
AutoBayes/CC -- Combining Program

Synthesis with Automatic Code Certification

-- System Description --

Michael Whalen t, Johann Schumann t, and Bernd Fischer t

tDepartment of Computer Science and Engineering
Univ. of Minnesota, Minneapolis, MN 55455 emaih uhalen©cs.uma.edu

SRIACS / NASA Ames, Moffett Field, CA 94035
emaih {schumann[fisch}_email•arc.nasa.gov

1 Introduction

Code certification is a lightweight approach to formally demonstrate software

quality. It concentrates on aspects of software quality that can be defined and
formalized via properties, e.g., operator safety or memory safety. Its basic idea

is to require code producers to provide formal proofs that their code satisfies

these quality properties. The proofs serve as certificates which can be checked

independently, by the code consumer or by certification authorities, e.g., the
FAA. It is the idea underlying such approaches as proof-carrying code [6].

Code certification can be viewed as a more practical version of traditional

Hoare-style program verification. The properties to be verified are fairly simple

and regular so that it is often possible to use an automated theorem prover
to automatically discharge all emerging proof obligations. Usually, however, the

programmer must still splice auxiliary annotations (e.g., loop invariants) into the

program to facilitate the proofs. For complex properties or larger programs this

quickly becomes the limiting factor for the applicability of current certification

approaches.
Our work combines code certification with automatic program synthesis [4]

which makes it possible to automatically generate both the code and all necessary

annotations for fully automatic certification. By generating detailed annotations,

one of the biggest obstacles for code certification is removed and it becomes pos-

sible to automatically check that synthesized programs obey the desired safety

properties.
Program synthesis systems are built on the notion of "correctness-by-construc-

tion", i.e., generated programs always implement the specifications correctly.

Hence, verifying these programs may seem redundant. However, a synthesis sys-
tem ensures only that code fragments are assembled correctly while the frag-
ments themselves are included in the domain theory and thus not directly verified

by the synthesis proof. Our approach can verify properties about the instantiat-
ed code fragments, and so provides additional guarantees about the generated

code.



2 The AutoBayes/CC System

AUTOBAYES/CC(Fig.1) is acodecertificationextensionto theAUTOBAYES
synthesissystem,whichis usedin thestatisticaldataanalysisdomain[2].Its
input specificationis a statisticalmodel,i.e., it describeshowthe statistical
variablesaredistributedanddependoneachotherandwhichparametershave
to beestimatedforthegiventask.AUTOBAYESsynthesizescodebyexhaustive,
layeredapplicationof schemas. A schema consists of a code fragment with open
slots and a set of applicability conditions. The synthesis system fills the slots with

code fragments by recursively calling schemas. The conditions constrain how the
slots can be filled; they must be proven to hold for the specification model before

the schema can be applied. Some of the schemas contain calls to symbolic equa-

tion solvers, others contain entire skeletons of statistical or numerical algorithms.

By recursively invoking schemas and composing the resulting code fragments,
AUTOBAYES is able to automatically synthesize programs of considerable size

and internal complexity (currently up to 1,400 lines of commented C++ code).

1ii ,.to..,esSynthesis System

Annotation Pro

Mope Verification CG ]

, o .111: lot, ILJ

E-SETHEO

Fig. 1. The AuTOBAYEs/CC system architecture

At the core of the CC-extension lie "certification augmentations" to the

AUTOBAYES-schemas; these augmentations are schematic Hoare-style code an-

notations that describe how the schema-generated code locally affects properties

of interest to our safety policy (currently memory and operator safety). For ex-

ample, a loop is annotated with a schematic invariant and schematic pre- and

postconditions describing bow its body changes the variables of the program.
During synthesis, the annotations are instantiated in parallel with the original
schemas. Tile domain knowledge encoded in each schema is detailed enough to

provide all information required for the instantiation. These annotations are also

used to partition the safety proofs into small, automatically provable segments.
Unfortunately, these schema-local annotations are in general insufficient to

prove the postconditions at the end of recursively composed fragments--an "in-

ner" loop-invariant may not be aware of proof obligations that are relevant to



an "outer"loop-invariant.AUTOBAYESovercomesthisproblemby propagating

any unchanged information through the annotations. Since program synthesis

restricts aliasing to few, known places, testing which statements influence which
annotations can be accomplished easily without full static analysis of the syn-

thesized program.
As a next step, the synthesized annotated code is processed by a verification

condition generator (VCG). Here we use the VCG of the Modula Proving System

MOPS [3], a Hoare-calculus based verification system for a large subset of the

programming language Modula-2,1 including pointers, arrays, and other data
structures. MoPs uses a subset of VDM-SL as its specification language; this is

interpreted here only as syntactic sugar for classical first-order logic.
The proof obligations generated by MoPs are then fed (after automatic syn-

tactic transformation and addition of domain axioms) into the automated theo-

rem prover E-SETIIEO, version csp01 [1]. E-SETHEO is a compositional theorem

prover for formulas in first-order logic, combining the systems E [8] and SETI1EO

[5]. The individual subsystems are based on the superposition, model elimina-
tion, and semantic tree calculi. Depending on syntactic characteristics of the

input formula, an optimal schedule for each of the different strategies is selected.
Because all of the subsystems work on formulas in clausal normal form (CNF),
the first-order formula is converted into CNF using the module Flotter [10].

3 A Certification Example

We illustrate the operation of our system on a standard data analysis task: clas-

sify normally (Gaussian) distributed data from a mixture of sources (e.g., photon

energy levels in a spectrum). A straightforward 19-line specification is sufficient
to describe the problem in domain-specific terms. The synthesized program uses

an iterative EM (expectation maximization) algorithm and consists of rough-

ly 380 lines of code, 90 of which are auto-generated comments to explain the
code. For details see http ://ase. arc. nasa. gov/schumann/AutoBayesCC and

[2]. The code is annotated to prove division-by-zero and array-bounds safety.
With all annotations (including the propagated annotations), the code grows to

2,116 lines--a clear indication that manual annotation is out of question. For an

excerpt of the code see Figurc 2.
The MoPs verification condition generator takes this annotated code file

and produces 69 proof tasks in first-order logic. Initially, E-SETHEO could solve
65 of the 69 tasks automatically. The remaining four proof tasks were of the

general form Ax A A A B -+ A' A C where Ax, A, A', B, C are variable-disjoint
first-order formulas. This form is a consequence of the task generation process:

Ax represents the domain axioms, A and A' are propagated annotations, and

B -_ C is the "proper" proof obligation itself. In order to reduce the formula size,

a preprocessing script was used to split each of these proof tasks into two separate
tasks, namely Ax A A A B -+ A' and Ax A A A B _ C; these were then processed

1 We extended AuTOBAYES to generate the Modula-2 code. Usually, AuTOBAYES

synthesizes C/C++ programs for Matlab and Octave (http://www. octave, org).



separatelyandprovenautomaticallybyE-SETHEO.AfterconversionintoCNF
theformulashadonaverage131clauses(between112and166);roughlyhalf
oftheclauseswerenon-Horn.Thetermshadasyntacticallyrichstructurewith
anaveragenumberof 51flmctionsymbolsand39constantsymbols.Equality
andrelationaloperatorsweretheonlypredicatesymbolsin theoriginalformula;
additionalpredicatesymbolswereintroducedby Flotterduringtheconversion
into CNF.Despitethesizeof theformulaandtheir syntacticrichness,most
of theproofswererelativelyshortandwerebasicallyfoundbyonlytwoof E-
SETHEO'S strategies, namely using the E-prover, and an iterative combination

of the E-prover and scheme-SETHEO.

1 (*{ assert i=N and j=M and

2 (forall a,b : int _ ((0<=a and a<N) and

3 (0<=b and b<M)) => q[a,b]=0.0) }*)

4 (*{ loopinv 0<=k and k<=N-1 and

5 (forall a,b: int & ((0<=a and a<N) and

6 (0<=b and b<M) => 0<=q[a,b] and

7 q[a,b] <=1.0) }*)

8 FOR k := 0 to N - 1 DO

9 q[k,c[k]] := 1.0;

I0 END

Ii (*{ post (forall a,b : int &

12 ((O<=a and a<N) and (O<=b and b<M))

13 => 0 <= q[a,b] and q[a,b] <= 1.0) }*)

I

Fig. 2. Left, excerpt of annotated code produced by AUTOBAYES/CC. Annotations
are enclosed in (*{. • • }*). Right, distrilmtion of E-SETHEO proof times (% solved over

runtime in seconds).

Fig. 2 shows tile runtime distribution for the proof tasks. 2 Most tasks were
solved in about two to three seconds, but some tasks took up to 20 seconds. The

smaller second peak visible around 15 seconds is due to a non-optimal schedule.

We expect ttlat a re-training of E-SETHEO'S internal scheduler could help to avoid

such long runtimes (cf. [9]). The overall proof time of 323 seconds indicates that

our approach is feasible.
In order to compare our approach to certification techniques based on static

analysis, we analyzed the equivalent C-version of our example program with the
commercial tool PolySpace [7]. PolySpaee was capable of declaring most of the

code safe with respect to memory/operator safety. However, it could not clear

several crucial parts of the code, most notably the nested indexing (q[k, c [k] ],

see line 9 in Fig. 2) and the initialization of some variables in the main loop.

In these cases, certification requires annotation propagation as it is done in our

work; Polyspace does not require or support annotations. On the other hand,

PolySpace detected a possible integer overflow error of a loop counter in the

synthesized code, something that our safety policy does not (yet) check. The
runtime of PolySpace for this example (about one hour of wall-clock time on the

2 All runtimes have been obtained with a total CPU-time limit of 120 seconds on
a 1000 MHz SunBlade workstation. Due to the internal scheduling of E-SETIlEO,

substantially different runtimes can result if this limit is changed.





sameIO00MHzSunBlade)demonstratesthatourapproachcanbecompetitive
to commercialtools.

4 Conclusions

In this paper, we have described AUTOBAYES/CC, a novel combination of au-

tomated program synthesis and automated program verification. Our idea is to

use the knowledge of the domain which is formalized in tile program synthesis

system to generate the program together with the necessary detailed formal an-

notations required for a fully automatic safety proof. The underlying approach

is general and we expect it to be applicable to other code-generation systems as

well. The major benefit of this combination of program synthesis and program
verification is obviously tile additional verification of important quality aspects

of the synthesized code which comes at no cost for the user.
AUTOBAYES/CC is still work in progress; currently, the certification ex-

tension covers only those parts of the domain theory required to generate EM-

variants. However, we see no fundamental obstacles in extending the approach to

the entire (still growing) domain theory. Also, the safety policy is still hard-coded

in the way the annotations are generated within the synthesis schemas. We will

work on ways to explicitly represent safety policies (e.g., using higher-order for-

mulations) and use this to tailor the annotation generation in AUTOBAYES/CC.
We also plan to implement a preprocessing and simplification component which

can substantially reduce size and complexity of the proof tasks.

References

[1] CASC-JC Theorem Proving Competition. www.cs .miams. edu/~tptp/ChSC/JC, 2001.
[2] B. Fischer and J. Schumann. AutoBayes: A System for Generating Data Analy-

sis Programs from Statistical Models. JFP, to appear 2002. Preprint available at

http ://ase. arc. nasa. gov/people/f ischer/papers, html.

[3] T. Kaiser, B. Fischer, and W. Struckmann. "MOPS: Verifying Modula-2 programs

specified in VDM-SL". Proc. 4th Workshop Tools for System Design and Verification,

pp. 163-167, 2000.

[4] C. Kreitz. "Program Synthesis". In W. Bibel and P. H. Schmitt, (eds.), Automated

Deduction - A Basis for Applications, Vol III, pp. 105-134. 1998.
[5] M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann, and K. Mayr.

"Tile Model Elimination Provers SETHEO and E-SETHEO". JAR, 18:237-246,

1997.
[6] G. C. Necula. "Proof-Carrying Code". Proc. 24th POPL, pp. 106-119. 1997.
[7] PolySpace Technologies. www.polyspaco.com, 2002.
[8] S. Schulz. "System Abstract: E 0.3". Proc. 16th CADE, LNAI 1421, pp. 297 301.

1999.
[9] G. Stenz and A. Wolf. "E-SETHEO: Design Configuration and Use of a Par-

allel Theorem Prover". Proc. 12th Australian Joint Conf. Artificial Intelligence,

LNAI 1747, pp. 231-243. 1999.
[10] C. Weidenbaeh, B. Gaede, and G. Rock. "Spass and Flotter version 0.42". Proe.

13th CADE, LNAI 1104, pp. 141-145. 1996.


