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Conceptual Design of a Supersonic Business Jet Propulsion System

Robert J. Bruckner

National Aeronautics and Space Administration

Glenn Research Center

Cleveland, Ohio 44135

Abstract

NASA's Ultra-Efficient Engine Technology Program

(UEETP) is developing a suite of technology to

enhance the performance of future aircraft propulsion

systems. Areas of focus for this suite of technology

include: Highly Loaded Turbomachinery, Emissions

Reduction, Materials and Structures, Controls, and

Propulsion-Airframe Integration. The two major

goals of the UEETP are emissions reduction of both

landing and take-off nitrogen oxides (LTO-NOx) and

mission carbon dioxide (CO2) through fuel burn

reductions. The specific goals include a 70%

reduction in the current LTO-NOx rule and an 8%

reduction in mission CO2 emissions. In order to gain

insight into the potential applications and benefits of

these technologies on future aircraft, a set of

representative flight vehicles was selected for

systems level conceptual studies. The Supersonic

Business Jet (SBJ) is one of these vehicles. The

particular SBJ considered in this study has a capacity

of 6 passengers, cruise Mach Number of 2.0, and a

range of 4,000 nautical miles. Without the current

existence of an SBJ the study of this vehicle requires

a two-phased approach. Initially, a hypothetical

baseline SBJ is designed which utilizes only current

state of the art technology. Finally, an advanced SBJ

propulsion system is designed and optimized which

incorporates the advanced technologies under

development within theUEETP. System benefits are

then evaluated and compared to the program and

design requirements. Although the program goals are

only concerned with LTO-NOx and CO2 emissions it

is acknowledged that additional concerns for an SBJ

include take-off noise, overland supersonic flight,

and cruise NOx emissions at high altitudes.

Propulsion system trade-offs in the conceptual design

phase acknowledge these issues as well as the

program goals. With the inclusion of UEETP

technologies a propulsion system is designed which

performs at 81% below the LTO-NOx rule, and

reduces fuel burn by 23% compared to the current

technology.
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Introduction

NASA's Ultra Efficient Engine Technology Program

(UEETP) is developing a suite of technology to

enhance the performance of future aircraft propulsion

systems. Areas of focus for this suite of technology

include: Highly Loaded Turbomachinery, Emissions

Reduction, Materials and Structures, Controls, and

Propulsion-Airframe Integration. The two major

goals of the UEETP is emissions reduction of both

landing and take-off nitrogen oxides (LTO-NOx) and

mission carbon dioxide (CO2) through fuel burn

reductions. The specific goals include a 70%

reduction in the current LTO-NOx rule and an 8%

reduction in mission CO2 emissions.

The commercial jet aircraft fleet is quite uniform in

its appearance and function and has been this way for
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severaldecades.Thecommonfeaturesincludea
cylindricalfuselagemountedontopofaslender,
sweptwingwithunder-hungenginesattheleading
edgeflyingathighsubsonicspeeds.However,the
SBJvehiclechosenforthisstudyfollowsthemore
currenttrendofsmallerjetaircraft.Inadditiontoits
smallersize,theSBJalsoincorporatesthedesirefor
speedbeyondthehighsubsonicMachNumbersof
themoderncommercialfleet.

Thehighendofcommercialtraveliserodingfrom
thelargecommercialcarriers[1]andbeingdeposited
intothebusinessjetmarket,whichhasseendramatic
growthinrecentyears.Assuch,theacquisitioncost
oftoday'shigh-endbusinessjetsisnolongerthat
muchdifferentfromtheprojectedcostofaSBJ.This
commercialargumentfortheanalysisoftheSBJ
seemspowerfulenoughtoincludethisaircraftinthe
program.However,thisdoesnotconsiderother
potentialapplicationsofasmallsupersonicaircraft
suchasmilitaryuseandthedeliveryoftime-critical
payloads.Theselectionofasmallyetfastaircraftto
representthesupersonictechnologiesofUEETPis
baseduponthehistoricalsuccessoffirstdeveloping
aircraftspeedfollowedbytheensuinggrowthinsize.

WithouttheexistenceofacurrentSBJintoday's
aircraftmarket,thisstudyrequiredatwo-phased
approach.Theinitialphaserequiredthedesignofa
currenttechnologySBJengineandvehiclethatis
representativeofwhatmightbepossiblegiventhe
currentstate-of-the-art.Thesecondphaseofthe
studyincludedtheadditionoftheUEETP
technologiestothebaselinemixed-flowturbofan
engineandaparametricstudythatexaminedthe
effectsofthrottleratioandfanpressureratioonthe
finalvehicledesign.A finalenginedesignwasthen
selectedfromthisparametricstudy.Preliminary
componentdesignswerecarriedoutonthefinal
enginetoaddconfidencetotheconceptualdesign
philosophyandweightestimates.Aneconomic
analysiswasalsoconductedonthefinalengine.

SBJ Design Requirements

The mission requirements of the SBJ are rather

standard for a civilian aircraft with the exception of

the supersonic cruise Mach number. The SBJ, which

is considered in this study, has a capacity for 6

passengers, range of 4,000 nautical miles, and cruise

Mach number of 2.0. A complete listing of the

mission requirements is presented in Table 1. The

SBJ conceptual design is also constrained emissions,

noise and affordability. The first of these, emissions,

include the LTO-NOx and mission CO2 goals of the

UEETP as well as the mission NOx due to the higher

cruising altitude of the SBJ. The noise constraint is

primarily a take-off issue and is evaluated by using

exhaust jet velocity as a surrogate for jet noise and

applying appropriate acoustic attenuation methods.

This constraint also manifests itself in the overland

supercruise scenario. In order to make the SBJ more

economically viable, overland supersonic flight is

desirable. Although the UEETP does not address

sonic boom issues, the assumption for this study is

that in the timeframe required to bring the UEETP

engine technologies to maturity, complementary

airframe programs will develop technologies, which

will make overland supersonic flight possible. The

constraint of affordability in the conceptual design

phase is only evaluated on the final, selected engine.

Current Technology Engine Design

The only propulsion system type, which is considered

in both the baseline design as well as the advanced

technology design, is the low bypass ratio mixed-

flow turbofan engine.

A summary of the main engine cycle parameters that

were used in the current technology design is

contained in Table 2. Figure 1 shows a cross section

of the baseline engine. This engine is not meant to

represent any particular engine available today.

Rather, it is representative of the type of engine that
could be built for the SBJ with the current state of the

art.

UEETP Technology Suite

The technology developed by the UEETP fails into

the following categories: Highly Loaded

Turbomachinery, Emissions Reduction, Materials

and Structures, Controls, and Propulsion-Airframe

Integration. The specific technologies, which are

applied to the SBJ, are detailed in Table 3. Some of

the key engine cycle parameters were chosen as

follows. The overall pressure ratio was selected such

that the maximum compressor discharge pressure, P3,

was achieved at the top of climb point, Mach Number

2.0 and 50,000 feet altitude. The bypass ratio was

selected to yield an extraction ratio, the ratio of

bypass to core stagnation pressure, of 1.05 at the

cycle design point. Fan pressure ratio and throttle

ratio, the ratio of maximum temperature at top of

climb to the maximum temperature at sea level static,

were varied in the parametric study of the design

space. All of the engine cycles in the parametric

study used a velocity coefficient of 0.975, a
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mixer-ejector nozzle to suppress take-off noise, 75
horsepower take-off from the high pressure spool, 0.5
pounds per second of customer bleed at the
compressor discharge, 4.65% non-chargeable cooling
flow for the high pressure turbine, 0.96% chargeable
cooling flow to the high pressure turbine, and no
cooling to the low pressure turbine.

Advanced Technology Design Space Study

A preliminary design space was investigated which
ranged from 2.4 to 3.6 in fan pressure ratio and from
1.104 to 1.149 in throttle ratio. Five engines,
designated el through e5, were included in the cycle,
aeromechanical, mission, and aircraft sizing analysis.
Mission block fuel, aircraft take-off gross weight,
LTO- NOx, mission NOx, and ideal mixed jet

velocity were used as figures of merit to evaluate the
design space of this parametric study. Contour
surfaces were modeled which examined the first

order effects of both fan pressure ratio and throttle
ratio, second order effects of fan pressure ratio, and
the interaction of both parameters. As such the
mathematical form of the figure of merit surfaces is
detailed below.

F(_c,0) = I_1 + 1_2 _ + 1_3 0 + _ 0 2 + 1_5 _ 0

Here F(_c,0) represents one of the figures of merit,
mission block fuel, take-off gross weight, LTO-NOx,
mission NOx, or unsuppressed sea level static, SLS,

jet velocity. The coefficients, I_1 5, are calculated
deterministically from the results of the five e-series
engines.

The initial design space contours indicated that the
optimum engine selection would lie near the point of
3.0 fan pressure ratio and maximum achievable
throttle ratio. However this point is difficult to
determine precisely since at high throttle ratio the
maximum T 4 may not be achieved in the engine
cycle. In order to design the most compact and
efficient engine possible given the UEET suite of
technologies it is desirable to reach the maximum T4.

Therefore, the strategy used to determine the
optimum engine design included designing a new
series of 12 engines in the range of 2.8 to 3.2 fan
pressure ratio and 1.108 to maximum achievable
throttle ratio. These engines were designated fl
through fl 2. Contour plots of the five figures of
merit are shown in figures 2-6. The contours in these
figures are calculated based on the initial set of five
engines, el through e5. The second series of engines,
fl through f12, are shown on the figures to illustrate
the region of focus.

Figures 2 and 3 contain the contours of mission fuel
weight and take-off gross weight. The trends in both
figures indicate that for the minimum fuel burn and
system weight it is desired to move the design toward
higher throttle ratio and medium fan pressure ratio.
This trend provides for the minimum fuel burn that in
turn maximizes the CO2 reduction. It also minimizes
the overall weight, which has historically been a very
accurate predictor of cost.

Figure 4 contains the contour of mission NOx
emissions. Here the trend for minimizing mission
NOx is to move toward higher fan pressure ratios at

low throttle ratios, but is somewhat independent of
fan pressure ratio at higher throttle ratio. Therefore,
this figure of merit also indicates a desire to move
toward both higher throttle ratio and fan pressure
ratio.

Figure 5 contains the LTO-NOx trends. Here the
desire to minimize LTO-NOx emissions would

indicate a trend toward higher throttle ratios and
lower fan pressure ratios. However, not highlighted

on this figure is the fact that the entire design space
investigated by this parametric study satisfies the
UEETP goal of a 70% LTO-NOx reduction from the
current rule. Similar to the mission NOx figure of
merit, the trend for minimizing LTO-NOx is to move

toward as high of a throttle ratio as is possible while
still achieving the maximum T 4 allowed under the
UEETP technologies.

Finally, in figure 6 the ideal, unsuppressed jet
velocity is shown as a surrogate for take-off noise.
The trend that lower jet velocities yield quieter
aircraft indicates that the SBJ engine should be
designed at lower fan pressure ratios. However, all
the engines shown in the design space would require
some means of noise suppression based on the
projected noise rule for this type of aircraft. The jet
velocity also appears to be rather insensitive to the
throttle ratio.

The selection of engine f6 was made as the best
choice in balancing all of the desired figures of merit
for this conceptual design. All of the figures of merit
showed a trend toward higher throttle ratio with the
exception of SLS jet velocity. The jet velocity trend
showed very little sensitivity to throttle ratio and was
primarily driven by fan pressure ratio. Engines fl,
f5, and f12 were not selected because these engines
did not reach the maximum allowable temperatures at
top of climb, TOC, which is an indication that they
were throttled back too much at the design point.
The block fuel, take-off gross weight, and the jet
velocity determined the fan pressure ratio selection of
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3.0.Whilethef6andfl0 enginesshowed
comparablefuelandgrossweight,thedecisionfor
theselectionofthelowerfanpressureratiowas
drivenbythereducedSLSjetvelocity.Asummary
ofthef6enginecharacteristicaswellasaconceptual
flowpathdesigniscontainedinTable4andFigure7
respectively.

UponselectionoftheoptimumSBJenginefromthe
designspaceofthef seriesenginesapreliminary
componentdesignexercisewasperformwhich
substantiatedmanyoftheassumptionsofthe
fiowpathdesignandweightestimationsofthe
conceptualphase.Aneconomicanalysiswas
performedwhichindicatedthattheSupersonic
BusinessJet,whichincorporatestheUEETP
technologies,wouldreducethecostoftheaircraftby
nearly14%.

Summary

A propulsion system has been designed for a

supersonic business jet, which incorporates the

advanced technologies of NASA's Ultra Efficient
Engine Technology Program. A parametric study
was performed over a range of fan pressure ratio and
throttle ratio to determine the optimum engine
configuration for these conditions. Based on the
UEETP goals of reduced CO2 and LTO-NOx
emissions as well as ancillary considerations of
minimum take-off gross weight, mission NOx
emissions, and projected take-off noise, the final
engine was designed to have a fan pressure ratio of
3.0 and throttle ratio of 1.143. The resultant system

satisfied all program goals by reducing fuel burn by
over 23% compared to the current technology system
and produced LTO-NOx at 81% below the current
rule.

References

1Aboulafia, Richard, "The Business Case for Higher
Speed," Aerospace America, AIAA, July, 2001.
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SBJ design requirements and
constraints

Mission

Payload

Range

Cruise Speed

Cruise Altitude

6 passengers

4000 nautical miles

2.0 Mach Number

(50,000 - 60,000) feet

Emissions

LTO-NOx

Mission CO2

Cruise NOx

Noise

Takeoff

Cruise

Economics

-70% compared to current rule

-8% compared to current

technology

minimize high altitude impact

Suppressed to current rules

Overland supersonic flight

Evaluated for baseline and

final designAffordability

Table 1. SBJ design requirements and
constraints

SBJ Baseline Propulsion System

FPR,
HPC PR

BPR Des

i-4 Max (deg. R)

i-4 Des (deg. R)

SLS Jet Velocity (fps)

TTR,

Wc lapse

Fn lapse

Fn SLS (Ibf)

SFC SLS [(Ibm/hr)/Ibf]

Fn TOC (Ibf)

SFC TOC [(Ibm/hr)/Ibf]

i-OGW (Ibm)

Block Fuel (Ibm)

LTO NOx (g NOx/kN)

Mission NOx (Ibm)
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Table 2. Current Technology Engine

Design Cycle Parameters
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Technology Name

Emission Reduction for Regional

Engines

High-Loaded Multistage Compressor

Maximum Technology Impact

70% Emission Index; Reduce combustor liner

cooling to 10%

Increase faxffHPC loading by 50%; Increase

faxffHPC polytropic efficiency by 1%

High-Loaded HP/LP Turbine Systems Increase HPT/LPT loading by 25%; increase

LPT adiabatic efficiency by 1%

2700 °F CMC Components Increase allowable turbine vane temperature to
2700 °F

Turbomachinery Disk Alloy Increase allowable T3 temperature to 1350 °F

Low Conductivity Ceramic TBC for Increase allowable turbine blade temperature to
Turbine Airfoils 2250 °F

Li@atweight Nozzle Materials

Active Shape Control Technologies for

Variable Radius Inlet Lip

High Reynolds No. Design Tools for

Advanced Configurations

Combustor Controls

Reduce mixer-ejector weight (if used) by 10%

Remove inlet blow-in door weight

Reduce total A/C drag by 1%

Reduce T4 margin requirement (improved pattern

factor) by 60 °F

Adaptive Engine Controls Reduce engine SFC by 0.5%

i::::::i:::i:i:::::i:i:::::i:::iiii:i:::ii::i::i:i:i:::i:::i:::i:::i:::ii:::::::i::i:::i:::i::ii::_:iii:i:1i6:i:i
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SBJ Baseline Propulsion System

FPR, ¢ _iii_iiiiiiiiiiiiiiiiiii
H PC PR ::::::::::::::::::::::::

BPR Des iiiiii_iiiiiiiiiiiiiiiiiii

T4 Max (deg. R) _

T4 Des (deg. R) _

SLS Jet Velocity (fps) _i_

TTR, _ _iiiiii_ii_i@iiiiiiiiiii

Wc lapse _iiiB_i@iiiiiiiiiii

Fn lapse _i_ _

Fn SLS (Ibf) _iiiiiii

SFC SLS [(Ibm/hr)/Ibf] _iii_i_iiiiiiiiiii

Fn TOC (Ibf) _

SFC TOC [(Ibm/hr)/Ibf] _iiiii]ii_i_iiiiiiiiiii

TOGW (Ibm) _6_iiiiiii

Bloc k Fuel (Ib m) _@_ii6_iiiiiii

LTO NOx (g NOx/kN) _2_ii_i_i_i_i_i_i_i
w.w.w.w.w.w.w.

Mission NOx (Ibm) _i_i_i_i_i_i_i_i_i_i_i_

Table 4. Current Technology Engine

Design Cycle Parameters

Comparison of the
Propulsion System

FPR,
HPC PR

BPR Des

T4 Max (deg. R)

T4 Des (deg. R)

SLS Jet Velocity (fps)

TTR,

Wc lapse

Fn lapse

Fn SLS (Ibf)

SFC SLS [(Ibm/hr)/Ibf]

Fn TOC (Ibf)

SFC TOC [(Ibm/hr)/Ibf]

TOGW (Ibm)

Block Fuel (Ibm)

LTO NOx (g NOx/kN)

Mission NOx (Ibm)

% Below NOx Rule

% Fuel Burn Reduction

from baseline)

Cost ($M)

Cost Reduction (%)

LTO-NOx rule (g NOx/KN)
LTO-NOx reduction from

baseline system (%)

Baseline and UEETF

_iiiS_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii_ ...................................

_i;iS_$iiiiiiiiiiiiiiiiiiiiiiiiiiii_.!_$iiiiiiiiiiiiiiiiiiiiiiiiiiii

)iii_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiI_N_...................................

_ii_iii!ii_iiiiiiiiiiiiiiiiiiiiiiiii_._NN_iiiiiiiiiiiiiiiiiiiiiiiii

!iiiN_Niiiiiiiiiiiiiiiiiiiiiiiiiiii_.!_iNi_iiiiiiiiiiiiiiiiiiiiiiiiiiii

_N_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii_.N_Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

{iiii!ii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_.tii_ii_ii_iiiiiiiiiiiiiiiiiiiiiiiiiiii

{i_N_9_iiiiiiiiiiiiiiiiii_._Siiiiiiiiiiiiiiiiiiiiiiiii

_i_Siiiiiiiiiiiiiiiiiiiiiiiii_._i_ii_6iiiiiiiiiiiiiiiiiiiiiiiii
_iii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_iii_i_iiiiiiiiiiiiiiiiiiiiiiiiiiii

_lii_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii_ ........................................

............................... :::::::::::::::::::::::::::::::::::::::::::::::::::::::::
v:::::::::::::::::::::::::::, w.w.w.w.w.w.w.w.w.....

Table 5. Comparison of the Baseline and

UEETP SBJ Propulsion System.
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