
A CONCEPTUAL DESIGN FOR A RELIABLE OPTICAL BUS (ROBUS)

Paul S. Miner, Mahyar Malekpour, and Wilfredo Torres

NASA Langley Research Center, Hampton, VA

{17).s. miner, m.r. malekpour, w. torres-pomales} @larc. nasa.gov

Abstract

The Scalable Processor-Independent

Design for Electromagnetic Resilience (SPIDER) is
a new family of fault-tolerant architectures under
development at NASA Langley Research Center
(LaRC). The SPIDER is a general-purpose
computational platform suitable for use in ultra-
reliable embedded control applications. The design
scales from a small configuration supporting a
single aircraft function to a large distributed
configuration capable of supporting several
functions simultaneously. SPIDER consists of a

collection of simplex processing elements
communicating via a Reliable Optical Bus
(ROBUS). The ROBUS is an ultra-reliable, time-
division multiple access broadcast bus with strictly
enforced write access (no babbling idiots) providing
basic fault-tolerant services using formally verified
fault-tolerance protocols including Interactive
Consistency (Byzantine Agreement), Internal Clock

Synchronization, and Distributed Diagnosis. The
conceptual design of the ROBUS is presented in
this paper including requirements, topology,
protocols, and the block-level design. Verification
activities, including the use of formal methods, axe
also discussed.

Introduction

The Scalable Processor-Independent Design
for Electromagnetic Resilience (SPIDER) is a
general-purpose fault-tolerant architecture being

designed at NASA Langley Research Center to
support laboratory investigations into various
recovery strategies from transient failures caused by
electromagnetic effects. The core of the SPIDER
architecture is the Reliable Optical Bus (ROBUS).
As part of an effort partially sponsored by the FAA,
the ROBUS is being developed in accordance with

RTCA DO-254: Design Assurance Guidance for
Airborne Electronic Hardware.

The SPIDER is a family of general-purpose
computational platforms suitable for use in ultra-
reliable embedded control applications. Towards
this end, the design is intended to scale from a small
configuration supporting a single aircraft function
to a moderately large configuration capable of
supporting several functions simultaneously. The

computational platform is suitable for use for any
safety-critical (Level A) aircraft function.

SPIDER Overview

The SPIDER architecture is intended to

support a collection of N simplex general purpose
Processing Elements (PEs) communicating over a
Reliable Optical Bus (ROBUS). One logical view
of the SPIDER Architecture is depicted in Figure 1.

Figure 1: SPIDER Logical View

The ROBUS logical behavior is a time-
division multiple access (TDMA) broadcast bus. In
order to guarantee reliable communication among
the good PEs, the bus needs to be protected against
any bad PE monopolizing its capacity.
Furthermore, the communication model must

support several fundamental services. The essential

goal is to ensure reliable communication between

all pairs of fault-free PEs in the system. This will

enable the development of several fault-tolerance

strategies combining the individual PEs. For

example, Figure 2 illustrates a SPIDER

configuration with three PEs in a Triple Modular

Redundant (TMR) configuration, four PEs in a

dual-dual configuration and a single simplex PE.

ROBUS

Figure 2: Sample SPIDER Configuration

ROBUS Requirements

The ROBUS must provide the following

capabilities:

1. All good nodes will observe an identical

sequence of messages on the ROBUS

2. The ROBUS will provide a reliable time
reference for all attached nodes

3. The ROBUS will provide correct and

consistent diagnostic information to all
attached nodes

4. For a 10 hour mission,

P(ROBUS Failure) < 10 -l°

The first three requirements are desirable
functional characteristics of a reliable bus. The

final requirement is motivated by the fact that the

ROBUS may support communication for several

functions whose failure could be catastrophic.
Since the bus should not be a dominant source of

failure, we have set the reliability requirement to be

significantly greater than would be required for any

aircraft function. Rushby presents a comparison of

several architectures with similar requirements [1].

Allocation of Requirements

In this section, we address the implications

these requirements have on the available design

choices. Requirement 4 implies that the ROBUS

will have internal redundancy. It is not possible to

meet this reliability goal without replication. This

implies that all of the other services must be

guaranteed in the presence of a bounded number of

internal ROBUS component failures.

Reliability

In order to satisfy Requirement 4, we have
constructed semi-Markov models that use the same

fault assumptions as the fault-tolerance protocols.

Death states in the Markov models correspond to

violations of fault assumptions.

Fault Assumptions

There are at least two approaches to reasoning

about faults and failures in a digital system. One is

to postulate possible component failures and then

assess the resulting impact on the system.

Alternatively, one may assume that all faults have

potentially devastating consequences and then

design the system relative to this worst case

assumption. Our approach is closer to the latter, but

we will allow some variation into the potential

impact of faults. We have modified the fault-

classification strategy used in the development of

the Multiprocessor Architecture for Fault-Tolerance

(MAFT) [2]. Faults axe classified based on the
observable characteristics to other nodes within the

system. The system is partitioned into Fault

Containment Regions (FCR) that ensure

independence of random physical failures. The

failure status of an FCR is then one of four mutually

exclusive possibilities:

• A good node behaves according to specification

• A benign faulty node only sends messages that

are detectably faulty, including nodes that have
failed silent

• A symmetric faulty node may send arbitrary

messages, but does so the same way to each
receiver

• An asymmetric faulty node may send different

arbitrary messages to different receivers

This provides a global classification of the
fault status of a collection of nodes. This

classification is useful for the analysis of the

various fault-tolerant protocols in the system.

However, the protocols themselves cannot have

complete knowledge of the current failure status of

the other nodes in the system, so the protocols

cannot make decisions based upon this
classification.

The protocols must make use of local
knowledge about the fault status. Each FCR in the

design will maintain a local determination of which
FCRs axe trusted. Only information from trusted
FCRs will be considered during a vote. For the
protocols to work properly, a good FCR's local
view of which nodes to trust must satisfy the
following properties:
1. Good nodes always trust other good nodes
2. When a vote function is computed, no good

node trusts any benign-faulty node
3. If FCR i is not asymmetric-faulty, then good

nodes agree on whether or not i is trusted

Static Schedule

The simplest solution to Requirement 1 is to
first use a static communication schedule for the

ROBUS. The initial prototype uses a round robin
schedule where each PE has equal access to the
ROBUS. However, all analysis is based upon the
weaker assumption that all nodes agree on the
communication schedule. This will allow us to

explore dynamic scheduling algorithms for later
instances of the SPIDER architecture.

Interactive Consistency

Since the ROBUS must have internal

redundancy to achieve the reliability requirements,

we also need an interactive consistency protocol to
satisfy requirement 1. In a redundant computer
system, it is necessary to ensure that all single-
source data items axe consistently replicated among
the redundant computational elements. Otherwise,
a single faulty source may be able to overwhelm the
system. There are several published algorithms for
ensuring interactive consistency; the first fully

general solution is by Pease et al [3]. Interactive
consistency requirements axe:

Agreement -- All non-faulty receivers agree
on the single source data value received

Validity -- If the originator of the data is
non-faulty, then all non-faulty receivers
receive the transmitted value

Protocols that satisfy these requirements
assume that the participants axe synchronized within
a known skew.

Clock Synchronization

Requirement 2 demands a fault-tolerant clock
synchronization protocol for the ROBUS. The
general requirements for clock synchronization are:

Precision---There is a small constant d such

that for any two clocks that are good at real
time t: ICl(t)-Ce(t)l < d

Accuracy---All good clocks maintain an
accurate measure of the passage of time

These properties are sufficient to ensure the
ROBUS satisfies requirement 2.

Many synchronization protocols are round-
based. The participants in the protocol periodically
exchange clock readings to compute an adjustment
for the next round. For such protocols, two
conditions axe sufficient to ensure precision and

accuracy.

Bounded Delay---All good clocks start each
round, k, within a bounded duration of real
time

Bounded Adjustment---There is an upper
bound on the magnitude of the adjustment a
good clock makes in a round

Bounded delay merely means that the net
effect of all the computed adjustments maintains the
precision of the system. Bounded adjustment
preserves the accuracy of the synchronized clocks.
The adjustment bound should be significantly less
than the duration of a round.

Diagnosis

Algorithms for clock synchronization and
interactive consistency may be designed to operate
correctly under several different fault-assumptions.
In order to meet requirement 3, the ROBUS will
support distributed diagnosis algorithms. For

diagnosis to be useful, we require all good nodes to
agree on the results of the diagnosis protocol. This
will be ensured by exchanging the diagnostic data

usingtheinteractiveconsistencyprotocol.Therole
of adiagnosisalgorithmistoidentifyfailednodes
withinthesystem.Thegoalof adiagnosis
algorithmistoensurethefollowingproperties:

Correctness---EveryFCRdiagnosedas
faultybyagoodFCRis indeedfaulty

Completeness---EveryfaultyFCRis
eventuallydiagnosedasfaulty

If thefaultmodelincludesByzantine
(asymmetric)faults,it is impossibletoguarantee
bothoftheseproperties[4]. Therealwaysexist
faultscenarioswhereit isknownthatthereisafault
in thesystem,butit isimpossibletoidentify
preciselywhichFCRisfaulty.In suchcases,either
correctnessorcompletenessmustbesacrificed.If
correctnessissacrificed,thensomegoodnodesmay
bedeclaredfaultyandremovedfromthesystem.
If completenessissacrificed,thenactivelyfaulty
nodesmayremainin thesystem.Thechoiceof
whichpropertytoguaranteeisopentodebate.For
theROBUSwehavechosentoensurecorrectness
andmakethediagnosisascompleteaspossible.

ROBUS Conceptual Design

ROBUS Topology

The ROBUS consists of a collection of N Bus

Interface Units (BIUs) and M Redundancy
Management Units (RMUs) connected as a
complete bipartite graph KN,M. The N BIUs will
each have a bi-directional link to a single
processing element (PE). A ROBUS consists of N
+ M distinct fault containment regions, one for each

BIU and RMU. An implementation may choose to
include a PE in the same FCR as its associated BIU,
but this is not required. The choice of whether to
combine a BIU and PE in a single FCR is guided by
the reliability model. APE may contain
substantially more hardware than a BIU. If so, its
failure rate will dominate the BIU failure rate. We

may be able to ensure better system reliability if the

BIU and PE are in separate FCRs.

The topology of the communication structure
for a SPIDER with a ROBUSN, Mis shown in Figure
3.

I PE1

[PE2_

O

O

O

[PEN

S ROBUSN, M

--_ BIU1 l_

BIU2 RMU1]

BI_U3 o

0 0

O

RMU M]

--_ Bi-UN

J

Figure 3: SPIDER Architectural Structure

According to the global fault model, we can
partition the BIUs into four disjoint sets based upon
their fault classification. Let GB denote the good
BIUs, BB the benign faulty BIUs, SB the
symmetric faulty BIUs, and AB the asymmetric
faulty BIUs. We similarly partition the RMUs. Let

GR denote the good RMUs, BR the benign faulty
RMUs, SR the symmetric faulty RMUs, and AR the
asymmetric faulty RMUs. The maximum fault
assumption for the ROBUS protocols is:

1. IGBI> IABI+ ISBI
2. IGRI> IARI+ ISRI
3. IARI=0orlABI =0

These fault combinations will determine the

death states in the SURE reliability model. The
critical path in the reliability model will be due to
fault assumption 3. We can easily add enough
redundancy to make the probability of ROBUS
failure due to fault assumption 1 or 2 insignificant.

Reliability Models

The ROBUS protocols are designed to work
whenever the above fault assumptions are satisfied.
We have developed an ASSIST script to generate
SURE models for various ROBUS configurations.
The SURE program computes bounds on the
solution of a (semi) Markov model. In addition to

SURE, the programs PAWS and STEM compute
exact solutions of Markov models. The programs

SURE, PAWS, and STEM all use the same input
format.

The reliability models for the ROBUS

calculate the probability that any of the three fault

assumptions are violated for a given duration
mission and hardware fault arrival rate. Since the

design is in a conceptual stage, we axe using generic

order-of-magnitude approximations for the fault
arrival rates.

The ASSIST script prompts for the number of

BIUs and RMUs and then generates a user-
modifiable SURE model. The SURE user must

specify the percentage of faults that are benign or

symmetric for both the BIUs and the RMUs.

Additionally, the SURE user may provide

diagnostic coverage probabilities for each class of

symmetric and asymmetric faults. Finally, the user

may specify a recovery rate for the diagnosable

faults. The only recovery mechanism included in

the model is graceful degradation. Faulty units that

axe correctly diagnosed axe removed from the

system. The model does not include recovery from

transient faults. All faults axe assumed permanent.
We intend to add transient faults in the future. The

following table enumerates the parameters for the

generated model:

Table 1: Parameters for the Reliability Models

Parameter Description Default

ZB BIU Fault Arrival Rate 10-6/hour

ZR RMU Fault Arrival Rate 10-6/hour

Time Duration of Mission 10 hours

BB Probability that a BIU fault is benign 0

SB

AB

BR

SR

AR

DSB

DAB

DSR

Probability that a BIU fault is symmetric

Probability that a BIU fault is asymmetric

Probability that an RMU fault is benign

Probability

Probability

Probability

that an RMU fault is symmetric

that an RMU fault is asymmetric

that a symmetric BIU fault is diagnosable

Probability that an asymmetric BIU fault is diagnosable

Probability that a symmetric RMU fault is diagnosable

Probability that an asymmetric RMU fault is diagnosable

1 - (BR + SR)

0

0

DAR 0

0¢ Rate of diagnosis and reconfiguration (for all diagnosable faults) 1/second

J)_BBB

J)_BSBDsB /
JZBSB (1-DsB) I

J)_BABDAB 1

JZBAB (1-DAB%

K)_RBR [

K)_RSRDsR !
KZRSR(1-DsR{

K)_RARDAR /

KZRAR(1-DA.d)

Reconfiguration

Transitions

Fault

Arrival

Transitions

Figure 4: Transitions in ASSIST Model

The default failure rate is based on historical

failure rates for a single VLSI device. In Kopetz

([5], page 121), the failure rate for a high quality
chip is claimed to be better than 10-Y/hour.

Figure 4 shows the transitions generated by the

ASSIST script when the system is in a state with J

good BIUs and K good RMUs. The fault arrival

transitions cover the various possibilities when a

new fault arrives. If there are any diagnosable

faults present in the current state, then appropriate

reconfiguration transitions are generated. The only

reconfiguration strategy is graceful degradation.

After a non-benign fault is diagnosed, the protocols

can ignore it. Reconfiguration is modeled by

converting diagnosed faults to benign faults.

The ASSIST script has been validated both by

hand inspection and by solving the generated model

with parameters set to extreme cases. These

examples axe easy to check by hand using either the
algebraic SURE bounds [6] or combinatorial
analysis.

Interactive Consistency Protocol

The Interactive Consistency (IC) protocol is
designed to satisfy requirement 1. If all
communication uses this protocol, then all good
Processing Elements will observe the same

sequence of data. This protocol is also used to
reliably exchange diagnostic data among the good
nodes within the ROBUS.

For the Interactive Consistency protocol, we
assume that all FCRs are synchronized within a
known skew and that the implementation can avoid
adverse effects due to this skew. Also, every FCR
knows the communication schedule. An informal

description of the protocol is as follows:

1. PE j transmits its message v to BIU j, in
accordance with the agreed schedule

2. BIUj broadcasts v to all RMUs
3. For each RMU k, if RMU k does not receive a

correctly formatted message from BIUj, then it
broadcasts source error to all BIUs, otherwise
it broadcasts the value vk to all BIUs

4. Each BIU collects the values received (vl
vM). If a BIU does not receive a correctly
formatted message from RMU k, it removes
RMU k from its set of trusted RMUs

5. Each BIU determines if there is a majority
among the values received from the trusted
RMUs

6. If BIU I determines that a majority of trusted

RMUs sent the same value Vmaj,BIU I transmits

Vmajto PE I. Otherwise, BIU I transmits no
majority to PE l

Theorem: This protocol satisfies both Agreement
and Validity assuming the maximum fault
assumption holds.

Proof of Agreement: There axe two cases to
consider,
Case 1: IARI = 0

Since there are no asymmetrically faulty
RMUs, all good BIUs agree on which RMUs to
trust. All good BIUs receive the same vector of
values in step 4. Thus, in steps 5 and 6, each good

BIU will determine the same value to forward to its
PE.

Case 2: IABI = 0
In this case, the BIU broadcasting in step 2

cannot be asymmetrically faulty, so all good RMUs
will broadcast the same value in step 3. Fault
assumption 2 ensures that there axe more good
RMUs than the combined total of asymmetric faulty
and symmetric faulty RMUs. Since every benign
faulty RMU is manifest-faulty to every good BIU,
all benign faulty RMUs will be ignored. The good
RMUs form a majority, so the value they broadcast

in step 3 will be the same as the value transmitted to
the PEs in step 6.

Proof of Validity: Validity follows immediately
from the proof of Case 2 for Agreement.

• If BIUj is good, then all good RMUs will
correctly forward its value in step 3

• If BIUj is benign faulty, then all good RMUs
will broadcast source error in step

• If BIUj is symmetric faulty, then all good
RMUs will forward the value received in step 3

There is a useful corollary to Validity that will
aid in diagnosis.

Corollary: If a good BIU receives invalid data (i.e.
source error or no majority) as a result of executing
the Interactive Consistency protocol, then the
originating BIU is faulty.

By a symmetric argument, we can use the
same protocol (steps 2 through 5) to exchange data
between RMUs. This capability is needed to

exchange diagnostic information.

Diagnosis Protocol

The ROBUS diagnosis protocols are based on
the MAFT approach to on-line diagnosis presented
by Walter, et al [7]. The MAFT protocol can be

abstractly subdivided into two phases: local
diagnosis and global diagnosis. In the local
diagnosis phase, each node monitors the behavior of
all other nodes. From these observations, it
constructs an error syndrome that identifies those
nodes that it believes to be faulty. The global
diagnosis phase consists of an interactive

consistency exchange to reliably distribute the
accusations followed by a voting step to make a

globallyconsistentdecisionbaseduponthesetof
all localaccusations.

IntheMAFTarchitecture,allnodesaxe
identicalandthenodesaxecompletelyconnected.
IntheROBUS,therearetwodifferentkindsof
nodes,theRMUsandtheBIUs.In addition,there
axenodirectlinksbetweenapairofBIUsor
betweenapairof RMUs.Theglobaldiagnosis
phasehadtobemodifiedto accommodatethe
ROBUScharacteristics.FortheROBUSprotocol,
thereaxeseverallevelsof diagnosticinformation:
1. Suspicions:Nodek suspects nodes i andj when

it knows that at least one of i orj is bad, but
does not have sufficient information to accuse
either

2. Accusations: Node k accuses nodej when it
has sufficient evidence to conclude that nodej
is faulty

3. Declarations: Node k declares nodej to be
faulty when it knows that all good nodes of the
same kind as k have sufficient evidence to

conclude thatj is faulty
4. Convictions: A node is convicted when all

good nodes have declared it faulty

The principal distinction between accusations
and declarations is that accusations only depend
upon local knowledge, but declarations depend
upon common knowledge. This common

knowledge is a side effect of the protocols. We can
now make precise the notion of trusted nodes as
employed by the IC and Synchronization protocols.

A node is considered trusted if it has not been

accused, declared, or convicted. The voting
functions in the IC protocol and the synchronization
protocol only consider messages from trusted
sources.

A node is considered undeclared if it has not
been declared or convicted. This classification is

needed for some of the votes employed by the
diagnosis protocol.

For the diagnosis protocol to work, all
accusations must satisfy the following property:

If node k accuses node j, then at least one

of node k or node j must be faulty

A direct consequence is the following
property:

If any good node accuses node j, then node
j is faulty

This ensures that every good node is trusted by

all good nodes. We also require that, at the time of
any vote, no benign-faulty node be trusted by any
good node. Finally, we allow good nodes to
disagree concerning asymmetric faulty nodes, but
we require that they agree on whether to trust
symmetric-faulty nodes.

There are several ways for a node to make an
accusation. These include both direct error

checking by the receiving node and sufficient
disagreement with voted results. Suspicions against
node k axe promoted to accusations when it is
known that k is suspected in conjunction with at
least one good node.

A node may make a declaration in at least two
ways. First, the interactive consistency protocol
provides partial diagnostic information. If the result

of an interactive consistency exchange is any sort of
error, then all good receiving nodes know that the
originator is faulty. In this case, since all good
nodes know the source is faulty, they all declare the
source faulty. The second mechanism for making
declarations is based upon distributed diagnostic
information. If there is sufficient evidence in a
consistent set of accusations to conclude that a node

is faulty, then that node is declared faulty. A set of

accusations is consistent if all good nodes (of the
same kind) agree on the contents of that set of
accusations. There is sufficient evidence to

conclude that a node is faulty if it accuses itself or if
it is accused by a majority of undeclared nodes.

The ROBUS diagnosis protocol is as follows:

1. All nodes gather accusations against all other
nodes

2. All nodes gather declarations based on the
properties of the interactive consistency
protocol

3. The BIUs periodically exchange their
accusations with all other BIUs using the
interactive consistency protocol. If a majority

of undeclared BIUs accuse a node, that node is
declared faulty

4. The RMUs periodically exchange their
accusations with all other RMUs using the
interactive consistency protocol. If a majority

of undeclared RMUs accuse a node, that node
is declared faulty

5. All BIUs broadcast their declarations to all

RMUs. The RMUs perform a majority vote of
the declarations received from trusted BIUs

6. All RMUs broadcast their declarations to all

BIUs. The BIUs perform a majority vote of the
declarations received from trusted RMUs

7. Any node declared faulty by either a majority
of trusted BIUs or a majority of trusted RMUs
is convicted

8. The BIUs forward the list of convicted nodes to
the PEs

Since the current system is designed using the
assumption that all faults are permanent, any node
that is convicted is permanently isolated from the
rest of the system. The protocol is being modified
to remove this assumption.

Formal proofs of the distributed diagnosis

protocol are described in [8].
The protocol ensures that:
• Every declared node is convicted

• Every benign faulty node is declared

• Every symmetric faulty nodes accused by
some good node is declared

• Every node accused by a trusted majority
of nodes is declared

Both the distributed diagnosis and interactive
consistency protocols axe synchronous. It is
essential that the inherent asynchrony between any
pair of nodes be bounded. Further, the design must
ensure that the relative skew be masked.

Clock Synchronization

The SPIDER clock synchronization protocol is
an event-based protocol. Periodically, good clocks
will generate events indicating that it is time to start
the next round. The protocol is designed to ensure
that the events generated by good clocks axe echoed
in such a way that all good clocks will reset within
a short time of each other. The duration of a round

is approximately P ticks. An informal description
of the protocol follows:

RMU:

Process 1: When time to resynchronize for
round k, broadcast (init, k) to all BIUs

Process 2: If Accept?(echo, k) then broadcast
(echo, k) to all BIUs and reset counter for
round k

BIU:

Process 1: If Accept?(init, k) then broadcast
(echo, k) to all RMUs

Process 2: If Accept?(echo, k) then reset
counter for round k (and transmit reset to PE)

The fault-tolerance is in the definition of

function Accept?. It selects the middle event from
the trusted sources. The times to resynchronize and
values for resetting counters axe selected to
accommodate the inherent communication delays.

Communication between independently
clocked synchronous systems is necessarily
imprecise. If a node sends a message at time t, it
will be received by all good nodes during the time

interval [t + d, t + d + e]. Here d denotes the
minimum communication delay and e is a bound on
the error. The dominant source of error is due to

discretization; e is always larger than the duration
of one clock tick. Other factors that contribute to

this error term axe jitter, drift, and slight differences
in communication delay due to various causes (e.g.
temperature effects, differences in wire length, etc.).

Lemma: All good RMUs reset their clocks within
2e of each other.

Proof: There are two cases.

Case 1: IABI = 0
In this case, the echo broadcast events

generated by BIU process 1 are totally ordered. All
good RMUs will accept in response to (essentially)
the same event. The relative time difference that

two good RMUs can observe this event is bounded
bye.
Case 2: IARI = 0

In this case, the init events generated by the
RMUs axe totally ordered. All good BIUs will
accept init (and broadcast echo) within e of each
other. Since accept is bounded by good events, e is

the maximum skew effect an asymmetric fault can
have. Adding another e for the inherent
imprecision in communication ensures that all good
RMUs will accept within 2e of each other.

A symmetricargumentboundstheseparation
ofgoodBIUs.Theseparationof anyBIU/RMU
pairisboundedby3eleadingtothefollowing
result:

Theorem:Thesynchronizationprotocolsatisfies
boundeddelay.

Theprotocolalsoguaranteesbounded
adjustment,thusleadingto:

Theorem:Thesynchronizationprotocolguarantees
precisionand accuracy.

Informal proofs of these properties can be
found in [9]. Machine checked proofs are in

progress.

ROBUS Architecture

The ROBUS consists of two primary design
elements: the BIU and the RMU. The block

structure of these devices is presented below.

BIU Block Model

The block structure of a BIU is depicted in
Figure 5. There axe several functional blocks. The
Input Unit is responsible for de-skewing data
messages, and accusing any source that transmits an
invalid message. It also directs all synchronization
messages to the Synchronization Unit. The Route
& Vote unit performs the core functions of the

interactive consistency protocol. It either relays
messages or votes results. The Synchronization
Unit implements the event voter needed for the
synchronization protocol. When enough
synchronization messages have arrived, it signals
the Control Unit to take appropriate action. The
Diagnostics Unit maintains all of the diagnostic
state information. It generates a vector of trusted

sources based on the current accusations,
declarations, and convictions. It also performs the
voting required in the diagnosis protocol. The
Output Unit selects the appropriate source for the
next broadcast message. The Control Unit realizes
the steps of all of the ROBUS protocols and
maintains the schedule and timer. Finally, the PE
Interface manages communication with the attached
PE.

Message In (fi'om RMUs) Strobe hi

Input Unit

unit

BIU

_- Control
1 Unit

"" _ _k4..

Output Unit

Message Out (toRMUs) SWobe Out

Figure 5: BIU Block Model

18 Vo_ E_I m

RMU Block Model

The block structure of the RMU design is
depicted in Figure 6. Its structure is quite similar to
the BIU. The main difference is that the RMU does

not have an interface to the PE. The operation of

the Control Unit is also different, due to the
differing roles in the protocols.

n (from BIUs) Strobe In

Diagnostics
Unit

_1

RMU

Control

Unit

_o

Output Unit _" __

Message Out (to BIUs) Strobe Out

1 Input F_lakle(l br)

2 Expected Folm_

3 Receive Windo_ Si_e

4 Syn_hro_z_ion Res_

Accept E_ho

6 Route C_ Vote

7 Route Sde_

8 ni_gnos_c n_ Select

9 ni_o_ic Resolve

10 _os_c _om_te

11 Exch_ge Mode

12 Message So_ce

13 O_t_ut Select

14 Vote E_o<l N)

1_ Input E_or(l N)

16 Syn_hro_z_ion E_o<l N)

17 A_ve So_ces(l N)

18 n_(l N)

19 Sy_rl_o_z_on Ewt(l N)

20 Route Vote n_

21 _os_c n_t_

Figure 6: RMU Block Model

Verification Issues

We axe developing the ROBUS in accordance
with guidance found in RTCA DO-254. Since the

ROBUS is intended to support any aircraft function
whose failure would be catastrophic, the ROBUS is
being developed to design assurance level A.

DO-254requiresthatthedesignassurancefor
anylevel-Adeviceemployapproachesfoundin
appendixB. Twoofthesearerelevanttothis
development.

Theprimarydesign-assurancestrategyforthe
ROBUSistheuseofformalmethods.The
applicationofformalmethodsis targetedtoearly
life-cycleapplication.Theemphasisisuponformal
proofofthecriticalfault-toleranceprotocols.We
havecompletemachine-checkedproofsofthe
interactiveconsistencyprotocolandthedistributed
diagnosisprotocol.Theseproofsaredescribedin
detailbyGeserandMiner[8]. Theformal
verificationofthesynchronizationprotocolis
incomplete.Themainpropertieshavebeen
checked,butthereisstillaneedtoputthepieces
together.

TheotherrelevantstrategyfromDO-254
appendixB istheuseofelementalanalysis.We
haveselectedtheTransEDAtoolVN-coverto
supportthisanalysis,buthavenotyetcarriedout
thisverificationexercise.Ourpreliminaryanalysis
indicatesthatcoverageofVHDLcodeusing
FocusedExpressionCoverageismathematically
equivalentto MC/DCcoverage.

Concluding Remarks

In this paper, we have presented a conceptual
design of a family of fault-tolerant architectures.
The SPIDER architecture provides a flexible

framework for building fault tolerant applications.
The primary mechanism for ensuring fault-
tolerance in the SPIDER family of architectures is
the Reliable Optical Bus (ROBUS). The ROBUS
reliably provides several key fault tolerant
capabilities. It provides an interactive consistency
protocol to enable reliable communication in the
presence of arbitrarily malicious failures. It
provides consistent diagnostic information so all
nodes can make consistent reconfiguration

decisions. Finally, it provides an underlying fault-
tolerant synchronization mechanism to provide a
reliable time source, and provide a means to
construct synchronous protocols on top of the
ROBUS. These protocols have been formally
verified to provide the greatest possible assurance
that they are correct.

The SPIDER protocols all have very simple
descriptions. However, their interactions are quite
complex. We have presented a block model
illustrating one hardware realization of these

protocols. This design has been implemented on a
laboratory prototype and testing is currently in

progress.

References

[1] Rushby, J., 2001, A Comparison of Bus
Architectures for Sa£ety-Critical Embedded
Systems,
w',vw.csl s_'{.co_:_/_--n_shbv/abstracts/buscompare

[2] Kieckha£er, R. M., C. J. Walter, A. M. Finn, and
P. M. Thaxnbidurai, 1988, The MAFT Architecture
for Distributed Fault Tolerance, IEEE Transactions
on Computers, 37 (4), 398-405.

[3] Pease, M., R. Shostak, and L. Lamport, 1980,
Reaching Agreement in the Presence of Faults,
Journal of the ACM, 27 (2), 228-234.

[4] Shin K, and P. Ramanathan, 1987, Diagnosis of
Processors with Byzantine Faults in a Distributed
Computing System. In 17th Fault-Tolerant
Computing Symposium, 55-60.

[5] Kopetz, H., 1997, Real-Time Systems: Design

Principles for Distributed Embedded Applications,
Kluwer Academic Publishers, Boston.

[6] Butler, R. W., and A. L. White, 1988, SURE
Reliability Analysis: Program and Mathematics,
NASA Technical Paper, 2764.

[7] Walter, C. J., P. Lincoln, and N. Suri, 1997,
Formally Verified On-Line Diagnosis, IEEE
Transactions on Software Engineering, 23 (11),
684-721.

[8] Geser A, and P.S. Miner, 2002, A Formal
Correctness Proof of the SPIDER Diagnosis
Protocol. In: Carreno V., Munoz C., and Tahar S.,
eds. Track B Proceedings of the 15th International
Conference on Theorem Proving and Higher Order
Logics, 71-86.

[9] Miner, P.S., M. Malekpour, and W. Torres-
Pomales, 2002, ROBUS Conceptual Design, NASA

Technical Memorandum (To Appear), Hampton,
VA.

10

