa.gov This publication is available from the NASA Center for AeroSpace Information, 301–621–0390. 13. ABSTRACT (Maximum 200 words) The space-time conservation-element and solution-element method is employed to numerically study the near-field axisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed case, corresponding to a fully expanded Mach number of 1.19, the self-sustained feedback loop is established without artificial means. The computed Shock-cell structure, acoustic wave length, screech tone frequency, and sound pressure levels are in good agreement with existing experimental results 14. SUBJECT TERMS 18. SEC	John H. Glenn Research Center at Lewis Field			E 12502	
a. SPONSORINGMONITORING AGENCY NAME(\$) AND ADDRESS(E\$) 10. SPONSORINGMONITORING AGENCY NAME(\$) AND ADDRESS(E\$) National Aeronautics and Space Administration NASA TM—2002-211807 11. SUPPLEMENTARY NOTES NASA TM—2002-211807 Prepared for the Second International Conference on Computational Fluid Dynamics cosponsored by NASA, Dassault Aviation, DSTO, the School of Aerospace, Mechanical, and Mechatronic Engineering, University of Sydney, and the Institution of Engineery, Sydney, Australia, July 15–9, 2002. Ching Y. Loh, Airdiceh, Inc., Brook Park, Ohio 44142, and Lennar S. Hultgren, NASA Glenn Research Center. Responsible person, Ching Y. Loh, organization code 5800, 216–433–981. 12a. DISTRIBUTION/AVAILABILITY STATEMENT Ite. DISTRIBUTION/AVAILABILITY STATEMENT Unclassified - Unlimited Distribution: Nonstandard Aviatable electronically at http://glus.gren.ausa.gov This publication is available from the NASA Center for AeroSpace Information, 301–621–0390. 13. ABSTRACT (Maximuz 200 words) The space-time conservation-element and solution-element method is employed to numerically study the near-field axisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed case, corresponding to a fully expanded Mach number of 1.19, the self-sustained feedback loop is established without artificial means. The computed shock-cell structure, acoustic wave length, screech tone frequency, and sound pressure levels are in good agreement with existing experimental results 14. SUBJECT TERMS 18. SECURITY CLASSIFICATION OF ABSTRACT 17. SEC	Cleveland Obio 44135–3191			E-13502	
9. SPONSORINGAMONITORING AGENCY NAME(\$) AND ADDRESS(ES) 10. SPONSORINGAMONITORING AGENCY NAME(\$) AND ADDRESS(ES) National Aeronautics and Space Administration Nashington, DC 20546–0001 10. SPONSORINGAMONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES NASA TM—2002-211807 NASA TM—2002-211807 11. SUPPLEMENTARY NOTES Prepared for the Second International Conference on Computational Fluid Dynamics cosponsored by NASA, Dassault Aviation, DSTO, the School of Aerospace, Mechanical, and Mechatronic Engineering, University of Sydney, and the Institution of Engineers, Sydney, Australia, July 15–19, 2002, Ching Y, Loh, Taitech, Inc., Brook Park, Ohio 44142, and Lemant S. Hulgren, NASA Glenn Research Center. Responsible person, Ching Y. Loh, organization code 5800, 216–433–3981. 12a. DISTRIBUTION/AVAILABILITY STATEMENT International 64 Unclassified - Unlimited Distribution: Nonstandard Available electronically at http://gtms.gtc.nasa.gov This publication is available from the NASA Center for AeroSpace Information, 301–621–0390. The space-time conservation-element and solution-element method is employed to numerically study the near-field axisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed case, corresponding to a fully expanded Mach number of 1.19, the self-sustained feedback loop is established without artificial means. The computed Mach number of 1.19, the self-sustained feedback loop is established without artificial means. The computed shock-cell structure, acoustic wave length, screech tone frequency, and sound pressure levels are in good agreement with					
National Aeronautics and Space Administration AGENCY REPORT NUMBER National Aeronautics and Space Administration NASA TM—2002-211807 11. SUPPLEMENTARY NOTES Prepared for the Second International Conference on Computational Fluid Dynamics cosponsored by NASA, Dassault Aviation, DSTO, the School of Aerospace, Mechanical, and Mechatronic Engineering, University of Sydney, and the Institution of Engineerins, Sydney, Australia, July 15–19, 2002. Ching Y. Loh, Taitech, Inc., Brook Park, Ohio 44142, and Lennart S. Hultgren, NASA Glenn Research Center. Responsible person, Ching Y. Loh, organization code 5800, 216–433–3981. 12a. DISTRIBUTIONAVAILABULITY STATEMENT Ile. DISTRIBUTIONAVAILABULITY STATEMENT Unclassified - Unlimited Distribution: Nonstandard Available electronically at http://glm.grc.nasa.gov This publication is available from the NASA Center for AeroSpace Information, 301–621–0390. 13. ABSTRACT (Maximum 200 words) The space-time conservation-element and solution-element method is employed to numerically study the near-field axisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed case, corresponding to a fully expanded Mach number of 1.19, the self-sustained feedback loop is established without artificial means. The computed shock-cell structure, acoustic wave length, screech tone frequency, and sound pressure levels are in good agreement with existing experimental results 14. SUBJECT TERMS 16. PHICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION OF ABSTRACT 0 relevent <td colspan="3">9 SPONSOBING/MONITORING AGENCY NAME/S) AND ADDRESS(ES) 1</td> <td>10. SPONSORING/MONITORING</td>	9 SPONSOBING/MONITORING AGENCY NAME/S) AND ADDRESS(ES) 1			10. SPONSORING/MONITORING	
National Aeronautics and Space Administration NASA TM—2002-211807 11. SUPPLEMENTARY NOTES Prepared for the Second International Conference on Computational Fluid Dynamics cosponsored by NASA, Dassault Aviation, DSTO, the School of Aerospace, Mechanical, and Mecharonic Engineering. University of Sydney, and the Institution of Engineering. University of Sydney, and the Last Last Last Last Last Last Last Last		(,		AGENCY REPORT NUMBER	
Washington, DC 20546-0001 NASA TM—2002-211807 11. SUPPLEMENTARY NOTES Prepared for the Second International Conference on Computational Fluid Dynamics cosponsored by NASA, Dassault Aviation, DSTO, the School of Aerospace, Mechanical, and Mechatronic Engineering, University of Sydney, and the Institution of Engineers, Sydney, Australia, July 15–19, 2002. Ching Y. Loh, Taitech, Inc., Brook Park, Ohio 44142, and Lennart S. Hultgren, NASA Glenn Research Center. Responsible person, Ching Y. Loh, organization code 5800, 216-433–3981. 12a. DISTRIBUTIONAVAILABILITY STATEMENT 12b. DISTRIBUTIONAVAILABILITY STATEMENT Unclassified - Unlimited 12b. DISTRIBUTION CODE Subject Categories: 01 and 64 Distribution: Nonstandard Available electronically at http://gitrs.grc.nasa.gov This publication is available from the NASA Center for AeroSpace Information, 301-621-0390. 13. ABSTRACT (Maximum 200 words) The space-time conservation-element and solution-element method is employed to numerically study the near-field axisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed case, corresponding to a fully expanded Mach number of 1.19, the self-sustained feedback loop is established without artificial means. The computed shock-cell structure, acoustic wave length, screech tone frequency, and sound pressure levels are in good agreement with existing experimental results 14. SUBJECT TERMS 18. NUMBER OF PAGES Ict screech noise; Aeroacoustic feedback loop; CE/SE method 12. IN	National Aeronautics and Space Administration				
11. SUPPLEMENTARY NOTES Prepared for the Second International Conference on Computational Fluid Dynamics cosponsored by NASA, Dassault Aviation, DSTO, the School of Aerospace, Mechanical, and Mechatronic Engineering, University of Sydney, and the Institution of Engineers, Sydney, Australia, July 15–19, 2002. Ching Y. Loh, Taitech, Inc., Brook Park, Ohio 44142, and Lennart S. Hultgren, NASA Glenn Research Center. Responsible person, Ching Y. Loh, organization code 5800, 216–433–3981. 12. DISTRIBUTIONAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Unclassified - Unlimited 12b. DISTRIBUTION CODE Subject Categories: 01 and 64 Distribution: Nonstandard Avialable electronically at http://gltrs.grc.nasa.gov This publication is available from the NASA Center for AeroSpace Information, 301–621–0390. 13. ABSTRACT (Maximum 200 words) The space-time conservation-element and solution-element method is employed to numerically study the near-field axisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed case, corresponding to a fully expanded Mach number of 1.19, the self-sustained feedback loop is established without artificial means. The computed shock-cell structure, acoustic wave length, screech tone frequency, and sound pressure levels are in good agreement with existing experimental results 14. SUBJECT TERMS 15. SECURITY CLASSIFICATION OF ABSTRACT 17. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT 18. PRICE CODE	Washington, DC 20546–0001			NASA TM-2002-211807	
11. SUPPLEMENTARY NOTES Prepared for the Second International Conference on Computational Fluid Dynamics cosponsored by NASA, Dassault Aviation, DSTO, the School of Aerospace, Mechanical, and Mechatronic Engineering, University of Sydney, and the Institution of Engineers, Sydney, Australia, July 15–19, 2002. Ching Y. Loh, Taitech, Inc., Brook Park, Ohio 44142, and Lennart S. Hultgren, NASA Glenn Research Center. Responsible person, Ching Y. Loh, organization code 5800, 216–433–3981. 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION/AVAILABILITY STATEMENT Unclassified - Unlimited Subject Categories: 01 and 64 Distribution: Nonstandard Available electronically at http://dms.grc.nasa.gov/ This publication is available from the NASA Center for AeroSpace Information, 301–621–0390. 12b. DISTRIBUTION CODE The space-time conservation-element and solution-element method is employed to numerically study the near-field axisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed case, corresponding to a fully expanded Mach number of 1.19, the self-sustained feedback loop is established without artificial means. The computed block-cell structure, acoustic wave length, screech tone frequency, and sound pressure levels are in good agreement with existing experimental results 14. SUBJECT TERMS 15. NUMBER OF PAGES Jet screech noise; Aeroacoustic feedback loop; CE/SE method 16. NUMBER OF PAGES 17. SECURITY CLASSIFICATION OF FILS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT					
This publication is available from the NASA Center for AeroSpace Information, 301–621–0390. 13. ABSTRACT (Maximum 200 words) The space-time conservation-element and solution-element method is employed to numerically study the near-field axisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed case, corresponding to a fully expanded Mach number of 1.19, the self-sustained feedback loop is established without artificial means. The computed shock-cell structure, acoustic wave length, screech tone frequency, and sound pressure levels are in good agreement with existing experimental results 14. SUBJECT TERMS 15. NUMBER OF PAGES Jet screech noise; Aeroacoustic feedback loop; CE/SE method 16. NUMBER OF PAGES 17. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified Unclassified	Institution of Engineers, Sydney, Austrana, July 15–19, 2002. Ching Y. Lon, Tantech, and Lennart S. Hultgren, NASA Glenn Research Center. Responsible person, Ching Y. 216–433–3981. 12a. DISTRIBUTION/AVAILABILITY STATEMENT Unclassified - Unlimited Subject Categories: 01 and 64 Distribution: Nonstandard			a, Inc., Brook Park, Ohio 44142, g Y. Loh, organization code 5800, 12b. DISTRIBUTION CODE	
13. ABSTRACT (Maximum 200 words) The space-time conservation-element and solution-element method is employed to numerically study the near-field axisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed case, corresponding to a fully expanded Mach number of 1.19, the self-sustained feedback loop is established without artificial means. The computed shock-cell structure, acoustic wave length, screech tone frequency, and sound pressure levels are in good agreement with existing experimental results 14. SUBJECT TERMS 15. NUMBER OF PAGES Jet screech noise; Aeroacoustic feedback loop; CE/SE method 15. NUMBER OF PAGES 17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF REPORT 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified Unclassified 19. SECURITY CLASSIFICATION Unclassified 20. LIMITATION OF ABSTRACT	This publication is available from the NASA Center for AeroSpace Information, 301–621–0390.				
The space-time conservation-element and solution-element method is employed to numerically study the near-field axisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed case, corresponding to a fully expanded Mach number of 1.19, the self-sustained feedback loop is established without artificial means. The computed shock-cell structure, acoustic wave length, screech tone frequency, and sound pressure levels are in good agreement with existing experimental results 14. SUBJECT TERMS 15. NUMBER OF PAGES Jet screech noise; Aeroacoustic feedback loop; CE/SE method 15. NUMBER OF PAGES 17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified Unclassified 19. SECURITY CLASSIFICATION Unclassified 20. LIMITATION OF ABSTRACT	13. ABSTRACT (Maximum 200 words)				
Jet screech noise; Aeroacoustic feedback loop; CE/SE method 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT 20. LIMITATION OF ABSTRACT Unclassified Unclassified Unclassified Unclassified	The space-time conservation-element and solution-element method is employed to numerically study the near-field axisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed case, corresponding to a fully expanded Mach number of 1.19, the self-sustained feedback loop is established without artificial means. The computed shock-cell structure, acoustic wave length, screech tone frequency, and sound pressure levels are in good agreement with existing experimental results 14. SUBJECT TERMS 15. NUMBER OF PAGES 12				
17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT 20. LIMITATION OF ABSTRACT Unclassified Unclassified Unclassified	Jet screech noise; Aeroacoustic feedback loop; CE/SE method			12 16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT 20. LIMITATION OF ABSTRACT Unclassified					
Unclassified Unclassified Unclassified	17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICA OF ABSTRACT	ATION 20. LIMITATION OF ABSTRACT	
1	Unclassified	Unclassified	Unclassified		

NSN 7540-01-280-5500