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P, NONCONTORMING FINTTE ELEMENT METHOD FOR THE SOLUTION OF
RADIATION TRANSPORT PROBLEMS

KAB SEOK KANG*

Abvtract. The simulation of rediation transport in the optically thick Aux-tinited diffusion regime has
been identified a8 one of the most time-consuming tesks within large simulation codes. Due to multimaterial
complex geometry, the radiation transport system must often be solved cn unstructured grids. In this paper,
we investigate the behavior and the benefits of the unstructured /. noasonforming finite element method.
which 3. troven to be flexible and effective on related transport problems, in solving unsteady implicit
nonlinear radistion diffusion problems using Newton and Picard linearization methods.

Key words. nonconforming finite slements, radiation transport, inexact Newton linearization. multigrid
preconditioning

Subject classification. Appiied and Numerical Mathernatics

1. Introduction. Radietion transport in astrophysical phenomena and inertial confinement fusion is
often modeled using a diffusion approximation [12, 17, 18, 20, 21, 22, 24). When the radiation field is not in
thermodynamic equilibrium with the material a coupled set of time dependent diffusion squations is used to
deacribe energy transport. These equations are highly nonlinear and exhibit multiple time and space scales.
Implicit integration methods are desired to overcome time step restrictions

Nonc _rmirg finite-element methods have proven flexible and effective on incompressible fluid flow
probiems such as incompressible Stokes and Navier- Stokes equations [10, 11]. In the P, nonconforming
met hod, the degrees of freedom lie on midpoints of edges. Therefore, the number of connections of degrees
of freedom with each others at most four (four at interior edges and two at boundary edges) which is the
same mumbe. of connections of degrees of fresiom in structured finite difference methods. In comtrast
in the P; conforming method. the mumber of connertions of degrees of freedom is ar least four except at
bousdary poirts and depends the triangulation and position of points. The number of connections of
degrees of freedou. determines the nummber of nonzero entries of generated matrices and plays an essential
roie in performance of parallel implementations because of the communication required in yerne] operations
like matric-vector multiplication. P, nonconforming methods generate matricas that have a constant small
numbey of nonzerc entries for exch ron, and the, sfore have pame advantages in paraliel implementat.on and
performance.

Because many norlinear elliptic problems are weil solved by conforming finite element methods. non-
conforming methods are stil] rare for such probiermns  However nonconforming methods may resolve features
of solutions of nonlinear problems not well represented by conforming methods. In this research, a noncon-
forming recthodis shown to resolve very sharp changes of energies on heterogeneous domains. The results
are very similar to the solutions of the finite volume method with an edge-based flux Limiter '19]

To solve nonlinear problems, one usually employs linearizaticn techniques Many modelers nse Picard
and Newton methods to brnwarize  Picard’s method s easy 10 understand and implement, but converges
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dlowly. Newton's method has & second-order convergence rate but requires the Jacobian of the original
saoalinear system. In many nonlinesr problems. an inexact Newton method works well, with Jess storage
and operation count expense |8 In this paper, we study the behavior of these three methods on a model
radistion transport problem.

Because the system generated from some linearization of the nonlinear problem: is usually nonsymmetric.
we use preconditioned GMRES [23]. As a preconditioner, we consider multigrid. Multigrid represents an
impoctant advance in algorithmic efficiency for the solution of large problems (2, 3, 4, 14, 19, 25)

To use muit’grid, we need to define intergrid transfer operators betweea noncouforming finite-element
spaces. Due to the non-nestednes« of nonconforming spaces, there is no natural intergrid transfer operator. In
previous studies of the nonconforming multigrid method. the average value of two adjacent elements is used to
get the interpolated value 8t a node. Nonconforming multigrid with this interg-id transfer operator is a good
solver for linear wystems and wome nonlinear systcms with smooth nonlinear coefficients (1. 5, 6, 9, 15, 16].
Bowever this intergrid trans’er operator does not preserve positivity of fanetions, which is an essential part of
radiation transport protisms hecause rie-gy and temperat ure are always positive. Therefore some nonlinear
problems with discontinuous cnefficients. bound constraints on solutions, and rapidly changing solutions.
like the radiation transport problem, cannot use this intergrid transfer operator becanse the coarse evel
approximation obtained fron: the fine ievel approximation does not satisfy solution tuunds, and one canno
geoerate the coase level systems or soive the coarse level problems (15]. To overcome these difficulties. we
use 3 new and simple intergrid transfer operator that preserves positivity and solves the above mentioned
problem. However mulciznid with this intergrid transler operato. is slower than with the previous operator.
Therefore, we use the simple intergrid transfer cperator to Jerive coarse level systems and the average value
intezgriC operator to solve the linear systems

The rest of the paper is arganized as follows In section 2, we describe a model radistion transport
and s P; nonconforming discotization. In section 3. we consider a discretization in time. derive the
linearirations by Picard and Na2wton me*hod and describe the inexact Newton method In section 4. w
describe precunditioned GMRES and the nonconforming multigrid praconditioner. Numerical cxperiments
are given in sectiocn §.

3. Radiation transport model and P. nonconforming discretization. Under the assumption of
an optically thick medium (short mean froc path of photons) a first-principles statement of radiation iransport
reduces to the radiation diff asion hmit A particular idealized diniensioniess form of such a system, known
as the “ZT" mode! can be written as

0(;—‘5-" (D.VE, 2 ¢.. T - E), {2.2.1)
0&7—. T (DT = -0,T' - E, (222

ﬂ.-;. 0,T F, and D,T'*aT' (22.3)

V,+ ¢ IVE!

Here, E(z2.1) represents the pheton energy, T1z.1) is the matenal ternperature, o, s the opacity and
« Is the waterial conductivity In the non equilibriam case. the nonl near source terms on the right-hand
side are nonzero and govern the transfer of energy between the radiation field and material temperature
Additional norlinearities are generated by the partie slar form of the diffusion coefficients. which are functions
of the E and T fields In particular (i energy diffusion coeficient, D, (T, E) contains the term 'VE| which
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FiG. 1. Domam of model problem

refors to the gradient of E. This limiter term is an artificial means of ensuring physically meaningful encrgy
propagation speeds (ie. no faster than the speed of light). The atomic number 2 is a material coefficient,
wnd while it may be highly variable it is only a function Jf position (i.e. z = f(z,y) in two dimensions).

The two model problems considered in this study are taken from [19] and depicted in Figure 1. We
soasider a unit square domain of simiJar material with acomic mamber 2 = 1 and & unit square domain of
two dissimilar materials, where the outer region contains material with an atomic number of 2 = | and the
mner region (1/3 < 2 < 2/3,1/3 < y < 2/3) contsins material with an atomic number of z = 10. The top
and botiom walls are insulated and inlet and outlet houndaries are specified using mixed (Robin) boundary
conditions, as shows in the figure For convenience, we represent the boundary z = 0. 0< p<ilendz = |,
0 <y <1by I and otherwise by I';. Then the boundary condition of the problem is

-—— = s onl'.
— = o 85 =Ty,
— =0, ondN

where n is the local outwacd normal vector of the boundary.

Equaticos (221 and (2.22) form a symem cf coupled nonlinear partial differential equations which
mus be discretizes o space and time. In this section, we consider 2 discretization in space and will consider
s discretization in time in \he next section.

The varietional form of (2.2.1) and (2 2.2) can be written ta follows: Fina (E T) e (H (N L210 T))*
such that

%fudr + | D,VE Vudr + II ;an‘ﬂ
7] 1] Te (224
-/d.f’fﬁ‘-f'w—/ 2quds = 1)
i r
a7 o s -
vdr+ | DT Sudr --/ 0,/'T," - Ejndz = 0), 225,
(7] ot 9 4]

for &l (w, v} € (HY M) and for all t € 0 tmax
We discretize (] by using & triangular g7id containing cdges, shown an Figare 2. The grid is generated by
connecting of the midpoints of the edges of the tr.anghes from the coasest discretization T.. which conrains
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edges and conforms to the material interface boundaries in such a way that .. triangle edges croms this
boundary. Let hjand Ty = Ty for y= 1. ... J, be given where T, is a partition of ) into triangles and h,
is the maximum diameter of the elements of 7.

Definie the Py-nonconforming finite elemait spaces

V= {v € L3N) :v|x is inear for all K € T;,
v is continuous at the widpoints of interior edges).

Then the nonconforming finite element discretization of (22.4) and (2.2.5) can be written as . Find
(Ey.Th) € (Vs x [0, tiziax]? such that

[&—E—'udxo D.(E..T,)VE, - Vudz 0/ L Einde
u o 0 r, 2

(226)
A-/n,(T‘;”T. ‘- E.,md)—/ gudo = ),
0 I

a7
/—‘lﬁ‘ DJE,T, VT, Vdr '/d.er]' Ta_" - Fl'll’if = 0, (22.7)
u m 14 o

for all (u,1} € V] and for all ¢ € 0. tmax)

In above cquations. (o orm the integration in space, we use a three-point quadrature rule on each
trizngie in T, Because the points where the degrees of freedom are defined and the quadreture points of
triangle are the same we can easily compuite the integrarion on each triangle and

- ;
D J:\H’i_ 5

/ Diz ¢ tdr = — - 224
X 3

for all basis fanctions ¢, of V and K € 7, Also. becaume Tu is a piecewise constant on each triangle in 7,
for all b€ V', we compute Vul needed i D, exaccly

3. Time integration and nonlinear iterstion. In this section, wi consider a discretization in time
and three nonlinear iterations le . Newton Picard and inexact Newton iteration
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The time derivatives are diecretized m firet-order backward differences, with lumping of the mass matrix,
Jeading to an implicit acheme which requires the solution of & nonlinear problem at each time step. This
approach is firs-order accurate in time, and ls chosen merely for convenience. since the principal objective
is the study of the solution of the monlinear systemn. Higher order tempora! discretizations are demonstrated
w be worth while in [18].

To solve the nonlinear problem (2.2.6) and (2.2.7) we consider the Picard linearization method and the
Newton Enearization method. In both methods, we need to solve linear systems to get corrections at each
nonlinear iteration step.

The fully implicit Picard linearization method separates the operators into linear parts and nonlinear
parts and ali nonlinear parts are evaluated at the previous nonlinear iteration level, k - 1. This results in
the following system of equarions

/L—W*/m.-!vﬂ."vw./ ;E:..m
“ (%] r.

(3.3.1)
- [Tt tets - [ 2gudo =,
n T
/_A__L-_“,‘/D:b-:vnj Vodz
(33.2)

'/":."“7:‘ !)'7;'.—5:.)Ldr =0

for all (w,v) € V}. Because (331) and (332 are linear systems in (E]* T0Y), we can easily calculate
their Jacobian.
To get the corrections (8E 8T ) in the Picard Method at level &, we solve the following linear sys®ems

nt-)
qu[b vazv..a.-/ Eudo

" ? (33.3)
-/ "k \”T:A-l)-or_"sz F;
/""“"’/D:""'JT-V;:J:
. (3.3.4
’/ﬁ'"‘ul._" 6T - 8E vdz = Fpt e,
n
for all (u,v) € V] where
. (]
F;h'gp— -/El__:_&._.,‘d:_/D:lvE:l Cudz
) (335
e
-}
/T._;_TI_ o - / DIAVTI Cuds
’ ? (336

-/af“uT:‘ ‘- E]")vdz

For the full; implicit Newtwon linearization method it 1s somewhiat more complicated to compute the
Jacoblan at spproximate solution points. 20 get the Jacobsan we havs to calculate the derivatives of the
system with respect to (¢, ¢) for all basis function<in 175 x V)




As the romalt of diffesentiation vith respect 0 (8,,%). to get the corrections (JE.AT) in Newton's
Wnbﬂh.nduhﬂwﬂhm.

o ; .
nﬁ"”/ow 'vaz-v.a+/na:; HEVE} ' Vuds

bt A=l 1
*/n vy OIVE, -Vod:+/r.§6}:udv (33.7)

A=l
-ja:"‘ (103—‘7_1)‘1'-414/a}‘"dtud:-i?“"(u).
0 Ly 0

T - Y .
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for all (u. 1) € V? where
(DI ICERY (DM o VEDY
—_— — 4 __%_.
(Ex*y 7 HEL"),

pra . DY

ng=

a 14
D,,‘ =ne T‘:.)'-",
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where ;Fﬁ: can be casily evaluated on each triangle in 7).
Afer limearization we have to scive the linear systems

LA 6E - F;'._l )
- ()« (2 o

fs each step where J* ' s a Jacobian which is computed by Picard's method or Newton's rmethod
In e her method we need for robusiness to control ihe step length a where

E: L] E: L ol‘
(r:')' (rr' )(n)
In this study, we contrcl the step length by simply halving o until the residual of the updated solution is
less than the previous residual In this control, we sometimes tail to ge: 8 proper step bengrth, so we stop at 2
fixed step length and perform the next nonlinear iteration If the number of fai'ures exceads a fixed number,
then we go to pext time teps by using the best approvimation. which has the smaliest nonlinear residual

RIMARK 3 1 The Neuton method has, aeymplotically @ second order convergence for nonlhmear prob-
lems end the Picard method ho only a firii order convergence. However the resulting linear problem of the
FPucard method v more eanly solved tian that of the Newtom method because the Picard method lacks the
convection Lerm as described an ref [1)

To improve the efficiency of the Newton method. we can use an inexact Newton method 8 Waen
the Newton iteration ke *fa:” fom convergence (1.6 the residual is Jazge) there i no reason to solve the
linear system accurately. However, when the Newton teration i c'ose” (10 the residual is “small” ) the
convergence rate of Newton's rethod is tighth csupled to the accuracy of the linear solution To adjust U
amount f work donwe 151 the hnear sodve (via a convergence olerarce ) we employ an inexact Newton et hod




In 1L mexact Newton approach, the convergence criteria for the lincar soiver is proportional to the residual
ia *he nonlinear iteration. ln equation form this is

p -Gl e

where »; = 1.0 x 1072 is the value used in this study unles otherwise noted. We note that (13] shows how
to adaptively select v; to recover asymptotically full second order convergence,

4. PGMRES and multigrid preconditioning. In this section. we explain PGMRES, which is a
combination cf & Krylov-based linear iterative method, and multigrid. which is well known as a succesaful
preconditioner, as well as a scalable solver even in unaccelerated form, for many problems.

GMRES 23] is a well known solver for non-Fermitian problems. In practice, GMRES can be restarted
after m steps. where m is some fixed integer parameter, to save storage by accepting a generally less rapid
convergence.

We describe the restarted PGMRES for solving

Ajz=) (44.1)

with preconditioning matrix B
PGMRFS(m) Algorithm 4.1.
(1) Start - Choose 2, and compute rg = By(b= Azzo). 2= |re'ly and vy = rg/3
(2) Iterate - For 3= 1.. mdo
Compwte w = B;An,
Fori=1,  .; do:

‘1" = (w ty)

s W )Y

F‘”l
Compwte hyoy, = llwigand v,0, = w/h 4,
Loddo
(3) Form the approximation solution
Define V. =t , ta. .

n," ‘h"}|:,r'-|lt‘.<m

and ot 7, = 24 4 Vepm where yo mimmizes Jey = Moyl y e R™
(4) Restant
Compute rp = By(b— Ayz,,), if satisfied then stop
else compute 2 ;= 2., 3= |jr | and v = rn /3 end go 1o (2)
Arnsidi iteration constructs an orthogona!l basis of the keft proconditioned Krylon subspace

Span{r; B;A;re (B, A;1" "7}

It uses a modified Gram-Schmidt process, in which the new vector to be orthogonalized is obtained from
the previous vector in the process Al ressdun! vectors and thesr norme that are computed by the algorithn




cosrespond to the preconditioned resiquals. namely, 2., = B;(b~ Az, ), instead of the original (vspresun-
ditioned) residual b - A,2,.. In addition, there is no easy access to thess unpreconditioned residuals, unless
they are competed explicitly. 8o we monitor these preconditioned residuals to stop PGMRES iterathon to
solve linear problem

Next, we consider Multigrid Preconditioner B.

To define a multigrid method, we need to define intergrid transfer operator. etween nonconforming
finite element spaces. Due to the nun-nestedness of nonconforming spaces, there is not a natural intergrid
transfer operator. In previous studies of nonconformirg multigrid method(1. 5. 6. 9], average value of two
adjacent elements are used to set the value of a node A nomconforming multigrid method with this intergrid
transfer operator is 8 good solver for linesr systems and some nonlinear systems that have smooth nonlinear
coefficients

To get the coarse beve! approzimate linear systom for (3.3.9), we need coarse level approximations of
(E3* ' T0% ) and (E7° . T07") I the approximate solution (E]* ™' T8 ") varies rapidly i space.
then some coarse level approxirations of (E7* =" T0 *~") may have negative values. However (£7*- 7T047")
are rexpsived 10 be positive for the mpﬁnimdD,‘"". Either we cannot generate the coarse leve! aystems
or they may become nearly singular, making it hard to solve the coarse level problems

To overcome these difficulties, we use 2 new and simple intergrid tranafer operstor called the covolume-
based intergrid transfer operator, which preserves only piecewise constant functions [15]. It is well known
that, 1o get a good convergence factor in muttigrid algorithms intergrid transfer operators should preserve
higher order functions (16, Therefore the multigrid method with this intergrid transfer operator converges
slowly compared to average value intergrid operator to salwe: linear systems. However preservation of pos-
itivity of nodal values of the fields s critical. So. we use the covalume-based intergrid transfer operator
to chetain the coarse level systerne and the average value intergrid operator to interpolate the solution be-
twoen bevels (coarse to fine and fine to-coarss’ vhen soiving the linear systems in Picard method or Newton's
method

Let A, (W)} = (V)% j =1, . J be the discretization operator on level jand I, - (V,_ 7 = (V)7
J=2 .J. be the coarse to firs intergrid transfer operator  Aiso, we define the fine-to-coarse ntergrid
transfer operator P, (V))F = (V,_;) by

(l;t‘,l‘, = (1 P)‘ «) Y€ H" |I1 Yu € 4'.', 1

Fipally, et R, : (V)2 = (V,)P for j = ) J be the Wear smocthing operators. bet R,r danote the
sdjcint of R, with respect to the (. | inger product and define

. {n; ! odd

RT  leven

Following (7, the multigrid operator B, - (V)" — (V1 is defined recursively as follows

Multigrid Algorithm 4.2 Lot 1 < ; < J and p be a positive integer Set By = A" Amsume that
B, | har twen defined and define B g for g ¢ 'V, by

1St P mOand g’ =0

(2) Define z' fxl = 1,. . ,mijiby




(3) Deftnc y™7 = ™ 4 [,g® whete ¢ kx i= 1, . pis defined by
Cod ' =B Py =A™ ) = Aprd® .
(4) Define o/ for [ = mi5) 41, 2miz) by
y=y'- m»aun(’_ Ayt

(8) Set Byg = g™

In Maltigrid algorithm 4 2. m()) gives the numoer of pre- and post-smoothing iterations and can vary
as afunction of j. K p= 1, we have a V-cycle multignd algorithm. If p = 2, we have a Wcycls multigrid
algorithm. Other versions of mu'tigrid algorithms without pre- or post-smoothing iterative can be analyzed
similarly. A variable V-cycle multigrid algorithm is that for which the number of smoothing m(§) increnses
exponentially as j decreases (1+ p=1and m(j) = 27°2),

REMARK 4.1. One con use the multignid algorithm to solve the systems a1 o free-standing iterative
method  Usually, one wses \'-cycle and W -~ycle multigrid algorithms o thue end and wses V ~yele and
variable V-cycle multigrid method as precor.ditioners of Krylov type mothods wuch as PCG, hecouse, vhen A,
s symmictric posstive defintic, the V. cycie multigrid cperntor B, 1 o .ymmetme pomtive definite operator on
(V;), but the W -cycle multignd operator 4 not in generally [3) Many researchers show that convergence
of W.cycle multigrid for the nonconforming end conforming cases and V -cycle multigrid for the conforming
cese are good preconditioners (1, £, 5, 6, 9, 14, 16, £5]. In thus prodlem, we woe V -cycie multsgrid method
os a preconditioner of CMRES

5. Algorithm performance and results. In this section we study the performunce of the Xewton.
Picard. and inexs. « Newwon methods on P nonconformirg finkie element method on two model problem.s
with the only difference between the problems beng horogeneity. In the two examples, we use the same
wiangulations, namely 12800 triangles, 19296 edges. and 6407 vertices Because nodes are on midpoints of
edges in a P} nonconforming method. tae number of degrees of freedom of this problem is 38502

For problem 1. we consider n homogeneous material with atomic number z = | and « = 001 on the
whole domain  The wital conditions are £ = 1.0 x 107" and T7 = (E?)°® The problem is run out to
ume t = 30 and nonlinesr convergence toler ance within a tims sep is defined as ' Flu*)|l; <10 x 107 for
problem | We run wi‘e ccweral ume steps of 0001 0.002. 0.005, and 0.01.

In Figure 3, we plot the contours of temperature 7 at t = 1.0,.20.3.0 Table | compares inear solve
requirements and nonlinear iterations. Figure 4 depi-ts the nonlinear convergpnce behavior of Newton
method. Picard method, and Inczact Newton method at time t = 1 0

Figure 3 shows that contours of temperat: e propagate parallel 10 the :nlket boundary and reproduce on
an unstructured grid the propagation of the one dimensional case Table | and Figure 4 show that hewton s
Method is vecy efficient compared to Picard s method. and sligthy mote efficient conpared o the inexact
Newwon method, in terms of nonlin-a Merations per Lime stey

Incxact Newton meeds more ponhinear leratsons in com parison to Newton's method, but has the best
performance overall because thus method peeds the smallest number of linrar iterations Also Table | shows
that *he number of linear iterations in each nonlinear iteration of the Picard method s amalles than that of
the Newton Method This means that the linear oy tems forn Picard s method are more easily solved than
the hnear systems from Newton method

In Table 2, we report the accuracy as a fune oA vime sups by the 17 error of the solution whack
is defined 88 |u -~ Wosw 7 Where unes # obtaned by uning A time step 0 0001 This result shom s that the

L? error w tame s et order




(e)t =30
Fio 3 Contour of Temperature of Prollem |

For problem 2. we ronsider an inhomogeneous marerial with atomic number @ = 10 inside the box and
r = ) ) outside ws shown i Figure 5 Wi changed the nonlinear convergence taberance sithin a time step
to be [P(u*) |3 <10 = 1074 w0 redice the s ulation tames

In Figure 6. we plot the comtou” of tempernture T oat 0= 10 20 30,40 50, Table 3 compares linear
o ve requireme 8 noniizear tezations, and numbor of fallures 1o meet the conveigence tolerance “igures b
9. 10 demonistrate the nonhnear convergence behavior of the Newton Plonrd and inexere Nowton methods
attumes tm 10 fe 20 anai=dl

As energy propagaies, wmperatures tapidly changs neni the front and near tee Lever whete the two
afferent waterials ot As more time poasses e Lemuper wture soooehly propagaies. Figures b v 10 show
that there are many step bength controis 1o ge the solution of the norlinews problery when the syt on
changes rapidiy (£ = 1.0 ¢ = 25 but there is 0o need for step length cortrol when the molution w smooth
(t e 40, i any of the three methods
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Marho! le Pofd (1t @ me @ tor # ave # avegln
" soslin- | nomlin Lineas hn /4t /oonnn
I S B ear L lu! /dt
0001 | 3000 6226 21 49851 166 &0

Newon (0002 | 1500 4116 |27 370 260 95
method | 0005 | 600 | 2120 |35 MKy 465 133
| _291_ a 300 ) 1334 44 21986 737 165
' 0001 3070 | 24935 |83 181227 God4 73
| Picard | 0002 1500 | 15386 (303 126152 841 62
! Method 0005 00 TN 130 70165 1169 0

L Jam fam [sa 177 46191 1540 &7
Ulnexat | 0001 | 3000 | 8648 | 29 28468 9.5 33
| Newta | 0002 | 1500 | 4534 |30 15028 106 35

Method )05 | 600 254 |38 9878 166 44
001 (300 145 |ae 61 259 54

i

Tagie 2 Li-erroratt - 30

tiree eps | Liferror) —J

o | 000884
oo | 001796
0 005 0 94060
vl | voesTs

Flzure 6 shoms that the solution of the nonconforming finite element method is very mmilne to the
salution of finite volume method with edge-based flux iimiter [20°

In the aspect of performance, the behavior of problem 2 is similar (o problem | with the exception that
problem. { does not require step length control.

To estimate the accuracy as a function of time step size, we report the L¥e: or of the solutior: in Table
4 (based on an accurate solution with df = 00001) Toe re'ative L7 error of simulations with 4t = 0 (02
0.00%. 0.01 eompared tn the L7-error of dt = 6.001 is ploved as a function of tirme in Figure 7. Thes results
thow that the [ -error in time is frst order at the beginning of simulation ustil t = 30 but gradually
deteriorates. This deterioration may be introduced by the nonlincar convergence error within a time step
because the accumulation of the nonlinear cunvergerce error will daminate other errors (space and time
discretization error) as time steps grows 1€ we ute a ficer nonlinear convergence tolezance, then av can
Aelay this deterumanion o longer time

6. Conclusions. We golved unsteady implicit nonlinear radiation diffusion problems by an unstruc-
tured P, nonconforming finite element method. Py nonconiorming finite element methods resolve very sharp
changes of energies on the hetercgenrous domains. sumilarly 10 results of the finire volume method with aa
edge based flux limiter The inexact Newton method has the best performance overall and Preconditioned
GMRES with noncorforming multigrid preconditioner 1o solve linear prleme works well In P noncon
(oning mutigrid the covolume-bassd tesgrid transfar operators are useful to so.ve radiation tranepot
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problems because the positivity preserving property is needed
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