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Abstract

Functionally graded materials (FGMs) are characterized by spatially variable microstruc-
tures which are introduced to satisfy given performance requirements. The microstructural
gradation gives rise to continuously or discretely changing material properties which compli-
cate FGM analysis. Various techniques have been developed during the past several decades
for analyzing traditional composites and many of these have been adapted for the analysis of
FGMs. Most of the available techniques use the so-called uncoupled approach in order to an-
alyze graded structures. These techniques ignore the effect of microstructural gradation by
employing speciÞc spatial material property variations that are either assumed or obtained by
local homogenization. The higher-order theory for functionally graded materials (HOTFGM) is
a coupled approach developed by Aboudi et al. (1999) which takes the effect of microstructural
gradation into consideration and does not ignore the local-global interaction of the spatially
variable inclusion phase(s). Despite its demonstrated utility, however, the original formulation
of the higher-order theory is computationally intensive. Herein, an efficient reformulation of the
original higher-order theory for two-dimensional elastic problems is developed and validated.
The use of the local-global conductivity and local-global stiffness matrix approach is made in
order to reduce the number of equations involved. In this approach, surface-averaged quantities
are the primary variables which replace volume-averaged quantities employed in the original for-
mulation. The reformulation decreases the size of the global conductivity and stiffness matrices
by approximately sixty percent. Various thermal, mechanical, and combined thermomechanical
problems are analyzed in order to validate the accuracy of the reformulated theory through
comparison with analytical and Þnite-element solutions. The presented results illustrate the
efficiency of the reformulation and its advantages in analyzing functionally graded materials.

1 Introduction

Functionally graded materials (FGMs) are a new generation of composites wherein the microstruc-
tural details are spatially varied through nonuniform distribution of the reinforcement phase(s), by
using reinforcement with different properties, sizes and shapes, as well as by interchanging the roles
of reinforcement and matrix phases in a continuous manner. The result is a microstructure that
produces continuously changing thermal and mechanical properties at the macroscopic or contin-
uum level. This new concept of engineering the material�s microstructure marks a new paradigm in
both the materials science and mechanics of materials areas since it allows to fully integrate both
the material and structural considerations into the Þnal design of structural components.

Yogesh Bansal and Marek-Jerzy Pindera
University of Virginia

Charlottesville, Virginia 22903

Efficient Reformulation of the Thermoelastic
Higher-Order Theory for FGMs

1NASA/CR—2002-211909



Although the area of FGMs is not very old, an enormous amount of research has already taken
place and the Þeld continues to expand rapidly. Many papers on different aspects of FGMs have
been published in the past decade in regular journals, special issues of journals devoted to FGMs,
conference proceedings, and monographs, cf. Pindera et al. (1994a, 1995a, 1997a), Needleman
and Suresh (1996), IIschner and Cherradi (1994), Shiota and Miyamoto (1997), and Suresh and
Mortensen (1998). Therefore, a comprehensive review of the different research activities is outside
the scope of this report. In keeping with the focus of the undertaken study, an overview is provided
below of the different approaches employed to model the thermomechanical response of FGMs.

The analysis of functionally graded materials is a difficult task because of the arbitrary varia-
tion of material microstructure. In order to analyze the response of functionally graded materials
under given loading conditions, two distinct approaches have been used to date. The Þrst is the
uncoupled micro-macrostructural approach. In this approach, FGMs are analyzed directly at the
continuum level, which allows to reduce a given boundary value problem to a system of differen-
tial equations with variable coefficients. These variable coefficients represent macroscopic material
property variations expressed as functions of position that are obtained by local homogenization of
the microstructure or sometimes taken to have speciÞc functional forms. In some cases, the material
properties are assumed to be piecewise uniform through appropriate microstructural discretization,
and then the governing differential equations are solved for each layer subject to interfacial conti-
nuity and boundary conditions.

There are various micromechanical models that have been used for homogenizing the microstruc-
ture of functionally graded materials. These micromechanical models include Voigt and Reuss es-
timates, Mori-Tanaka method, Composite Cylinder Assemblage (CCA) model, Method of Cells,
etc., and have been described in detail by Aboudi (1991). The uncoupled analysis of functionally
graded materials involves the determination of effective (macroscopic) properties at a continuum
point based on the chosen micromechanics model, a step called local homogenization, which are
then used in the overall analysis of the structure to determine the macroscopic Þeld quantities.
This two-step procedure essentially neglects the interaction between non-uniformly distributed in-
clusions and decouples the locally produced effects of microstructural variation. This can often
lead to potentially erroneous results, especially when the size of the inclusion phase is large with
respect to the overall dimensions of the composite, the Þeld gradients are high, or when the num-
ber of inclusions is small. Hence, these models can only be used in limited circumstances such as
when the size of the inclusion phase is very small in comparison to the overall size of the analyzed
structural component and the total number of inclusions is large, Pindera et al. (1995).

Using the uncoupled approach, various researchers have developed different analytical tech-
niques for studying particular types of problems in functionally graded materials. In general, these
techniques include either a speciÞc type of loading, a speciÞc geometry or speciÞc variation of ma-
terial properties. The type of problems studied involve thermal barrier coating and joint problems,
crack problems, and design and optimization problems. Representative papers in these areas are
discussed below.

One of the most important applications of functionally graded materials is in the Þeld of thermal
barrier coatings. Internal stresses can be reduced and fracture toughness enhanced with appropriate
spatial variation of ceramic and metallic phases. Approaches employed to study temperature Þelds
and resulting stresses in thermal barrier coatings depend on whether elastic or inelastic analyses are
conducted, as discussed recently in an extensive review paper by Noda (1999). In the case of inelas-
tic effects, approaches range from one-dimensional Þnite-difference analyses, Kokini and Choules
(1995), to two-dimensional or axisymmetric Þnite-element analyses based on layer-wise discretiza-
tion of the coating�s microstructure with piece-wise varying properties, Jian et al. (1995), Delfosse
et al. (1997). The properties of the individual layers are typically obtained using either simple
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rule-of-mixtures or Mori-Tanaka estimates. In the absence of inelastic effects, analytical techniques
and their numerical implementations have been employed with the property variation described by
continuous functions. For instance, Jeon et al. (1997) discuss an axisymmetric thermoelastic solu-
tion for an inhomogeneous material by introducing a thermoelastic displacement potential function.
Sutradhar et al. (2001) use the Green�s function approach in a boundary element setting in order to
study the 3-D transient heat conduction in functionally graded materials with exponential thermal
conductivity variation.

Analysis of graded joints has also received considerable attention due to the large interlaminar
stresses that may arise along a bi-material interface at the free edge. For example, Drake et al.
(1993) and Williamson et al. (1993) employed the Þnite-element method to study the residual
stresses that develop at graded ceramic-metal interfaces joining cylindrical bodies made of metallic
and ceramic components. The gradation was modeled using a series of perfectly bonded cylindrical
layers, with each layer having slightly different properties. The authors� results demonstrated the
importance of plasticity effects in the analysis of graded and non-graded interfaces. The authors
also showed that, in some cases, optimization of the microstructure of graded layers is required to
achieve reduction in certain critical stress components that control interfacial failure. Along similar
lines, Suresh et al. (1994) studied the response of elastoplastic bimaterial strips subjected to cyclic
temperature variations. The authors showed that plastic ßow along the material interface at the
free edge can be modiÞed substantially by altering the constraints at the strip edge.

Functionally graded microstructures can be very useful in enhancing material�s fracture resis-
tance through the mechanism of crack blunting and crack-path deßection. In fact, the enhanced
fracture toughness of graded coatings is due to the local material heterogeneity. In order to keep
the problem tractable, local material heterogeneity is replaced by spatially varying homogenized
properties, reducing the problem of a crack in an heterogeneous material to an inhomogeneous
medium crack problem. Crack problems in inhomogeneous materials have been studied by a num-
ber of people since the 1960�s. However, systematic studies of this class of crack problems were
initiated in the early 1980�s by Erdogan and co-workers, cf., Delale and Erdogan (1983), Erdogan
(1985), Erdogan et al. (1991), and subsequently extended to functionally graded materials. In
applications involving TBCs, different types of cracks may arise, including cracks perpendicular
and parallel to the coating�s surface and at the free edge between the substrate and the graded or
layered coating. These different scenarios have been discussed by Erdogan (1995), Kadioglu and
Erdogan (1995), Erdogan and Wu (1996), Schulze and Erdogan (1998), Lee and Erdogan (1998),
and Jin and Paulino (2001). Additional solutions to crack problems in the presence of thermal and
mechanical loading have been provided by Noda and Jin (1993) who discuss thermal stress inten-
sity factors for a FGM strip using Fourier transforms, showing the efficiency of suitable material
selection in reducing these intensity factors. Crack problems in viscoelastic functionally graded
materials have recently been addressed by Paulino and Jin (2001).

The ultimate objective in designing a structure for practical applications is not just the ability
to analyze a given heterogeneous component, but the identiÞcation of an optimum design which
produces the best stress distribution for the given application. Various researchers have provided
analytical solutions for speciÞc types of problems which are useful in optimizing the design of
graded structures. These analytical solutions also serve as benchmark solutions for the validation
and veriÞcation of Þnite-element and other approximate techniques which have been developed or
are being developed for the analysis of functionally graded materials. For instance, Salzar and
Barton (1994) incorporated the analytical solution for the axisymmetric elastoplastic response of a
multilayered cylinder, developed by Pindera et al. (1993), into a commercial optimization code to
minimize residual stresses in metal-matrix composites using graded interfaces. Horgan and Chan
(1998, 1999) developed solutions for problems involving pressurized hollow cylinders, rotating disks,

3NASA/CR—2002-211909



and bars under torsion with continuously graded isotropic linearly elastic materials. Ootao et al.
(1998) discuss the optimization of material gradation for a hollow circular cylinder under thermal
loading. They use the concept of a laminated composite cylinder with piece-wise homogenous and
uniform material properties together with the neural network approach in order to determine an
optimum design. Nadeau and Ferrari (1999) discuss microstructural optimization of a functionally
graded transversely isotropic layer. Noda (1999) identiÞes optimal composition proÞles to reduce
thermal stresses in FGMs using perturbation methods.

The second approach employed in the analysis of functionally graded materials is the coupled
approach. In this approach, the effects of microstructural variation and the interaction between
nonuniformly distributed inclusions are explicitly taken into account in the course of solving the
governing differential equations. This in turn, makes possible the analysis of heterogeneous mate-
rials with different microstructural scales, in contrast to the uncoupled approach which is limited
to materials with very Þne microstructures.

The higher-order theory for functionally graded materials (HOTFGM) is an approximate cou-
pled approach based on a particular volume discretization of the material�s microstructure and an
averaging approach in the solution of the governing Þeld equations in each subvolume. This theory
has been developed in a sequence of papers dating back to 1993, Aboudi et al. (1993), in order
to circumvent the limitations of the uncoupled approach. Summaries of the different stages of the
higher-order theory�s development have been provided by Pindera et al. (1995b; 1998), and most
recently in a comprehensive article by Aboudi et al. (1999). As discussed in this review article,
the theory has been employed to analyze a number of technologically important problems ranging
from thermally-induced free-edge interlaminar stresses in cross-ply laminates, optimization of Þber
spacing in laminates subjected to thermal gradients, and thermal barrier coatings. The focus of
these applications was the demonstration of microstructural coupling effects in functionally graded
materials as a function of the microstructural length scale, and when these effects can be neglected,
as well as the demonstration of the utility of functionally graded microstructures in enhancing the
performance of plate-like structural components subjected to through-thickness thermal gradients.
SpeciÞcally, the higher-order theory has been applied to the following technologically important
problems:

² Investigation of the effect of microstructure on thermal and stress Þelds in MMC plates and
cylinders

² Investigation of the use of functionally graded architectures in reducing edge effects in MMC
plates

² Optimization of functionally graded microstructures in MMC plates and cylinders
² Development of guidelines for the design of special coatings in exhaust nozzle applications
under NASA/Pratt & Whitney Space Act Agreement

² Investigation of microstructural effects in functionally graded TBCs
The results obtained so far have demonstrated that this theory is an accurate, cf. Pindera and

Dunn (1997), and easily implementable tool in the analysis and design of FGMs. Furthermore,
comparison of the results obtained from the standard micromechanics approach with those of
HOTFGM has demonstrated the need for a theory like HOTFGM, which explicitly couples the
micro (local) and macro (global) effects in the analysis, Pindera et al. (1994b; 1995c).

The recent developments of HOTFGM include extension to cylindrical ccordinates to enable
analysis, design, and optimization of structural components found in aircraft engine applications,
Pindera and Aboudi (2000).
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1.1 Objectives and Outline of the Completed Investigation

As demonstrated through its applications, the higher-order theory is an accurate and useful ap-
proach for the analysis of functionally graded materials which takes the micro-macrostructural
coupling into account and does not neglect the effects of microstructural variation. However, the
higher-order theory is computationally intensive in those cases which require detailed volume dis-
cretization in order to mimic realistic microstructural details in certain types of functionally graded
materials or to capture very high thermal and stress gradients. Such detailed modeling leads to
a large number of equations whose solution becomes computationally prohibitively expensive and
sometimes impossible to execute due to the large computer storage requirements.

This report describes an efficient reformulation of the higher-order theory which leads to a sig-
niÞcant reduction in the number of equations required in a problem�s solution. This reformulation
is accomplished by making use of the so-called local-global conductivity and stiffness matrix ap-
proaches employed in conjunction with a simplied manner of volume discretization developed by
Zhong and Pindera (2002). The simpliÞed volume discretization provides the basis for the refor-
mulation by enabling the derivation of closed-form relations between surface-average heat ßuxes
and tractions and the corresponding temperatures and displacements associated with a generic
subvolume. Therefore, volume-averaged quantities employed in the original higher-order theory
are replaced by surface-averaged quantities as the fundamental unknowns in order to employ the
local-global conductivity and stiffness matrix approaches in the reformulation.

The original two-dimensional formulation of HOTFGM is described brießy in Section 2. The
motivation for efficient reformulation of the higher-order theory and the reformulation approach are
then discussed in Section 3. Section 4 describes the effect of mesh discretization on the Þeld variables
for selected loading conditions and also provides validation of the reformulated higher-order theory
by considering several test cases, including the classic Eshelby problem of a circular inclusion
in an inÞnite matrix subjected to uniform far-Þeld loading. The results are compared with the
analytical solution and a Þnite-element solution obtained using ANSYS. Section 5 demonstrates the
usefulness of the higher-order theory in the analysis of functionally graded materials by considering
a thermal barrier coating application. Section 6 summarizes the present accomplishments and
provides suggestions for future work which should be pursued in this area.

2 Higher-Order Theory: Original Formulation

The version of the higher-order theory for materials functionally graded in two directions, or
HOTFGM-2D, is based on a geometric model of a heterogeneous composite graded in the x2 ¡ x3
plane which occupies the region 0 ∙ x2 ∙ H, and 0 ∙ x3 ∙ L; Fig. 1. The microstructural
pattern is represented by discretizing the cross-section of the heterogeneous composite into Nq and
Nr generic cells in the intervals 0 ∙ x2 ∙ H; and 0 ∙ x3 ∙ L; respectively. The indices q and r
(q = 1; 2; :::; Nq and r = 1; 2; :::; Nr), identify the generic cells in the x2¡x3 plane. The generic cell
(q; r) consists of four subcells designated by (¯°), where each index ¯, ° takes a value 1 or 2 which
indicates the relative position of the given subcell within the generic cell along the x2 and x3 axis,
respectively. The thermomechanical properties of the material within a subcell are assumed to be
constant. The composite is assumed to be inÞnite in the x1 direction, whereas the dimensions of
the generic cell along the functionally graded directions x2 and x3 are h

(q)
1 ; h

(q)
2 ; and l

(r)
1 ; l

(r)
2 ; and

can vary arbitrarily such that

H =

NqX
q=1

(h
(q)
1 + h

(q)
2 ) L =

NrX
r=1

(l
(r)
1 + l

(r)
2 ) (1)
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Fig. 1. HOTFGM-2D representation of a composite functionally graded in the x2 and x3
directions with uniform microstructure in the x1 direction.

The composite is subjected to combined thermomechanical loading on its bounding surfaces in
the x2 ¡ x3 plane given in terms of temperature or heat ßux, and surface displacements and/or
tractions. Further, the strain ¹"11 (¹"11 = 0; for plane strain) is uniform in the x1 direction. Given the
applied thermomechanical loading, an approximate solution for the temperature and displacement
Þelds is constructed. The solution strategy involves volumetric averaging of the Þeld equations
together with the imposition of boundary and continuity conditions in an average sense between
the sub-volumes used to characterize the material�s microstructure. As described in Subsections
2.1 and 2.2, the temperature and in-plane displacement Þelds in each subcell of a generic cell
are approximated using a quadratic expansion in the local coordinates ¹x

(β)
2 ; ¹x

(γ)
3 placed at the

subcell�s centroid. This temperature and displacement Þeld representation is sufficient to capture
the local effects created by the thermomechanical Þeld gradients and the microstructure of the
graded material with Þnite dimensions in the functionally graded directions.

2.1 Thermal Analysis

The thermal boundary conditions speciÞed in terms of temperature or heat ßux distribution on the
bounding surface in the x2¡x3 plane are assumed to be steady-state. The temperature distribution
in the subcell (¯°) of the (q; r)th generic cell measured with respect to a reference temperature Tref ,
is denoted by T (βγ). This temperature Þeld is approximated by a second-order expansion in the
local coordinates ¹x(β)2 ; ¹x

(γ)
3 as follows:

T (βγ) = T
(βγ)
(00) + ¹x

(β)
2 T

(βγ)
(10) + ¹x

(γ)
3 T

(βγ)
(01) +

1

2
(3¹x

(β)2
2 ¡ h

(q)2
β

4
)T

(βγ)
(20) +

1

2
(3¹x

(γ)2
3 ¡ l

(r)2
γ

4
)T

(βγ)
(02) (2)
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where T
(βγ)
(00) is the volume-averaged temperature in the subcell (¯°), and T

(βγ)
(mn) (m;n = 0; 1; or

2 with m + n ! 2) are the higher-order coefficients which provide a better approximation of the
temperature Þeld throughout the subcell.

For a generic cell with four subcells containing arbitrarily speciÞed materials, Þve unknowns
(i.e., T (βγ)(00) ; :::; T

(βγ)
(02) ) are associated with each subcell, producing twenty unknowns for each generic

cell. This results in 20NqNr unknown quantities for a composite with Nr rows and Nq columns of
generic cells. These unknowns are determined by Þrst satisfying the zeroth, Þrst and second moment
of the heat conduction equation in each subcell in volumetric sense. Subsequently, continuity of
heat ßux and temperature is imposed in an average sense at the interfaces separating adjacent
subcells, as well as neighboring cells, followed by the boundary conditions.

2.1.1 Heat conduction equation

Under steady-state thermal boundary conditions in the x2 ¡ x3 plane, the heat ßux Þeld in the
material occupying the subcell (¯°) of the (q; r)th generic cell, in the region

¯̄̄
¹x
(β)
2

¯̄̄
∙ 1

2h
(q)
β ;

¯̄̄
¹x
(γ)
3

¯̄̄
∙

1
2 l
(r)
γ ; must satisfy the steady-state heat conduction equation given by

@q
(βγ)
2

@¹x
(β)
2

+
@q
(βγ)
3

@¹x
(γ)
3

= 0; (¯; ° = 1; 2) (3)

The heat ßux components q(βγ)i at any point passing through a subcell (¯°) are derived from the
temperature Þeld according to the Fourier�s law of heat conduction given by

q
(βγ)
i = ¡k

(βγ)
i

@T (βγ)

@¹x
(·)
i

; (i = 2; 3; no sum) (4)

where k(βγ)i are the heat conductivity coefficients of the material in the subcell (¯°) assumed to be
orthotropic, and no summation is implied by repeated Greek letters in the above and henceforth.

In order to satisfy the above steady-state heat conduction equation in a volumetric sense, the
following volume-averaged quantities are deÞned in the higher-order theory

Q
(βγ)
i(m,n)

=
1

A
(q,r)
(βγ)

Z h
(q)
β /2

−h(q)β /2

Z l
(r)
γ /2

−l(r)γ /2
(¹x
(β)
2 )m(¹x

(γ)
3 )nq

(βγ)
i d¹x

(β)
2 d¹x

(γ)
3 (5)

where A(q,r)(βγ) = h
(q)
β l

(r)
γ is the area of the subcell (¯°) in the (q; r)th generic cell. Q(βγ)i(0,0) is the average

value of the heat ßux component q(βγ)i in the subcell (¯°), whereas for the other values of m and
n Eq. (5) deÞnes higher-order heat ßuxes. Satisfaction of the heat conduction equation given by
Eq. (3) results in the following four conditions in terms of the volume-averaged ßux quantitiesh

Q
(βγ)
2(1,0)=h

2
β +Q

(βγ)
3(0,1)=l

2
γ

i(q,r)
= 0 (6)

Equation (6) can be expressed in terms of the coefficients T (βγ)(mn) by evaluating the ßux quantities
deÞned in Eq. (5) : Substituting Eq. (4) into Eq. (5) ; and performing the required volume
integration yields the following non-vanishing zeroth-order and Þrst-order heat ßuxes in terms of
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the coefficients T (βγ)(mn)

Q
(βγ)
2(0,0) = ¡k

(βγ)
2 T

(βγ)
(10) (7)

Q
(βγ)
2(1,0) = ¡k

(βγ)
2

h
(q)2
β

4
T
(βγ)
(20) (8)

Q
(βγ)
3(0,0) = ¡k

(βγ)
3 T

(βγ)
(01) (9)

Q
(βγ)
3(0,1) = ¡k

(βγ)
3

l
(r)2
γ

4
T
(βγ)
(02) (10)

2.1.2 Heat ßux continuity conditions

The heat ßux continuity at the interfaces separating adjacent subcells within the generic cell (q; r)
is imposed in an integral sense as follows

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
q
(1γ)
2 (

h
(q)
1

2
; ¹x
(γ)
3 )

#(q,r)
d¹x
(γ)
3 =

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
q
(2γ)
2 (¡h

(q)
2

2
; ¹x
(γ)
3 )

#(q,r)
d¹x
(γ)
3 (11)

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
q
(β1)
3 (¹x

(β)
2 ;

l
(r)
1

2
)

#(q,r)
d¹x
(β)
2 =

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
q
(β2)
3 (¹x

(β)
2 ;¡ l

(r)
2

2
)

#(q,r)
d¹x
(β)
2 (12)

Similarly, the heat ßux continuity at the interfaces between generic cells is satisÞed in an integral
sense by requiring that

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
q
(1γ)
2 (¡h

(q+1)
1

2
; ¹x
(γ)
3 )

#(q+1,r)
d¹x
(γ)
3 =

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
q
(2γ)
2 (

h
(q)
2

2
; ¹x
(γ)
3 )

#(q,r)
d¹x
(γ)
3 (13)

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
q
(β1)
3 (¹x

(β)
2 ;¡ l

(r+1)
1

2
)

#(q,r+1)
d¹x
(β)
2 =

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
q
(β2)
3 (¹x

(β)
2 ;

l
(r)
2

2
)

#(q,r)
d¹x
(β)
2 (14)

Satisfaction of the above heat ßux continuity conditions (11) ¡ (14) results in the following eight
equations in terms of the volume-averaged ßux quantitiesh

¡12Q
(1γ)
2(1,0)=h1 +Q

(2γ)
2(0,0) ¡ 6Q

(2γ)
2(1,0)=h2

i(q,r) ¡ h
Q
(2γ)
2(0,0) + 6Q

(2γ)
2(1,0)=h2

i(q−1,r)
= 0 (15)

∙
¡Q

(1γ)
2(0,0) +

1

2
Q
(2γ)
2(0,0) ¡ 3Q

(2γ)
2(1,0)=h2

¸(q,r)
+

1

2

h
Q
(2γ)
2(0,0) + 6Q

(2γ)
2(1,0)=h2

i(q−1,r)
= 0 (16)

h
¡12Q

(β1)
3(0,1)=l1 +Q

(β2)
3(0,0) ¡ 6Q

(β2)
3(0,1)=l2

i(q,r) ¡ h
Q
(β2)
3(0,0) + 6Q

(β2)
3(0,1)=l2

i(q,r−1)
= 0 (17)∙

¡Q
(β1)
3(0,0) +

1

2
Q
(β2)
3(0,0) ¡ 3Q

(β2)
3(0,1)=l2

¸(q,r)
+

1

2

h
Q
(β2)
3(0,0) + 6Q

(β2)
3(0,1)=l2

i(q,r−1)
= 0 (18)

Equations (6) and (15)¡(18) have been obtained in terms of the volume-averaged ßux quantities
after some complex algebraic manipulations. For detailed derivation of these equations, refer to
Aboudi et al. (1996) : These equations can now be expressed explicitly in terms of the microvariables
T
(βγ)
(mn) with the use of Eqs. (7)¡ (10).
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2.1.3 Temperature continuity conditions

The temperature continuity at the interfaces separating adjacent subcells within the generic cell
(q; r) is imposed in an integral sense as follows

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
T (1γ)(

h
(q)
1

2
; ¹x
(γ)
3 )

#(q,r)
d¹x
(γ)
3 =

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
T (2γ)(¡h

(q)
2

2
; ¹x
(γ)
3 )

#(q,r)
d¹x
(γ)
3 (19)

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
T (β1)(¹x

(β)
2 ;

l
(r)
1

2
)

#(q,r)
d¹x
(β)
2 =

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
T (β2)(¹x

(β)
2 ;¡ l

(r)
2

2
)

#(q,r)
d¹x
(β)
2 (20)

Similarly, the temperature continuity at the interfaces between generic cells is satisÞed in an integral
sense by requiring that

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
T (1γ)(¡h

(q+1)
1

2
; ¹x
(γ)
3 )

#(q+1,r)
d¹x
(γ)
3 =

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
T (2γ)(

h
(q)
2

2
; ¹x
(γ)
3 )

#(q,r)
d¹x
(γ)
3 (21)

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
T (β1)(¹x

(β)
2 ;¡ l

(r+1)
1

2
)

#(q,r+1)
d¹x
(β)
2 =

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
T (β2)(¹x

(β)
2 ;

l
(r)
2

2
)

#(q,r)
d¹x
(β)
2 (22)

Satisfaction of the above thermal continuity conditions results in the following eight equations given
explicitly in terms of the microvariables T (βγ)(mn)∙

T
(1γ)
(00) +

1

2
h1T

(1γ)
(10) +

1

4
h21T

(1γ)
(20)

¸(q,r)
=

∙
T
(2γ)
(00) ¡

1

2
h2T

(2γ)
(10) +

1

4
h22T

(2γ)
(20)

¸(q,r)
(23)

∙
T
(2γ)
(00) +

1

2
h2T

(2γ)
(10) +

1

4
h22T

(2γ)
(20)

¸(q,r)
=

∙
T
(1γ)
(00) ¡

1

2
h1T

(1γ)
(10) +

1

4
h21T

(1γ)
(20)

¸(q+1,r)
(24)∙

T
(β1)
(00) +

1

2
l1T

(β1)
(01) +

1

4
l21T

(β1)
(02)

¸(q,r)
=

∙
T
(β2)
(00) ¡ 1

2
h2T

(β2)
(01) +

1

4
l22T

(β2)
(02)

¸(q,r)
(25)∙

T
(β2)
(00) +

1

2
l2T

(β2)
(01) +

1

4
l22T

(β2)
(02)

¸(q,r)
=

∙
T
(β1)
(00) ¡ 1

2
l1T

(β1)
(01) +

1

4
l21T

(β1)
(02)

¸(q,r+1)
(26)

2.1.4 Boundary conditions

Some of the heat ßux and temperature continuity conditions described above are not valid for cells
located on the boundaries deÞned by the indices q = 1; Nq; and r = 1; Nr: For the set of boundary
cells with q = 1; heat ßux continuity between the given generic cell and preceding generic cell,
Eqs. (15)¡ (16), is not applicable. Similarly for q = Nq; temperature continuity between the given
generic cell and following generic cell, Eq. (24), is not applicable. These conditions are replaced
by the continuity of heat ßux between adjacent subcells within the generic cell (1; r); and in case
of thermal boundary conditions by

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
T (1γ)(¡h

(1)
1

2
; ¹x
(γ)
3 )

#(1,r)
d¹x
(γ)
3 = T

(r)
left(x3) (27)

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
T (1γ)(

h
(Nq)
2

2
; ¹x
(γ)
3 )

#(Nq ,r)
d¹x
(γ)
3 = T

(r)
right(x3) (28)
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where T
(r)
left(x3); and T

(r)
right(x3) are the piece-wise uniform applied temperatures on the external

boundaries in the x2 ¡ x3 plane. Similar reasoning holds for generic cells (q; 1); and (q;Nr). If
the temperatures are deÞned at the top and bottom surfaces for instance, the applied boundary
conditions are given by

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
T (β1)(¹x

(β)
2 ;¡ l

(1)
1

2
)

#(q,1)
d¹x
(β)
2 = T

(q)
bottom(x2) (29)

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
T (β1)(¹x

(β)
2 ;

l
(Nr)
2

2
)

#(q,Nr)
d¹x
(β)
2 = T

(q)
top(x2) (30)

If the heat ßux at any of the boundaries is deÞned instead of the applied temperature, Eqs. (27)¡
(30) are modiÞed accordingly.

2.1.5 Solution for T
(βγ)
(mn)

To obtain a solution for the 20NqNr unknown coefficients (T
(βγ)
(mn) in each (¯°) subcell), 20NqNr

equations are required. These equations are assembled using the governing Þeld equations, Eq.
(6), heat ßux continuity conditions, Eqs. (15) ¡ (18) ; and the temperature continuity conditions,
Eqs. (23)¡ (26) ; together with the imposed boundary conditions on the external boundaries of the
composite, Eqs. (27)¡ (30). The Þnal system of equations obtained is symbolically written as

κ T = t (31)

In the above equation, κ is the structural thermal conductivity matrix which contains information
on the geometry and thermal conductivities of the individual subcells (¯°) in the NqNr cells. The
thermal coefficient vector T contains the unknown coefficients that describe the temperature Þeld
in each subcell, i.e.,

T = [T
(11)
11 ; :::;T

(22)
NqNr

]

where
T(βγ)qr = [T(00); T(10); T(01); T(20); T(02)]

(βγ)
qr

The thermal force vector t contains information on the boundary conditions.

2.2 Mechanical Analysis

The next step is to Þnd the displacement and stress Þelds in the heterogeneous composite due to the
temperature Þeld obtained in Subsection 2.1, and/or mechanical loading at the external boundaries
applied in a manner which is consistent with the global equilibrium requirements. Towards this
end, the displacement Þeld in the subcell (¯°) of the (q; r)th generic cell is approximated by a
second-order expansion in the local coordinates ¹x(β)2 and ¹x

(γ)
3 as follows:

u
(βγ)
1 = x1¹"11 (32)

u
(βγ)
2 = W

(βγ)
2(00) + ¹x

(β)
2 W

(βγ)
2(10) + ¹x

(γ)
3 W

(βγ)
2(01) +

1

2
(3¹x

(β)2
2 ¡ h

(q)2
β

4
)W

(βγ)
2(20) +

1

2
(3¹x

(γ)2
3 ¡ l

(r)2
γ

4
)W

(βγ)
2(02) (33)

u
(βγ)
3 = W

(βγ)
3(00) + ¹x

(β)
2 W

(βγ)
3(10) + ¹x

(γ)
3 W

(βγ)
3(01) +

1

2
(3¹x

(β)2
2 ¡ h

(q)2
β

4
)W

(βγ)
3(20) +

1

2
(3¹x

(γ)2
3 ¡ l

(r)2
γ

4
)W

(βγ)
3(02) (34)
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where W (βγ)
i(00) are the volume-averaged displacements in the subcell (¯°), and W

(βγ)
i(mn) (i = 2; 3) are

the higher-order quantities which determine the displacement and stress Þeld at speciÞc locations
within the subcell. Note that, in Eq. (32) ; x1 is associated with the global coordinate system
Þxed to the edges of the composite plate and not the local coordinate system associated with each
subcell. Also note that there are no product terms of the form ¹x

(β)
2 ¹x

(γ)
3 appearing in the above

displacement Þeld approximation due to the employed volumetric and surface-averaging procedure
technique. The quantity ¹"11 is the uniform strain in the x1 direction which is zero for plane strain
analysis. For generalized plane strain, ¹"11 is determined from the condition

NγX
r=1

NβX
q=1

0@ 2X
β=1

2X
γ=1

Z h
(q)
β /2

−h(q)β /2

Z l
(r)
γ /2

−l(r)γ /2
¾
(βγ)
ij d¹x

(β)
2 d¹x

(γ)
3

1A = 0 (35)

The other 10 unknown coefficients W (βγ)
i(mn) associated with each subcell (¯°) of the (q; r)

th generic
cell are determined from the conditions analogous to those employed in the thermal problem. Here,
the heat conduction equation is replaced by the two equilibrium equations, and the conditions
involving continuity of heat ßuxes and temperature at the interfaces are replaced by the continuity
of tractions and displacements.

2.2.1 Equilibrium equations

The stress Þeld in the subcell (¯°) of the (q; r)th generic cell generated by the given temperature
Þeld and the applied mechanical loading must satisfy the equilibrium equations

@¾
(βγ)
2j

@¹x
(β)
2

+
@¾

(βγ)
3j

@¹x
(γ)
3

= 0; (j = 2; 3) (36)

For an orthotropic elastic material occupying the subcell (¯°) of the (q; r)th generic cell, the stress
components are related to the strain components through the familiar Hooke�s law

¾
(βγ)
ij = C

(βγ)
ijkl "

(βγ)
kl ¡ ¾

T (βγ)
ij (37)

where Cijkl are the stiffness tensor elements of the material in the subcell (¯°), "
(βγ)
ij are the elastic

strain components, and ¾
T (αβγ)
ij are the components of the so-called thermal stress given by

¾
T (βγ)
ij = ¡

(βγ)
ij T (βγ) (38)

where ¡
(βγ)
ij is the product of the stiffness tensor components and thermal expansion coefficients.

T (βγ) represents the temperature change at a particular location in the subcell.
The components of the strain tensor in the individual subcells are obtained from the following

strain-displacement relations

"
(βγ)
ij =

1

2
(
@u

(βγ)
j

@¹x
(·)
i

+
@u

(βγ)
i

@¹x
(·)
j

) (39)

As in the thermal formulation case, in order to satisfy the equilibrium equations in an average sense
the following volume-averaged stress quantities are deÞned in the higher-order theory

S
(βγ)
ij(m,n) =

1

A
(q,r)
(βγ)

Z h
(q)
β /2

−h(q)β /2

Z l
(r)
γ /2

−l(r)γ /2
(¹x
(β)
2 )m(¹x

(γ)
3 )n¾

(βγ)
ij d¹x

(β)
2 d¹x

(γ)
3 (40)
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where S
(βγ)
ij(0,0) is the average value of the stress component ¾

(βγ)
ij in the subcell, whereas for other

values of m and n Eq. (40) deÞnes higher-order stresses that are needed to describe the governing
Þeld equations of the higher-order continuum. Satisfaction of the equilibrium equation (36) results
in the following eight equations in terms of the volume-averaged stress quantitiesh

S
(βγ)
2j(1,0)=h

2
β + S

(βγ)
3j(0,1)=l

2
γ

i(q,r)
= 0 (41)

Equation (41) can be expressed in terms of the coefficients W (βγ)
i(mn) by evaluating the stress quan-

tities deÞned in Eq. (40) : Substituting Eqs. (37) ; (38) ; and (39) in Eq. (40) ; making use of the
displacement Þeld representation, Eqs. (32) ¡ (34); and performing the required volume integra-
tion yields the following non-vanishing zeroth and Þrst-order stress components in terms of the
coefficients W (βγ)

i(mn)

S
(βγ)
22(0,0) = C

(βγ)
22 W

(βγ)
2(10) + C

(βγ)
23 W

(βγ)
3(01) ¡ ¡

(βγ)
22 T

(βγ)
(00) (42)

S
(βγ)
22(1,0) =

1

4
h
(q)2
β C

(βγ)
22 W

(βγ)
2(20) ¡

1

12
h
(q)2
β ¡

(βγ)
22 T

(βγ)
(10) (43)

S
(βγ)
22(0,1) =

1

4
l(r)2γ C

(βγ)
23 W

(βγ)
2(02) ¡

1

12
l(r)2γ ¡

(βγ)
22 T

(βγ)
(01) (44)

S
(βγ)
33(0,0) = C

(βγ)
23 W

(βγ)
2(10) + C

(βγ)
33 W

(βγ)
3(01) ¡ ¡

(βγ)
33 T

(βγ)
(00) (45)

S
(βγ)
33(1,0) =

1

4
h
(q)2
β C

(βγ)
23 W

(βγ)
2(20) ¡

1

12
h
(q)2
β ¡

(βγ)
33 T

(βγ)
(10) (46)

S
(βγ)
33(0,1) =

1

4
l(r)2γ C

(βγ)
33 W

(βγ)
2(02) ¡

1

12
l(r)2γ ¡

(βγ)
33 T

(βγ)
(01) (47)

S
(βγ)
23(0,0) = C

(βγ)
44 (W

(βγ)
2(01) +W

(βγ)
3(10)) (48)

S
(βγ)
23(1,0)

=
1

4
h
(q)2
β C

(βγ)
44 W

(βγ)
3(20)

(49)

S
(βγ)
23(0,1) =

1

4
l(r)2γ C

(βγ)
44 W

(βγ)
2(02) (50)

2.2.2 Traction continuity conditions

The traction continuity at the interfaces separating adjacent subcells within the generic cell (q; r)
is imposed in an integral sense as follows

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
¾
(1γ)
2j (

h
(q)
1

2
; ¹x
(γ)
3 )

#(q,r)
d¹x
(γ)
3 =

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
¾
(2γ)
2j (¡h

(q)
2

2
; ¹x
(γ)
3 )

#(q,r)
d¹x
(γ)
3 (51)

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
¾
(β1)
i3 (¹x

(β)
2 ;

l
(r)
1

2
)

#(q,r)
d¹x
(β)
2 =

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
¾
(β2)
i3 (¹x

(β)
2 ;¡ l

(r)
2

2
)

#(q,r)
d¹x
(β)
2 (52)

where i; j = 2; 3: Similarly, the traction continuity at the interfaces between generic cells is satisÞed
in an integral sense by requiring that

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
¾
(1γ)
2j (¡h

(q+1)
1

2
; ¹x
(γ)
3 )

#(q+1,r)
d¹x
(γ)
3 =

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
¾
(2γ)
2j (

h
(q)
2

2
; ¹x
(γ)
3 )

#(q,r)
d¹x
(γ)
3 (53)
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1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
¾
(β1)
i3 (¹x

(β)
2 ;¡ l

(r+1)
1

2
)

#(q,r+1)
d¹x
(β)
2 =

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
¾
(β2)
i3 (¹x

(β)
2 ;

l
(r)
2

2
)

#(q,r)
d¹x
(β)
2 (54)

where i; j = 2; 3: Satisfaction of the above traction continuity conditions (51)¡ (54) results in the
following sixteen equations in terms of the volume-averaged stress quantities

h
¡12S

(1γ)
2j(1,0)=h1 + S

(2γ)
2j(0,0) ¡ 6S

(2γ)
2j(1,0)=h2

i(q,r) ¡ h
S
(2γ)
2j(0,0) + 6S

(2γ)
2j(1,0)=h2

i(q−1,r)
= 0 (55)

∙
¡S

(1γ)
2j(0,0) +

1

2
S
(2γ)
2j(0,0) ¡ 3S

(2γ)
2j(1,0)=h2

¸(q,r)
+

1

2

h
S
(2γ)
2j(0,0) + 6S

(2γ)
2j(1,0)=h2

i(q−1,r)
= 0 (56)h

¡12S
(β1)
3j(0,1)=l1 + S

(β2)
3j(0,0) ¡ 6S

(β2)
3j(0,1)=l2

i(q,r) ¡ h
S
(β2)
3j(0,0) + 6S

(β2)
3j(0,1)=l2

i(q,r−1)
= 0 (57)∙

¡S
(β1)
3j(0,0) +

1

2
S
(β2)
3j(0,0) ¡ 3S

(β2)
3j(0,1)=l2

¸(q,r)
+

1

2

h
S
(β2)
3j(0,0) + 6S

(β2)
3j(0,1)=l2

i(q,r−1)
= 0 (58)

where j = 2; 3: Equations (41) and (55)¡ (58) have been obtained in terms of the volume-averaged
stress quantities after some complex algebraic manipulations. For detailed derivation of these
equations, refer to Aboudi et al. (1996) : These equations can now be expressed explicitly in terms
of the microvariables W (βγ)

2(mn) and W
(βγ)
3(mn) with the use of Eqs. (42)¡ (50) :

2.2.3 Displacement continuity conditions

The displacement continuity at the interfaces separating adjacent subcells within the generic cell
(q; r) is imposed in an integral sense as follows

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
u
(1γ)
2 (

h
(q)
1

2
; ¹x
(γ)
3 )

#(q,r)
d¹x
(γ)
3 =

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
u
(2γ)
2 (¡h

(q)
2

2
; ¹x
(γ)
3 )

#(q,r)
d¹x
(γ)
3 (59)

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
u
(β1)
3 (¹x

(β)
2 ;

l
(r)
1

2
)

#(q,r)
d¹x
(β)
2 =

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
u
(β2)
3 (¹x

(β)
2 ;¡ l

(r)
2

2
)

#(q,r)
d¹x
(β)
2 (60)

Similarly, the displacement continuity at the interfaces between generic cells is satisÞed in an
integral sense by requiring that

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
u
(1γ)
2 (¡h

(q+1)
1

2
; ¹x
(γ)
3 )

#(q+1,r)
d¹x
(γ)
3 =

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
u
(2γ)
2 (

h
(q)
2

2
; ¹x
(γ)
3 )

#(q,r)
d¹x
(γ)
3 (61)

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
u
(β1)
3 (¹x

(β)
2 ;¡ l

(r+1)
1

2
)

#(q,r+1)
d¹x
(β)
2 =

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
u
(β2)
3 (¹x

(β)
2 ;

l
(r)
2

2
)

#(q,r)
d¹x
(β)
2 (62)

Satisfaction of the above displacement continuity conditions results in the following sixteen equa-
tions expressed directly in terms of the microvariables W (βγ)

2(mn) and W
(βγ)
3(mn)∙

W
(1γ)
j(00) +

1

2
h1W

(1γ)
j(10) +

1

4
h21W

(1γ)
j(20)

¸(q,r)
=

∙
W
(2γ)
j(00) ¡

1

2
h2W

(2γ)
j(10) +

1

4
h22W

(2γ)
j(20)

¸(q,r)
(63)
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∙
W
(2γ)
j(00) +

1

2
h2W

(2γ)
j(10) +

1

4
h22W

(2γ)
j(20)

¸(q,r)
=

∙
W
(1γ)
j(00) ¡

1

2
h1W

(1γ)
j(10) +

1

4
h21W

(1γ)
j(20)

¸(q+1,r)
(64)

∙
W
(β1)
j(00) +

1

2
l1W

(β1)
j(01) +

1

4
l21W

(β1)
j(02)

¸(q,r)
=

∙
W
(β2)
j(00) ¡

1

2
h2W

(β2)
j(01) +

1

4
l22W

(β2)
j(02)

¸(q,r)
(65)

∙
W
(β2)
j(00) +

1

2
l2W

(β2)
j(01) +

1

4
l22W

(β2)
j(02)

¸(q,r)
=

∙
W
(β1)
j(00) ¡

1

2
l1W

(β1)
j(01) +

1

4
l21W

(β1)
j(02)

¸(q,r+1)
(66)

2.2.4 Boundary conditions

As in the thermal analysis case, some of the displacement and traction continuity conditions
described above are not valid for generic cells located at the boundaries deÞned by the indices
q = 1; Nq; and r = 1; Nr. For the set of boundary cells with q = 1; the traction continuity between
the given generic cell and preceding generic cell, Eqs. (55) ¡ (56), is not applicable. Similarly for
q = Nq; the displacement continuity between the given generic cell and following generic cell, Eq.
(64), is not applicable. These conditions are replaced the continuity of tractions between adjacent
subcells within the generic cell (1; r); and in case of traction boundary conditions by

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
¾
(1γ)
2j (¡h

(1)
1

2
; ¹x
(γ)
3 )

#(1,r)
d¹x
(γ)
3 = t

(r)
left(x3) (67)

1

l(r)γ

Z l
(r)
γ /2

−l(r)γ /2

"
¾
(1γ)
2j (

h
(Nq)
2

2
; ¹x
(γ)
3 )

#(Nq ,r)
d¹x
(γ)
3 = t

(r)
right(x3) (68)

j = 2; 3

where t(r)left(x3); and t
(r)
right(x3) are the piece-wise uniform applied surface tractions. Similar reasoning

holds for generic cells (q; 1); and (q;Nr). If the top and the bottom surfaces are Þxed for instance,
the applied boundary conditions are given by

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
u
(β1)
i (¹x

(β)
2 ;¡ l

(1)
1

2
)

#(q,1)
d¹x
(β)
2 = 0 (69)

1

h
(q)
β

Z h
(q)
β /2

−h(q)β /2

"
u
(β1)
i (¹x

(β)
2 ;

l
(Nr)
2

2
)

#(q,Nr)
d¹x
(β)
2 = 0 (70)

For other type of boundary conditions, Eqs. (67)¡ (70) are modiÞed accordingly.

2.2.5 Solution for W
(βγ)
i(mn)

Thus for the solution of the 40NqNr unknown coefficients W
(βγ)
i(mn) in each (¯°) subcell, 40NqNr

equations are assembled using the governing Þeld equations, Eq. (41), traction continuity condi-
tions, Eqs. (55)¡(58) ; and the displacement continuity conditions, Eqs. (63)¡(66) ; together with
the imposed boundary conditions on the external boundaries of the composite, Eqs. (67) ¡ (70).
The Þnal system of equations obtained is symbolically written as

K U = f (71)
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In the above equation, K is the structural stiffness matrix which contains information on the
geometry and thermomechanical properties of the individual subcells (¯°) in the NqNr generic
cells. The displacement coefficient vector U contains the unknown coefficients that describe the
displacement Þeld in each subcell, i.e.,

U = [U
(11)
11 ; :::;U

(22)
NqNr

] (72)

where
U(βγ)
qr = [W2(00); :::;W3(02)]

(βγ)
qr

The mechanical force vector f contains information on the boundary conditions and the thermal
loading effects generated by the applied temperature.

3 Higher-Order Theory: Efficient Reformulation

The basic equations of the original higher-order theory outlined in Section 2 will be contrasted and
compared with the reformulated equations developed in this section. The reformulation simpliÞes
the theory and makes it computationally more efficient, as will be demonstrated later. It must
be emphasized that the basic structure and concepts of the higher-order theory with regard to
the temperature and displacement Þeld approximation based on the quadratic expansion in the
local coordinate system attached to a subcell�s center, satisfaction of the governing Þeld equations
(steady state heat conduction equation and equilibrium equations) in a volumetric sense, and the
interfacial continuity and boundary conditions in a surface-integral sense, do not change. The
major changes involve

² simpliÞcation of the volume discretization by eliminating the concept of generic cells, leaving
only subcells as the basic building blocks of the material�s microstructure

² replacement of volume-averaged heat ßux and stress quantities deÞned in Section 2 by Eqs. (5)
and (40) ; respectively, by surface-averaged quantities (temperature and heat ßux for thermal
analysis, displacements and stresses for mechanical) associated with subcell interfaces as the
fundamental unknown quantities

The above changes set the stage for reformulating the higher-order theory based on the local-
global conductivity and stiffness matrix approaches described in the following subsections. As
shown in Fig. 2, the microstructural pattern of the heterogeneous composite functionally graded
in the x2 ¡ x3 plane is represented by discretizing the cross-section into Nβ and Nγ subcells in the
intervals 0 ∙ x2 ∙ H; and 0 ∙ x3 ∙ L; respectively. The thermomechanical properties within a
subcell are assumed to be constant. The composite is assumed to be inÞnite in the x1 direction,
whereas the dimensions of the subcell along the functionally graded directions x2 and x3 are hβ;
lγ ; and can vary arbitrarily such that

H =

NβX
β=1

hβ L =

NγX
γ=1

lγ (73)

The composite is subjected to a combination of surface displacements and/or tractions applied
in the x2¡ x3 plane along with a uniform strain ¹"11 ( ¹"11 = 0; for plane strain) in the x1 direction.
An arbitrary surface temperature or heat ßux distribution may also be prescribed.
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Fig. 2. Reformulated HOTFGM-2D representation of a composite functionally graded in the x2
and x3 directions with uniform microstructure in the x1 direction.

In the case of the original higher-order theory, the global conductivity matrix relates the heat
ßux deÞned at the boundaries to the microvariables T (β,γ)(mn) and the global stiffness matrix relates the

tractions applied at the boundaries to the microvariables W (β,γ)
i(mn): In contrast, in the reformulated

version the global conductivity matrix relates the heat ßux deÞned at the boundaries to the common
interfacial surface-averaged temperatures and surface-averaged temperatures at the outer surfaces.
The global stiffness matrix relates the tractions at the boundaries to the common interfacial surface-
averaged displacements and surface-averaged displacements at the boundaries.

3.1 Motivation for Reformulation

The motivation behind the reformulation of the higher-order theory is to decrease the number of
equations in order to make it computationally more efficient. This is achieved by using the local-
global conductivity and local-global stiffness matrix approach. This approach involves formulation
of a local conductivity matrix that relates heat ßuxes to temperatures, and a local stiffness matrix
that relates tractions to displacements, evaluated at the external boundaries of each subvolume,
and has been described in detail by Pindera (1991) in the context of mechanical boundary-value
problems. In the reformulated version of the higher-order theory, the local conductivity matrix
relates the surface-averaged ßuxes to the surface-averaged temperatures for a particular subcell
(¯; °); accounting for the satisfaction of the steady-state heat conduction equation. Similarly, the
local stiffness matrix relates the surface-averaged tractions to the surface-averaged displacements
for a particular subcell (¯; °); accounting for the satisfaction of the global equilibrium require-
ments in a volumetric sense. Once the local conductivity and stiffness matrices are formed, we
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Fig. 3. Reduction in the size of the global stiffness matrix due to reformulation.

Fig. 4. Reduction in the size of the global stiffness matrix due to reformulation for equal number
of subcells in the x2 and x3 directions.
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use them to construct the global conductivity and stiffness matrices. Here, we enforce the traction
and displacement (heat ßux and temperature for thermal analysis) continuity conditions at the
interfaces of the adjacent subcells in an average sense, thereby reducing the size of the global
conductivity matrix and global stiffness matrix by more than Þfty percent.

When the composite is discretized into Nβ and Nγ subcells in the x2 and x3 directions, respec-
tively, the rank of the global stiffness matrix in the original higher-order theory is 10NβNγ since,
according to Section 2, each generic cell contains 4 subcells. As we shall see in this section, for the
same number of subcells in the x2 and x3 directions, the rank of the global stiffness matrix in the
reformulated version is reduced to 4NβNγ + 2Nβ + 2Nγ (4NβNγ + 2Nβ + 2Nγ + 1 for generalized
plane strain). Thus for higher values of Nβ and Nγ , the rank of the global stiffness matrix is reduced
by approximately sixty percent as shown in Figs. 3 and 4.

3.2 Thermal Reformulation

The temperature distribution T (β,γ) in the subcell (¯; °) measured with respect to the reference
temperature Tref is approximated by the same second order polynomial expansion in the local

coordinates x(β)2 ; x
(γ)
3 as that given by Eq. (2); reproduced below for convenience

T (β,γ) = T
(β,γ)
(00) + ¹x

(β)
2 T

(β,γ)
(10) + ¹x

(γ)
3 T

(β,γ)
(01) +

1

2
(3¹x

(β)2
2 ¡ hβ

4
)T

(β,γ)
(20) +

1

2
(3¹x

(γ)2
3 ¡ lγ

4
)T

(β,γ)
(02) (74)

As given in Eq. (4), the heat ßux at any point passing through a subcell (¯; °) is dictated by the
Fourier�s law of heat conduction,

q
(β,γ)
i = ¡k

(β,γ)
i

@T (β,γ)

@¹x
(·)
i

; (i = 2; 3; no sum) (75)

where k(β,γ)i are the heat conductivity coefficients of the material in the subcell (¯; °). Substituting
Eq. (74) for the assumed temperature Þeld in the above equation and simplifying, we get

q
(β,γ)
2 = ¡k

(β,γ)
2

³
T
(β,γ)
(10) + 3x

(β)
2 T

(β,γ)
(20)

´
(76)

q
(β,γ)
3 = ¡k

(β,γ)
3

³
T
(β,γ)
(01) + 3x

(γ)
3 T

(β,γ)
(02)

´
(77)

As mentioned earlier, the reformulation employs surface-averaged quantities in contrast with
volume-averaged quantities in the original formulation. Hence, the surface-averaged temperatures
and surface-averaged heat ßuxes at the outer faces of the subcell are deÞned below. The surface-
averaged heat ßux ¹Q

−(β,γ)
2 going into the left face of the subcell (¯; °) is deÞned as

¹Q
−(β,γ)
2 =

1

lγ

Z lγ/2

−lγ/2
q
(β,γ)
2 (¡hβ

2
; ¹x
(γ)
3 )d¹x

(γ)
3 (78)

The surface-averaged heat ßux ¹Q
+(β,γ)
2 going out of the right face of the subcell (¯; °) is deÞned as

¹Q
+(β,γ)
2 =

1

lγ

Z lγ/2

−lγ/2
q
(β,γ)
2 (

hβ
2
; ¹x
(γ)
3 )d¹x

(γ)
3 (79)

The surface-averaged heat ßux ¹Q
−(β,γ)
3 going into the bottom face of the subcell (¯; °) is deÞned as

¹Q
−(β,γ)
3 =

1

hβ

Z hβ/2

−hβ/2
q
(β,γ)
3 (¹x

(β)
2 ;¡ lγ

2
)d¹x

(β)
2 (80)
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The surface-averaged heat ßux ¹Q
+(β,γ)
3 going out of the top face of the subcell (¯; °) is deÞned as

¹Q
+(β,γ)
3 =

1

hβ

Z hβ/2

−hβ/2
q
(β,γ)
3 (¹x

(β)
2 ;

lγ
2
)d¹x

(β)
2 (81)

Substituting Eq. (76) into Eqs. (78) and (79); and Eq. (77) into Eqs. (80) and (81) ; and performing
the required integrations, we obtain

¹Q
−(β,γ)
2 = ¡k

(β,γ)
2

µ
T
(β,γ)
(10) ¡ 3hβ

2
T
(β,γ)
(20)

¶
(82)

¹Q
+(β,γ)
2 = ¡k

(β,γ)
2

µ
T
(β,γ)
(10) +

3hβ
2

T
(β,γ)
(20)

¶
(83)

¹Q
−(β,γ)
3 = ¡k

(β,γ)
3

µ
T
(β,γ)
(01)

¡ 3lγ
2
T
(β,γ)
(02)

¶
(84)

¹Q
+(β,γ)
3 = ¡k

(β,γ)
3

µ
T
(β,γ)
(01) +

3lγ
2
T
(β,γ)
(02)

¶
(85)

Assembling Eqs. (82)¡ (85) in matrix form, we have∙
¹Q+2
¹Q−2

¸(β,γ)
= ¡k

(β,γ)
2

"
1

3hβ
2

1 ¡3hβ
2

# ∙
T(10)
T(20)

¸(β,γ)
(86)

∙
¹Q+3
¹Q−3

¸(β,γ)
= ¡k

(β,γ)
3

"
1

3lγ
2

1 ¡3lγ
2

# ∙
T(01)
T(02)

¸(β,γ)
(87)

Equations (86) and (87) relate the surface-averaged heat ßuxes to the microvariables T
(β,γ)
(mn) :

Next, we express the microvariables T (β,γ)(mn) in terms of the surface-averaged temperatures in order
to form the local conductivity matrix that relates the surface-averaged ßuxes to the surface-averaged
temperatures for a particular subcell (¯; °): Hence, we proceed to deÞne the surface-averaged tem-
peratures as we have deÞned the surface-averaged heat ßuxes above. At the left face of the subcell
(¯; °) i.e. at x(β)2 = ¡hβ=2; the surface-averaged temperature ¹T

−(β,γ)
2 is deÞned as

¹T
−(β,γ)
2 =

1

lγ

Z lγ/2

−lγ/2
T (β,γ)(¡hβ

2
; ¹x
(γ)
3 )d¹x

(γ)
3 (88)

Similarly, at the right face of the subcell (¯; °); the surface-averaged temperature ¹T
+(β,γ)
2 is deÞned

as

¹T
+(β,γ)
2 =

1

lγ

Z lγ/2

−lγ/2
T (β,γ)(

hβ
2
; ¹x
(γ)
3 )d¹x

(γ)
3 (89)

At the bottom face of the subcell (¯; °); the surface-averaged temperature ¹T
−(β,γ)
3 is deÞned as

¹T
−(β,γ)
3 =

1

hβ

Z hβ/2

−hβ/2
T (β,γ)(¹x

(β)
2 ;¡ lγ

2
)d¹x

(β)
2 (90)

At the top face of the subcell (¯; °); the surface-averaged temperature ¹T
+(β,γ)
3 is deÞned as

¹T
+(β,γ)
3 =

1

hβ

Z hβ/2

−hβ/2
T (β,γ)(¹x

(β)
2 ;

lγ
2
)d¹x

(β)
2 (91)
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Substituting the expression for T (β,γ) given by Eq. (74) into the above deÞnitions and performing
the averaging procedure, we obtain

¹T
−(β,γ)
2 = T

(β,γ)
(00) ¡ hβ

2
T
(β,γ)
(10) +

h2β
4
T
(β,γ)
(20) (92)

¹T
+(β,γ)
2 = T

(β,γ)
(00) +

hβ
2
T
(β,γ)
(10) +

h2β
4
T
(β,γ)
(20) (93)

¹T
−(β,γ)
3 = T

(β,γ)
(00) ¡ lγ

2
T
(β,γ)
(01) +

l2γ
4
T
(β,γ)
(02) (94)

¹T
+(β,γ)
3 = T

(β,γ)
(00) +

lγ
2
T
(β,γ)
(01) +

l2γ
4
T
(β,γ)
(02) (95)

Assembling Eqs. (92)¡ (95) in matrix form, we have∙
¹T+2
¹T−2

¸(β,γ)
=

"
hβ
2

h2β
4

¡hβ
2

h2β
4

# ∙
T(10)
T(20)

¸(β,γ)
+

∙
T(00)
T(00)

¸(β,γ)
(96)

∙
¹T+3
¹T−3

¸(β,γ)
=

"
lγ
2

l2γ
4

¡ lγ
2

l2γ
4

# ∙
T(01)
T(02)

¸(β,γ)
+

∙
T(00)
T(00)

¸(β,γ)
(97)

Adding and subtracting Eq. (92) and (93), we obtain∙
T(10)
T(20)

¸(β,γ)
=

"
1
hβ

¡ 1
hβ

2
h2β

2
h2β

# ∙
¹T+2
¹T−2

¸(β,γ)
¡ 4

h2β

∙
0

T(00)

¸(β,γ)
(98)

Similarly, adding and subtracting Eq. (94) and (95), we obtain∙
T(01)
T(02)

¸(β,γ)
=

"
1
lγ

¡ 1
lγ

2
l2γ

2
l2γ

# ∙
¹T+3
¹T−3

¸(β,γ)
¡ 4

l2γ

∙
0

T(00)

¸(β,γ)
(99)

Equations (98) and (99) relate the Þrst and second order microvariables to the surface-averaged
temperatures and the zeroth order microvariables. In order to express the Þrst and second order
microvariables solely in terms of the surface-averaged temperatures, we make use of the volume-
averaged steady-state heat conduction equation.

3.2.1 Heat conduction equation

The heat ßux in the material occupying the subcell (¯; °) in the region
¯̄̄
x
(β,γ)
2

¯̄̄
∙ 1

2hβ,
¯̄̄
x
(β,γ)
3

¯̄̄
∙ 1

2 lγ;

must satisfy the steady-state heat conduction equation given by Eq. (3); reproduced here for
convenience, in a volumetric sense

@q
(β,γ)
2

@¹x
(β)
2

+
@q
(β,γ)
3

@¹x
(γ)
3

= 0 (100)

Substituting Eqs. (76) and (77) for the heat ßux in the ¹x2 and ¹x3 directions, respectively in the
above equation, performing the required volumetric averaging and simplifying, we get

[k2T(20) + k3T(02)]
(β,γ) = 0 (101)

20NASA/CR—2002-211909



Substituting the second-order microvariables T (β,γ)(20) and T
(β,γ)
(02) from Eqs. (98) and (99) and simpli-

fying, we obtain

T
(β,γ)
(00) =

k
(β,γ)
2

2¹k(β,γ)
( ¹T+2 + ¹T−2 )(β,γ) +

k
(β,γ)
3 h2β

2¹k(β,γ)l2γ
( ¹T+3 + ¹T−3 )(β,γ) (102)

where

¹k(β,γ) = k
(β,γ)
2 +

h2β
l2γ

k
(β,γ)
3 (103)

Substituting Eq. (102) into Eqs. (98) and (99) and simplifying, we obtain∙
T(10)
T(20)

¸(β,γ)
=

24 1
hβ

¡ 1
hβ

2k
(β,γ)
3

l2γ k̄
(β,γ)

2k
(β,γ)
3

l2γ k̄
(β,γ)

35 ∙
¹T+2
¹T−2

¸(β,γ)
¡ 2k

(β,γ)
3

¹k(β,γ)l2γ

∙
0 0
1 1

¸ ∙
¹T+3
¹T−3

¸(β,γ)
(104)

∙
T(01)
T(02)

¸(β,γ)
=

24 1
lγ

¡ 1
lγ

2k
(β,γ)
2

l2γ k̄
(β,γ)

2k
(β,γ)
2

l2γ k̄
(β,γ)

35 ∙
¹T+3
¹T−3

¸(β,γ)
¡ 2k

(β,γ)
2

¹k(β,γ)l2γ

∙
0 0
1 1

¸ ∙
¹T+2
¹T−2

¸(β,γ)
(105)

Equations (102), (104) and (105) express the microvariables T (β,γ)(mn) explicitly in terms of the surface-
averaged temperatures. Substituting Eqs. (104) and (105) into Eqs. (86) and (87) and simplifying,
we obtain the local conductivity matrix as shown below2664

¹Q+2
¡ ¹Q−2
¹Q+3

¡ ¹Q−3

3775
(β,γ)

=

2664
∙11 ∙12 ∙13 ∙14
∙21 ∙22 ∙23 ∙24
∙31 ∙32 ∙33 ∙34
∙41 ∙42 ∙43 ∙44

3775
(β,γ) 2664

¹T+2
¹T−2
¹T+3
¹T−3

3775
(β,γ)

(106)

where

∙
(β,γ)
11 = ∙

(β,γ)
22 = ¡k

(β,γ)
2

Ã
1

hβ
+

3hβk
(β,γ)
3

l2γ
¹k(β,γ)

!

∙
(β,γ)
12 = ∙

(β,γ)
21 = k

(β,γ)
2

Ã
1

hβ
¡ 3hβk

(β,γ)
3

l2γ
¹k(β,γ)

!

∙
(β,γ)
13 = ∙

(β,γ)
14 = ∙

(β,γ)
23 = ∙

(β,γ)
24 =

3hβk
(β,γ)
2 k

(β,γ)
3

l2γ
¹k(β,γ)

and

∙
(β,γ)
33 = ∙

(β,γ)
44 = ¡k

(β,γ)
3

Ã
1

lγ
+

3k
(β,γ)
2

lγ¹k(β,γ)

!

∙
(β,γ)
12 = ∙

(β,γ)
21 = k

(β,γ)
3

Ã
1

lγ
¡ 3k

(β,γ)
2

lγ¹k(β,γ)

!

∙
(β,γ)
31 = ∙

(β,γ)
32 = ∙

(β,γ)
41 = ∙

(β,γ)
42 =

3k
(β,γ)
2 k

(β,γ)
3

lγ¹k(β,γ)

Therefore, we have formulated the local conductivity matrix which relates the surface-averaged
heat ßuxes to surface-averaged temperatures. The next step is to assemble the global conductivity
matrix using the interfacial continuity conditions and the boundary conditions.
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3.2.2 Temperature continuity conditions

The temperature continuity at the interfaces between adjacent subcells is applied in an average
sense. Considering the ¯th interface, which is the interface between the subcells (¯; °) and (¯+1; °),
the surface-averaged temperatures in the x2 direction, ¹T

+(β,γ)
2 and ¹T

−(β+1,γ)
2 ; must be equal. Hence,

we can represent them using just one variable, i.e.

¹T
+(β,γ)
2 = ¹T

−(β+1,γ)
2 = ¹T

(β+1,γ)
2 (107)

Similarly, considering the °th interface, which is the interface between the subcells (¯; °) and
(¯; ° + 1), and applying the temperature continuity in the x3 direction

¹T
+(β,γ)
3 = ¹T

−(β,γ+1)
3 = ¹T

(β,γ+1)
3 (108)

Equations (107) and (108) are similar to the temperature continuity conditions (19)¡(22) in Section
2. Equations (107) and (108) hold true for ¯ = 1; :::; Nβ ¡ 1 and ° = 1; :::; Nγ ¡ 1; respectively.
This gives rise to (Nβ ¡ 1)Nγ +(Nγ ¡ 1)Nβ unknown surface-averaged temperatures deÞned at the
subcell interfaces (both in x2 and x3 direction). The quantities

¹T
(1,γ)
2 ; ¹T

(Nβ+1,γ)
2 ; ¹T

(β,1)
3 ; ¹T

(β,Nγ+1)
3

deÞne the surface-averaged temperatures at the external boundaries of the composite. These quan-
tities are either known or unknown depending on whether the temperature or heat ßux is deÞned
at the external boundaries.

3.2.3 Heat ßux continuity conditions

The heat ßux continuity at the interfaces between adjacent subcells is applied in an average sense.
Considering the ¯th interface and applying the heat ßux continuity in the x2 direction

¹Q
+(β,γ)
2 ¡ ¹Q

−(β+1,γ)
2 = 0 (109)

where ¹Q
+(β,γ)
2 is the surface-averaged heat ßux going out of the right face (x2 = hβ=2) of the subcell

(¯; °) and ¹Q
−(β+1,γ)
2 is the surface-averaged heat ßux entering into the left face (x2 = ¡hβ+1=2)

of the subcell (¯ + 1; °) deÞned by Eqs. (79) and (78) respectively. Similarly, considering the °th

interface and applying the heat ßux continuity in the x3 direction

¹Q
+(β,γ)
3 ¡ ¹Q

−(β,γ+1)
3 = 0 (110)

Equations (109) and (110) are similar to the heat ßux continuity conditions (11)¡ (14). Using the
local conductivity matrix (106); Eqs. (109) and (110) can be expressed in terms of the surface-
averaged temperatures

∙
(β,γ)
11

¹T
+(β,γ)
2 + ∙

(β,γ)
12

¹T
−(β,γ)
2 + ∙

(β,γ)
13

¹T
+(β,γ)
3 + ∙

(β,γ)
14

¹T
−(β,γ)
3 + ∙

(β+1,γ)
21

¹T
+(β+1,γ)
2 +

∙
(β+1,γ)
22

¹T
−(β+1,γ)
2 + ∙

(β+1,γ)
23

¹T
+(β+1,γ)
3 + ∙

(β+1,γ)
24

¹T
−(β+1,γ)
3 = 0 (111)

∙
(β,γ)
31

¹T
+(β,γ)
2 + ∙

(β,γ)
32

¹T
−(β,γ)
2 + ∙

(β,γ)
33

¹T
+(β,γ)
3 + ∙

(β,γ)
34

¹T
−(β,γ)
3 + ∙

(β,γ+1)
41

¹T
+(β,γ+1)
2 +

∙
(β,γ+1)
42

¹T
−(β,γ+1)
2 + ∙

(β,γ+1)
43

¹T
+(β,γ+1)
3 + ∙

(β,γ+1)
44

¹T
−(β,γ+1)
3 = 0 (112)
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Using the temperature continuity conditions given by Eqs. (107) and (108); Eqs. (111) and (112)
can be simpliÞed and written in terms of the common interfacial surface-averaged temperatures

∙
(β,γ)
12

¹T
(β,γ)
2 + (∙

(β,γ)
11 + ∙

(β+1,γ)
22 ) ¹T

(β+1,γ)
2 + ∙

(β+1,γ)
21

¹T
(β+2,γ)
2 + ∙

(β,γ)
14

¹T
(β,γ)
3 +

∙
(β,γ)
13

¹T
(β,γ+1)
3 + ∙

(β,γ)
24

¹T
(β+1,γ)
3 + ∙

(β+1,γ)
23

¹T
(β+1,γ+1)
3 = 0 (113)

∙
(β,γ)
32

¹T
(β,γ)
2 + ∙

(β,γ)
31

¹T
(β+1,γ)
2 + ∙

(β,γ+1)
42

¹T
(β,γ+1)
2 + ∙

(β,γ+1)
41

¹T
(β+1,γ+1)
2 +

∙
(β,γ)
34

¹T
(β,γ)
3 + (∙

(β,γ)
33 + ∙

(β,γ+1)
44 ) ¹T

(β,γ+1)
3 + ∙

(β,γ+1)
43

¹T
(β,γ+2)
3 = 0 (114)

Thus, Eqs. (113) and (114) provide us with a total of (Nβ ¡ 1)Nγ +(Nγ ¡ 1)Nβ equations in terms
of the common interfacial surface-averaged temperatures and the surface-averaged temperatures at
the external boundaries.

3.2.4 Boundary conditions

At the external boundaries of the composite, we have 2(Nβ+Nγ) faces of the subcells where either
the heat ßux or the temperatures are deÞned. This gives rise to additional 2(Nβ +Nγ) unknown
surface-averaged quantities. The additional 2(Nβ +Nγ) equations are obtained from the imposed
boundary conditions given by

¹T
(1,γ)
2 = T

(γ)
left(x3) (115)

¹T
(Nβ ,γ)
2 = T

(γ)
right(x3) (116)

where T
(γ)
left(x3); and T

(γ)
right(x3) are the piece-wise uniform applied temperatures on the external

boundaries in the x2 ¡ x3 plane. Similar reasoning holds for subcells (¯; 1); and (¯;Nγ) and the
applied boundary conditions are given by

¹T
(β,1)
3 = T

(β)
bottom(x2) (117)

¹T
(β,Nγ)
3 = T

(β)
top (x2) (118)

If the heat ßux at any of the boundaries is deÞned instead of temperatures, Eqs. (115)¡ (118) are
modiÞed accordingly.

Note that, at least one ¹T
(·)
2 and at least one ¹T

(·)
3 at the external boundary need to be deÞned

in order to prevent matrix singularity. If only heat ßux is deÞned at the external boundaries,
theoretically it gives rise to the possibility of having more than one temperature distribution. This
is analogous to the rigid body motion if only tractions are deÞned at the external boundaries and
not a single point is Þxed in space.

3.2.5 Solution for the surface-averaged temperatures

Equations (113) and (114) together with the imposed boundary conditions (Eqs. (115) ¡ (118))
provide us with the necessary (Nβ + 1)Nγ + (Nγ + 1)Nβ relations for (Nβ + 1)Nγ + (Nγ + 1)Nβ
unknown surface-averaged variables (i.e., (Nβ ¡ 1)Nγ + (Nγ ¡ 1)Nβ unknown common interfacial
surface-averaged temperatures along with 2(Nβ + Nγ) unknown surface-averaged temperatures
and/or heat ßuxes at the external boundaries).

The Þnal system of equations is symbolically written as

κ ¹T = ¹Q (119)
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In the above equation, κ is the global thermal conductivity matrix obtained after assembling
the local conductivity matrices given by Eq. (106) using the local-global conductivity matrix
approach as explained above. The matrix κ essentially contains information on the geometry and
thermal conductivities of the individual NβNγ subcells. The general format and assembly of the
global thermal conductivity matrix κ has been summarized in the next subsection. The vector
¹T contains the unknown surface-averaged temperatures at the subcell interfaces and the surface-
averaged temperatures at the outer edges of the composite (some of which are known), and is given
by

¹T = [¹T
(1)
2 ; :::; ¹T

(Nγ)
2 ; ¹T

(1)
3 ; :::; ¹T

(Nβ)
3 ]

where
¹T
(γ)
2 = [ ¹T

(1,γ)
2 ; :::; ¹T

(Nβ+1,γ)
2 ] ¹T

(β)
3 = [ ¹T

(1,β)
3 ; :::; ¹T

(Nβ+1,β)
3 ]

The surface-averaged heat ßux vector ¹Q contains information about the piece-wise uniform heat
ßuxes deÞned at the external boundaries of the composite and consists mainly of zeros which are
obtained after applying the interfacial heat ßux continuity. It is given by

¹Q = [¹Q
(1)
2 ; :::; ¹Q

(Nγ)
2 ; ¹Q

(1)
3 ; :::; ¹Q

(Nβ)
3 ]

where
¹Q
(γ)
2 = [ ¹Q

(1,γ)
2 ; 0; :::; 0; ¹Q

(Nβ+1,γ)
2 ] ¹Q

(β)
3 = [ ¹Q

(1,β)
3 ; 0; :::; 0; ¹Q

(Nβ+1,β)
3 ]

Once Eq. (119) is solved for the surface-averaged temperatures at all the subcell interfaces and
external boundaries, we substitute the surface-averaged temperatures back into Eqs. (102); (98)

and (99), and obtain the microvariables T (β,γ)(mn) which deÞne the temperature Þeld in each subcell.

3.2.6 Assembly of the global thermal conductivity matrix κ

The general format and assembly of the global conductivity matrix κ is summarized in this sub-
section. κ consists of four submatrices

κ =

∙
κ11 κ12
κ21 κ22

¸
where κ11 and κ22 relate the quantities in their respective directions and have entries concentrated
along the diagonal.The submatrices κ12 and κ21 represent the coupling of Þeld variables in the x2
and x3 direction and have entries scattered throughout. The global thermal conductivity matrix κ
is a square matrix of size [Nβ(Nγ + 1) +Nγ(Nβ + 1) £ Nβ(Nγ + 1) +Nγ(Nβ + 1)]. The structure
of the submatrix κ11 is shown below

κ11 =

2666666666664

A
(1)
2 0 0 0 0 0 0 0

0 A
(2)
2 0 0 0 0 0 0

0 0 : 0 0 0 0 0
0 0 0 : 0 0 0 0
0 0 0 0 : 0 0 0
0 0 0 0 0 : 0 0
0 0 0 0 0 0 : 0

0 0 0 0 0 0 0 A
(Nγ)
2

3777777777775
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where the size of κ11 is [Nγ(Nβ + 1) £ Nγ(Nβ + 1)] : The structure of the submatrices A
(γ)
2 is

shown in the appendix. The structure of κ22 is similar to κ11: The structure of the coupling matrix
κ12 is shown below

κ12 =

26666666666664

B
(11)
2 B

(12)
2 : : : : : B

(1Nβ)
2

B
(21)
2 B

(22)
2 : : : : : B

(2Nβ)
2

: : : : : : : :
: : : : : : : :
: : : : : : : :
: : : : : : : :
: : : : : : : :

B
(Nγ1)
2 B

(Nγ2)
2 : : : : : B

(NγNβ)
2

37777777777775
where the size of κ12 is [Nγ(Nβ + 1) £ Nβ(Nγ + 1)] : The structure of the submatrices B

(γβ)
2 is

shown in the appendix. The structure of κ21 is similar to κ12:

3.3 Mechanical Reformulation

The displacement Þeld in the subcell (¯; °) of the composite functionally graded in x2 ¡ x3 plane
is approximated by the same second-order polynomial expansion in the local coordinates ¹x(β)2 ; and

¹x
(γ)
3 as that given by Eqs. (32)¡ (34) in Section 2, reproduced below for convenience

u
(β,γ)
1 = x1¹"11 (120)

u
(β,γ)
2 = W

(β,γ)
2(00) + x

(β)
2 W

(β,γ)
2(10) + x

(γ)
3 W

(β,γ)
2(01) +

1

2
(3x

(β)2
2 ¡ h2β

4
)W

(β,γ)
2(20) +

1

2
(3x

(γ)2
3 ¡ l2γ

4
)W

(β,γ)
2(02) (121)

u
(β,γ)
3 = W

(β,γ)
3(00) + x

(β)
2 W

(β,γ)
3(10) + x

(γ)
3 W

(β,γ)
3(01) +

1

2
(3x

(β)2
2 ¡ h2β

4
)W

(β,γ)
3(20) +

1

2
(3x

(γ)2
3 ¡ l2γ

4
)W

(β,γ)
3(02) (122)

For plane deformation (plane strain) case

¹"11 = 0 (123)

and for generalized plane strain, ¹"11 is determined from the condition

NβX
γ=1

NβX
β=1

Z hβ/2

−hβ/2

Z lγ/2

−lγ/2
¾
(β,γ)
ij d¹x

(β)
2 d¹x

(γ)
3 = 0 (124)

For an orthotropic elastic material occupying the subcell (¯; °), the stress components are
related to the strain components through the familiar Hooke�s law

¾
(β,γ)
ij = C

(β,γ)
ijkl "

(β,γ)
kl ¡ ¾

T (β,γ)
ij (125)

C
(β,γ)
ijkl are the stiffness tensor elements for the material occupying the subcell (¯; °), "(β,γ)ij are the

elastic strain components, and ¾
T (αβγ)
ij are the components of thermal stress vector given by

¾
T (β,γ)
ij = ¡

(β,γ)
ij T (β,γ) (126)
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where ¡
(β,γ)
ij is the product of the stiffness tensor components and thermal expansion coefficients

®
(β,γ)
ij , and T (β,γ) represents the temperature change at a particular location in the composite.
The components of the strain tensor in the individual subcells are obtained from the strain-

displacement relations,

"
(β,γ)
ij =

1

2
(
@u

(β,γ)
j

@¹x
(·)
i

+
@u

(β,γ)
i

@¹x
(·)
j

) (127)

Substituting Eqs. (121) and (122) into Eq. (127) and simplifying, we get

"
(β,γ)
22 = W

(β,γ)
2(10) + 3x

(β)
2 W

(β,γ)
2(20) (128)

"
(β,γ)
33 = W

(β,γ)
3(01) + 3x

(β)
2 W

(β,γ)
3(02) (129)

"
(β,γ)
23 =

1

2
[W

(β,γ)
2(01) + 3x

(γ)
3 W

(β,γ)
2(02) +W

(β,γ)
3(10) + 3x

(β)
2 W

(β,γ)
3(20) ] (130)

Fig. 5. Schematic of a subcell (¯; °) showing the surface averaged tractions and displacements
deÞned in the reformulated HOTFGM-2D.

The local stiffness matrix relates the surface-averaged tractions to the surface-averaged displace-
ments on the subcell�s faces as shown in Fig. 5. The surface-averaged tractions are determined
using the familiar expressions for tractions given in terms of the stress components

t
n(β,γ)
i = ¾

(β,γ)
ji n

(β,γ)
j (131)

where n(β,γ)j are the components of the unit vector normal to the face of the (¯; °) subcell. At the

left face of the subcell (¯; °); the surface-averaged tractions ¹t2−(β,γ)2 and ¹t
2−(β,γ)
3 are deÞned as

¹t
2−(β,γ)
2 =

1

lγ

Z lγ/2

−lγ/2
t
n(β,γ)
2 (¡hβ

2
; ¹x
(γ)
3 )d¹x

(γ)
3 (132)

¹t
2−(β,γ)
3 =

1

lγ

Z lγ/2

−lγ/2
t
n(β,γ)
3 (¡hβ

2
; ¹x
(γ)
3 )d¹x

(γ)
3 (133)
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Similarly, surface-averaged tractions at the right face of the subcell (¯; °) are deÞned as

¹t
2+(β,γ)
2 =

1

lγ

Z lγ/2

−lγ/2
t
n(β,γ)
2 (

hβ
2
; ¹x
(γ)
3 )d¹x

(γ)
3 (134)

¹t
2+(β,γ)
3 =

1

lγ

Z lγ/2

−lγ/2
t
n(β,γ)
3 (

hβ
2
; ¹x
(γ)
3 )d¹x

(γ)
3 (135)

Surface averaged tractions at the bottom face of the subcell (¯; °) are deÞned as

¹t
3−(β,γ)
2 =

1

hβ

Z hβ/2

−hβ/2
t
n(β,γ)
2 (¹x

(β)
2 ;¡ lγ

2
)d¹x

(β)
2 (136)

¹t
3−(β,γ)
3 =

1

hβ

Z hβ/2

−hβ/2
t
n(β,γ)
3 (¹x

(β)
2 ;¡ lγ

2
)d¹x

(β)
2 (137)

Surface averaged tractions at the top face of the subcell (¯; °) are deÞned as

¹t
3+(β,γ)
2 =

1

hβ

Z hβ/2

−hβ/2
t
n(β,γ)
2 (¹x

(β)
2 ;

lγ
2
)d¹x

(β)
2 (138)

¹t
3+(β,γ)
3 =

1

hβ

Z hβ/2

−hβ/2
t
n(β,γ)
3 (¹x

(β)
2 ;

lγ
2
)d¹x

(β)
2 (139)

Substituting Eqs. (131) ; (125) ; (126) ; and (128) ¡ (130) into Eqs. (132) ¡ (139) ; performing the
required integration and assembling the resulting equations for the surface-averaged tractions in
matrix form, we get

∙
¹t2+2
¹t2−2

¸(β,γ)
= C

(β,γ)
22

"
1

3hβ
2

¡1
3hβ
2

# ∙
W2(10)

W2(20)

¸(β,γ)
+ C

(β,γ)
23

∙
W3(01)

¡W3(01)

¸(β,γ)
¡

(C12®11 +C22®22 +C23®33)
(β,γ)

∙
¹T+2

¡ ¹T−2

¸(β,γ)
(140)

∙
¹t2+3
¹t2−3

¸(β,γ)
= C

(β,γ)
44

"
1

3hβ
2

¡1
3hβ
2

# ∙
W3(10)

W3(20)

¸(β,γ)
+C

(β,γ)
44

∙
W2(01)

¡W2(01)

¸(β,γ)
(141)

∙
¹t3+3
¹t3−3

¸(β,γ)
= C

(β,γ)
33

"
1

3lγ
2

¡1
3lγ
2

# ∙
W3(01)

W3(02)

¸(β,γ)
+ C

(β,γ)
23

∙
W2(10)

¡W2(10)

¸(β,γ)
¡

(C13®11 + C23®22 + C33®33)
(β,γ)

∙
¹T+3

¡ ¹T−3

¸(β,γ)
(142)

∙
¹t3+2
¹t3−2

¸(β,γ)
= C

(β,γ)
44

"
1

3lγ
2

¡1
3lγ
2

# ∙
W2(01)

W2(02)

¸(β,γ)
+ C

(β,γ)
44

∙
W3(10)

¡W3(10)

¸(β,γ)
(143)

Equations (140)¡ (143) relate the surface-averaged tractions to the Þrst and second order mi-
crovariables that determine the displacement Þeld within the subcell (¯; °):We need to relate these
microvariables to the surface-averaged displacements, and surface-averaged temperatures obtained
after solving the thermal problem, in order to formulate the local stiffness matrix. Hence, we
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proceed to deÞne the surface-averaged displacements. At the left face of the subcell (¯; °); the
surface-averaged displacements ¹u2−(β,γ)2 and ¹u

2−(β,γ)
3 are deÞned as

¹u
2−(β,γ)
2 =

1

lγ

Z lγ/2

−lγ/2
u
(β,γ)
2 (¡hβ

2
; ¹x
(γ)
3 )d¹x

(γ)
3 (144)

¹u
2−(β,γ)
3 =

1

lγ

Z lγ/2

−lγ/2
u
(β,γ)
3 (¡hβ

2
; ¹x
(γ)
3 )d¹x

(γ)
3 (145)

Similarly, surface-averaged displacements at the right face of the subcell (¯; °) are deÞned as

¹u
2+(β,γ)
2 =

1

lγ

Z lγ/2

−lγ/2
u
(β,γ)
2 (

hβ
2
; ¹x
(γ)
3 )d¹x

(γ)
3 (146)

¹u
2+(β,γ)
3 =

1

lγ

Z lγ/2

−lγ/2
u
(β,γ)
3 (

hβ
2
; ¹x
(γ)
3 )d¹x

(γ)
3 (147)

Surface averaged displacements at the bottom face of the subcell (¯; °) are deÞned as

¹u
3−(β,γ)
2 =

1

hβ

Z hβ/2

−hβ/2
u
(β,γ)
2 (¹x

(β)
2 ;¡ lγ

2
)d¹x

(β)
2 (148)

¹u
3−(β,γ)
3 =

1

hβ

Z hβ/2

−hβ/2
u
(β,γ)
3 (¹x

(β)
2 ;¡ lγ

2
)d¹x

(β)
2 (149)

Surface averaged displacements at the top face of the subcell (¯; °) are deÞned as

¹u
3+(β,γ)
2 =

1

hβ

Z hβ/2

−hβ/2
u
(β,γ)
2 (¹x

(β)
2 ;

lγ
2
)d¹x

(β)
2 (150)

¹u
3+(β,γ)
3 =

1

hβ

Z hβ/2

−hβ/2
u
(β,γ)
3 (¹x

(β)
2 ;

lγ
2
)d¹x

(β)
2 (151)

Substituting the expressions for u(β,γ)i given by Eqs. (121) and (122), and performing the above
averaging procedure, we obtain

¹u
2−(β,γ)
2 = W

(β,γ)
2(00) ¡

hβ
2
W
(β,γ)
2(10) +

h2β
4
W
(β,γ)
2(20) (152)

¹u
2−(β,γ)
3 = W

(β,γ)
3(00) ¡

hβ
2
W
(β,γ)
3(10) +

h2β
4
W
(β,γ)
3(20) (153)

¹u
2+(β,γ)
2 = W

(β,γ)
2(00) +

hβ
2
W
(β,γ)
2(10) +

h2β
4
W
(β,γ)
2(20) (154)

¹u
2+(β,γ)
3 = W

(β,γ)
3(00) +

hβ
2
W
(β,γ)
3(10) +

h2β
4
W
(β,γ)
3(20) (155)

¹u
3−(β,γ)
2 = W

(β,γ)
2(00) ¡

lγ
2
W
(β,γ)
2(01) +

l2γ
4
W
(β,γ)
2(02) (156)

¹u
3−(β,γ)
3 = W

(β,γ)
3(00) ¡

lγ
2
W
(β,γ)
3(01) +

l2γ
4
W
(β,γ)
3(02) (157)

¹u
3+(β,γ)
2 = W

(β,γ)
2(00) +

lγ
2
W
(β,γ)
2(01) +

l2γ
4
W
(β,γ)
2(02) (158)

¹u
3+(β,γ)
3 = W

(β,γ)
3(00) +

lγ
2
W
(β,γ)
3(01) +

l2γ
4
W
(β,γ)
3(02) (159)
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Assembling Eqs. (152)¡ (159) for the surface-averaged displacements in matrix form∙
¹u2+2
¹u2−2

¸(β,γ)
=

"
hβ
2

h2β
4

¡hβ
2

h2β
4

# ∙
W2(10)

W2(20)

¸(β,γ)
+

∙
W2(00)

W2(00)

¸(β,γ)
(160)

∙
¹u2+3
¹u2−3

¸(β,γ)
=

"
hβ
2

h2β
4

¡hβ
2

h2β
4

# ∙
W3(10)

W3(20)

¸(β,γ)
+

∙
W3(00)

W3(00)

¸(β,γ)
(161)

∙
¹u3+3
¹u3−3

¸(β,γ)
=

"
lγ
2

l2γ
4

¡ lγ
2

l2γ
4

# ∙
W3(01)

W3(02)

¸(β,γ)
+

∙
W3(00)

W3(00)

¸(β,γ)
(162)

∙
¹u3+2
¹u3−2

¸(β,γ)
=

"
lγ
2

l2γ
4

¡ lγ
2

l2γ
4

# ∙
W2(01)

W2(02)

¸(β,γ)
+

∙
W2(00)

W2(00)

¸(β,γ)
(163)

Adding and subtracting Eqs. (152) and (154), we get∙
W2(10)

W2(20)

¸(β,γ)
=

"
1
hβ

¡ 1
hβ

2
h2β

2
h2β

# ∙
¹u2+2
¹u2−2

¸(β,γ)
¡ 4

h2β

∙
0

W2(00)

¸(β,γ)
(164)

Adding and subtracting Eqs. (153) and (155), we get∙
W3(10)

W3(20)

¸(β,γ)
=

"
1
hβ

¡ 1
hβ

2
h2β

2
h2β

# ∙
¹u2+3
¹u2−3

¸(β,γ)
¡ 4

h2β

∙
0

W3(00)

¸(β,γ)
(165)

Adding and subtracting Eqs. (157) and (159), we get∙
W3(01)

W3(02)

¸(β,γ)
=

"
1
lγ

¡ 1
lγ

2
l2γ

2
l2γ

# ∙
¹u3+3
¹u3−3

¸(β,γ)
¡ 4

l2γ

∙
0

W3(00)

¸(β,γ)
(166)

Adding and subtracting Eqs. (156) and (158), we get∙
W2(01)

W2(02)

¸(β,γ)
=

"
1
lγ

¡ 1
lγ

2
l2γ

2
l2γ

# ∙
¹u3+2
¹u3−2

¸(β,γ)
¡ 4

l2γ

∙
0

W2(00)

¸(β,γ)
(167)

Equations (164)¡ (167) relate the Þrst and second order microvariables to the surface-averaged
displacements and the zeroth order microvariables. In order to express the microvariables explicitly
in terms of the surface-averaged quantities, we make use of the equilibrium equations.

3.3.1 Equilibrium equations

For the structure to remain in equilibrium, the stress Þeld in the subcell (¯; °) must satisfy the
equilibrium equations. As in the original formulation of the higher-order theory, we satisfy the
equilibrium equations, Eq. (36) in Section 2, in an average sense, which is demonstrated by the
following equations

1

A(βγ)

Z hβ/2

−hβ/2

Z lγ/2

−lγ/2
¾
(βγ)
ji,j d¹x

(β)
2 d¹x

(γ)
3 = 0; i = 2; 3 (168)
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Substituting Eqs. (125) ; (126) and (128) ¡ (130) into Eq. (168) and performing the required
integration yields, after simpliÞcation, the following equations

3(C22W2(20) + C44W2(02))
(β,γ) = (C12®11 + C22®22 + C23®33)

(β,γ)T
(β,γ)
(10) (169)

3(C33W3(02) + C44W3(20))
(β,γ) = (C13®11 + C23®22 + C33®33)

(β,γ)T
(β,γ)
(01) (170)

Substituting the second order displacement microvariables from Eqs. (164) ¡ (167) ; we obtain
the zeroth order microvariables in terms of the surface-averaged displacements and the Þrst order
temperature microvariables as shown below

W
(β,γ)
2(00) =

C
(β,γ)
22

2 ¹C
(β,γ)
22

(¹u2+2 + ¹u2−2 )(β,γ) +
h2βC

(β,γ)
44

2l2γ ¹C
(β,γ)
22

(¹u3+2 + ¹u3−2 )(β,γ) ¡ ¹®
(β,γ)
22 T

(β,γ)
(10) (171)

W
(β,γ)
3(00) =

C
(β,γ)
33

2 ¹C
(β,γ)
33

(¹u3+3 + ¹u3−3 )(β,γ) +
l2γC

(β,γ)
44

2h2β
¹C
(β,γ)
33

(¹u2+3 + ¹u2−3 )(β,γ) ¡ ¹®
(β,γ)
33 T

(β,γ)
(01) (172)

where

¹C
(β,γ)
22 = C

(β,γ)
22 +

h2β
l2γ

C
(β,γ)
44 (173)

¹C
(β,γ)
33 = C

(β,γ)
33 +

l2γ
h2β

C
(β,γ)
44 (174)

and

¹®22 =
(C12®11 + C22®22 + C23®33)

(β,γ)

3 ¹C
(β,γ)
22

(175)

¹®33 =
(C13®11 + C23®22 + C33®33)

(β,γ)

3 ¹C
(β,γ)
33

(176)

Substituting Eqs. (171)¡ (172) into Eqs. (164)¡ (167) and simplifying yields

∙
W2(10)

W2(20)

¸(β,γ)
=

24 1
hβ

¡ 1
hβ

2C
(β,γ)
44

l2γC̄
(β,γ)
22

2C
(β,γ)
44

l2γC̄
(β,γ)
22

35∙
¹u2+2
¹u2−2

¸(β,γ)
¡

2C
(β,γ)
44

l2γ ¹C
(β,γ)
22

∙
0 0
1 1

¸ ∙
¹u3+2
¹u3−2

¸(β,γ)
+ ¹®22

∙
0

T(10)

¸(β,γ)
(177)

∙
W3(10)

W3(20)

¸(β,γ)
=

24 1
hβ

¡ 1
hβ

2C
(β,γ)
33

h2βC̄
(β,γ)
33

2C
(β,γ)
33

h2βC̄
(β,γ)
33

35 ∙
¹u2+3
¹u2−3

¸(β,γ)
¡

2C
(β,γ)
33

h2β
¹C
(β,γ)
33

∙
0 0
1 1

¸ ∙
¹u3+3
¹u3−3

¸(β,γ)
+

¹®22l
2
γ

h2β

∙
0

T(01)

¸(β,γ)
(178)
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∙
W3(01)

W3(02)

¸(β,γ)
=

24 1
lγ

¡ 1
lγ

2C
(β,γ)
44

h2βC̄
(β,γ)
33

2C
(β,γ)
44

h2βC̄
(β,γ)
33

35∙
¹u3+3
¹u3−3

¸(β,γ)
¡

2C
(β,γ)
44

h2β
¹C
(β,γ)
33

∙
0 0
1 1

¸ ∙
¹u2+3
¹u2−3

¸(β,γ)
+ ¹®33

∙
0

T(01)

¸(β,γ)
(179)

∙
W2(01)

W2(02)

¸(β,γ)
=

24 1
lγ

¡ 1
lγ

2C
(β,γ)
22

l2γC̄
(β,γ)
22

2C
(β,γ)
22

l2γC̄
(β,γ)
22

35 ∙
¹u3+2
¹u3−2

¸(β,γ)
¡

2C
(β,γ)
22

l2γ ¹C
(β,γ)
22

∙
0 0
1 1

¸ ∙
¹u2+2
¹u2−2

¸(β,γ)
+

¹®33h
2
β

l2γ

∙
0

T(10)

¸(β,γ)
(180)

Equations (177) ¡ (180) relate the microvariables to the surface-averaged displacements and the
Þrst order temperature microvariables. Now we can obtain the local stiffness matrix for the subcell
(¯; °) by substituting the above equations into Eqs. (140)¡ (143) : Note that the terms involving
the Þrst order temperature microvariables can also be expressed in terms of the surface-averaged
temperatures by making use of Eqs. (98) and (99). After simpliÞcation, we obtain2666666666664

¹t2+2
¹t2−2
¹t2+3
¹t2−3
¹t3+2
¹t3−2
¹t3+3
¹t3−3

3777777777775

(β,γ)

=

266666666664

K11 K12 0 0 K15 K16 K17 K18

K21 K22 0 0 K25 K26 K27 K28

0 0 K33 K34 K35 K36 K37 K38

0 0 K43 K44 K45 K46 K47 K48

K51 K52 K53 K54 K55 K56 0 0
K61 K62 K63 K64 K65 K66 0 0
K71 K72 K73 K74 0 0 K77 K78

K81 K82 K83 K84 0 0 K87 K88

377777777775

(β,γ)
2666666666664

¹u2+2
¹u2−2
¹u2+3
¹u2−3
¹u3+2
¹u3−2
¹u3+3
¹u3−3

3777777777775

(β,γ)

+

266666666664

¡11 ¡12 0 0
¡21 ¡22 0 0
0 0 ¡33 ¡34
0 0 ¡43 ¡44
¡51 ¡52 0 0
¡61 ¡62 0 0
0 0 ¡73 ¡74
0 0 ¡83 ¡84

377777777775

(β,γ)

2664
¹T+2
¹T−2
¹T+3
¹T−3

3775
(β,γ)

(181)

where

K
(β,γ)
11 = K

(β,γ)
22 =

C
(β,γ)
22

hβ
(4¡ 3

C
(β,γ)
22

¹C
(β,γ)
22

)

K
(β,γ)
12 = K

(β,γ)
21 =

C
(β,γ)
22

hβ
(2¡ 3

C
(β,γ)
22

¹C
(β,γ)
22

)

K
(β,γ)
15 = K

(β,γ)
16 = K

(β,γ)
25 = K

(β,γ)
26 = ¡3C

(β,γ)
22 C

(β,γ)
44 hβ

¹C
(β,γ)
22 l2γ

K
(β,γ)
17 = ¡K

(β,γ)
18 = ¡K

(β,γ)
27 = K

(β,γ)
28 =

C
(β,γ)
23

lγ
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K
(β,γ)
33 = K

(β,γ)
44 =

C
(β,γ)
44

hβ
(4¡ 3

C
(β,γ)
44

¹C
(β,γ)
23

)

K
(β,γ)
34 = K

(β,γ)
43 =

C
(β,γ)
44

hβ
(2¡ 3

C
(β,γ)
44

¹C
(β,γ)
23

)

K
(β,γ)
35 = ¡K

(β,γ)
36 = ¡K

(β,γ)
45 = K

(β,γ)
46 =

C
(β,γ)
44

lγ

K
(β,γ)
37 = K

(β,γ)
38 = K

(β,γ)
47 = K

(β,γ)
48 = ¡3C33C

(β,γ)
44 hβ

¹C
(β,γ)
23 l2γ

K
(β,γ)
51 = K

(β,γ)
52 = K

(β,γ)
61 = K

(β,γ)
62 = ¡3C22C

(β,γ)
44 lγ

¹C
(β,γ)
32 h2β

K
(β,γ)
53 = ¡K

(β,γ)
54 = ¡K

(β,γ)
63 = K

(β,γ)
64 =

C
(β,γ)
44

hβ

K
(β,γ)
55 = K

(β,γ)
66 =

C
(β,γ)
44

lγ
(4¡ 3

C
(β,γ)
44

¹C
(β,γ)
32

)

K
(β,γ)
56 = K

(β,γ)
65 =

C
(β,γ)
44

lγ
(2¡ 3

C
(β,γ)
44

¹C
(β,γ)
32

)

K
(β,γ)
71 = ¡K

(β,γ)
72 = ¡K

(β,γ)
81 = K

(β,γ)
82 =

C
(β,γ)
23

hβ

K
(β,γ)
73 = K

(β,γ)
74 = K

(β,γ)
83 = K

(β,γ)
84 = ¡3C33C

(β,γ)
44 lγ

¹C
(β,γ)
33 h2β

K
(β,γ)
77 = K

(β,γ)
88 =

C
(β,γ)
33

lγ
(4¡ 3

C
(β,γ)
33

¹C
(β,γ)
33

)

K
(β,γ)
78 = K

(β,γ)
87 =

C
(β,γ)
33

lγ
(2¡ 3

C
(β,γ)
33

¹C
(β,γ)
33

)

and

¡
(β,γ)
11 = ¡¡

(β,γ)
22 = 3¹®

(β,γ)
22 (

C
(β,γ)
22

2
¡ ¹C

(β,γ)
22 )

¡
(β,γ)
21 = ¡¡

(β,γ)
12 =

3¹®
(β,γ)
22 C

(β,γ)
22

2

¡
(β,γ)
33 = ¡¡

(β,γ)
34 = ¡

(β,γ)
43 = ¡¡

(β,γ)
44 =

3¹®
(β,γ)
23 C

(β,γ)
44 hβ

2lγ

¡
(β,γ)
51 = ¡¡

(β,γ)
52 = ¡

(β,γ)
61 = ¡¡

(β,γ)
62 =

3¹®
(β,γ)
32 C

(β,γ)
44 lγ

2hβ

¡
(β,γ)
73 = ¡¡

(β,γ)
84 = 3¹®

(β,γ)
33 (

C
(β,γ)
33

2
¡ ¹C

(β,γ)
33 )

¡
(β,γ)
83 = ¡¡

(β,γ)
74 =

3¹®
(β,γ)
33 C

(β,γ)
33

2
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3.3.2 Displacement continuity conditions

The displacement continuity at the interfaces between adjacent subcells is applied in an average
sense. Considering the ¯th interface, Fig. 6, the surface-averaged displacements in the x2 direction,
¹u
2+(β,γ)
2 and ¹u

2−(β+1,γ)
2 ; must be equal. Hence, we represent them using just one variable, i.e.,

¹u
2+(β,γ)
2 = ¹u

2−(β+1,γ)
2 = ¹u

2(β+1,γ)
2 (182)

Similarly, applying the continuity of surface-averaged displacements in the x3 direction at the ¯th

interface
¹u
2+(β,γ)
3 = ¹u

−2(β+1,γ)
3 = ¹u

2(β+1,γ)
3 (183)

Considering the °th interface, the surface-averaged displacements in the x3 direction, ¹u
3+(β,γ)
3 and

¹u
3−(β+1,γ)
3 ; must be equal and therefore can be represented using just one variable, i.e.,

¹u
3+(β,γ)
3 = ¹u

3−(β,γ+1)
3 = ¹u

3(β,γ+1)
3 (184)

Similarly, applying the continuity of surface-averaged displacements in the x2 direction at the °th

interface
¹u
3+(β,γ)
2 = ¹u

3−(β,γ+1)
2 = ¹u

3(β,γ+1)
2 (185)

Equations (182) ¡ (185) are similar to the displacement continuity conditions, Eqs. (59) ¡ (62);
in Section 2. Equations (182) ¡ (183) and (184) ¡ (185) hold true for ¯ = 1; :::; Nβ ¡ 1 and ° =
1; :::; Nγ ¡ 1; respectively. This gives rise to 2(Nβ ¡ 1)Nγ +2(Nγ ¡ 1)Nβ unknown surface-averaged
displacements deÞned at the subcell interfaces (both in x2 and x3 directions). The quantities

¹u
2(1,γ)
2 ; ¹u

2(1,γ)
3 ; ¹u

2(Nβ+1,γ)
2 ; ¹u

2(Nβ+1,γ)
3 ; ¹u

3(β,1)
2 ; ¹u

3(β,1)
3 ; ¹u

3(β,Nγ+1)
2 ; ¹u

3(β,Nγ+1)
3

deÞne the surface-averaged displacements at the external boundaries of the composite. These
quantities are either known or unknown depending on whether tractions or displacements are
deÞned at the external boundaries.

Fig. 6. Traction and displacement continuity applied at the interface of the subcells in an average
sense.
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3.3.3 Traction continuity conditions

The traction continuity at the interfaces between adjacent subcells is applied in an average sense.
Considering the ¯th interface, Fig. 6, the continuity of tractions in the x2 direction is ensured by

¹t
2+(β,γ)
2 + ¹t

2−(β+1,γ)
2 = 0 (186)

where ¹t+(β,γ)2 is the surface-averaged traction at the right face (x2 = hβ=2) of the subcell (¯; °) and
¹t
−(β+1,γ)
2 is the surface-averaged traction at the left face (x2 = ¡hβ+1=2) of the subcell (¯+1; °) in
the x2 direction, deÞned by Eqs. (89) and (88); respectively. Similarly, the continuity of surface-
averaged tractions at the ¯th interface in the x3 direction is ensured by

¹t
2+(β,γ)
3 + ¹t

2−(β+1,γ)
3 = 0 (187)

Considering the °th interface, and applying the continuity of tractions in the x2 direction in an
average sense we obtain

¹t
3+(β,γ)
2 + ¹t

3−(β,γ+1)
2 = 0 (188)

The continuity of surface-averaged tractions in the x3 direction at the °th interface is ensured by

¹t
3+(β,γ)
3 + ¹t

3−(β,γ+1)
3 = 0 (189)

Equations (186) ¡ (189) are similar to the traction continuity conditions, Eqs. (51) ¡ (54); in
Section 2. Using the local stiffness matrix (181); Eqs. (186)-(189) can be expressed in terms of the
surface-averaged displacements

(K11¹u
2+
2 +K12¹u

2−
2 +K15¹u

3+
2 +K16¹u

3−
2 +K17¹u

3+
3 +K18¹u

3−
3 )(β,γ)+

(K21¹u
2+
2 +K22¹u

2−
2 +K25¹u

3+
2 +K26¹u

3−
2 +K27¹u

3+
3 +K28¹u

3−
3 )(β+1,γ) =

(¡11 ¹T
+
2 + ¡12 ¹T

−
2 )(β,γ) + (¡21 ¹T

+
2 + ¡22 ¹T

−
2 )(β+1,γ) (190)

(K33¹u
2+
3 +K34¹u

2−
3 +K35¹u

3+
2 +K36¹u

3−
2 +K37¹u

3+
3 +K38¹u

3−
3 )(β,γ)+

(K43¹u
2+
3 +K44¹u

2−
3 +K45¹u

3+
2 +K46¹u

3−
2 +K47¹u

3+
3 +K48¹u

3−
3 )(β+1,γ) =

(¡33 ¹T
+
3 + ¡34 ¹T

−
3 )(β,γ) + (¡43 ¹T

+
3 + ¡44 ¹T

−
3 )(β+1,γ) (191)

(K51¹u
2+
2 +K52¹u

2−
2 +K53¹u

2+
3 +K54¹u

2−
3 +K55¹u

3+
2 +K56¹u

3−
2 )(β,γ)+

(K61¹u
2+
2 +K62¹u

2−
2 +K63¹u

2+
3 +K64¹u

2−
3 +K65¹u

3+
2 +K66¹u

3−
2 )(β,γ+1) =

(¡51 ¹T
+
2 + ¡52 ¹T

−
2 )(β,γ) + (¡61 ¹T

+
2 + ¡62 ¹T

−
2 )(β,γ+1) (192)

(K71¹u
2+
2 +K72¹u

2−
2 +K73¹u

2+
3 +K74¹u

2−
3 +K77¹u

3+
3 +K78¹u

3−
3 )(β,γ)+

(K81¹u
2+
2 +K82¹u

2−
2 +K83¹u

2+
3 +K84¹u

2−
3 +K87¹u

3+
3 +K88¹u

3−
3 )(β,γ+1) =

(¡73 ¹T
+
3 + ¡74 ¹T

−
3 )(β,γ) + (¡83 ¹T

+
3 + ¡84 ¹T

−
3 )(β,γ+1) (193)

Using the displacement continuity conditions given by Eqs. (182)¡ (185); Eqs. (190)¡ (193) can
be written in terms of the common surface-averaged displacements

K
(β,γ)
12 ¹u

2(β,γ)
2 + (K

(β,γ)
11 +K

(β+1,γ)
22 )¹u

2(β+1,γ)
2 +K

(β+1,γ)
21 ¹u

2(β+2,γ)
2 +K

(β,γ)
16 ¹u

3(β,γ)
2 +

K
(β,γ)
15 ¹u

3(β,γ+1)
2 +K

(β+1,γ)
26 ¹u

3(β+1,γ)
2 +K

(β+1,γ)
25 ¹u

3(β+1,γ+1)
2 +K

(β,γ)
18 ¹u

3(β,γ)
3 +

K
(β,γ)
17 ¹u

3(β,γ+1)
3 +K

(β+1,γ)
28 ¹u

3(β+1,γ)
3 +K

(β+1,γ)
27 ¹u

3(β+1,γ+1)
3 =

¡
(β,γ)
12

¹T
(β,γ)
2 + (¡

(β,γ)
11 + ¡

(β+1,γ)
22 ) ¹T

(β+1,γ)
2 + ¡

(β+1,γ)
21

¹T
(β+2,γ)
2 (194)
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K
(β,γ)
34 ¹u

2(β,γ)
3 + (K

(β,γ)
33 +K

(β+1,γ)
44 )¹u

2(β+1,γ)
3 +K

(β+1,γ)
43 ¹u

2(β+2,γ)
3 +K

(β,γ)
36 ¹u

3(β,γ)
2 +

K
(β+1,γ)
46 ¹u

3(β+1,γ)
2 +K

(β,γ)
35 ¹u

3(β,γ+1)
2 +K

(β+1,γ)
45 ¹u

3(β+1,γ+1)
2 +K

(β,γ)
38 ¹u

3(β,γ)
3 +

K
(β+1,γ)
48 ¹u

3(β+1,γ)
3 +K

(β,γ)
37 ¹u

3(β,γ+1)
3 +K

(β+1,γ)
47 ¹u

3(β+1,γ+1)
3 =

¡
(β,γ)
34

¹T
(β,γ)
3 + ¡

(β,γ)
33

¹T
(β,γ+1)
3 + ¡

(β+1,γ)
44

¹T
(β+1,γ)
3 + ¡

(β+1,γ)
43

¹T
(β+1,γ+1)
3 (195)

K
(β,γ)
52 ¹u

2(β,γ)
2 +K

(β,γ)
51 ¹u

2(β+1,γ)
2 +K

(β,γ+1)
62 ¹u

2(β,γ+1)
2 +K

(β,γ+1)
61 ¹u

2(β+1,γ+1)
2 +

K
(β,γ)
54 ¹u

2(β,γ)
3 +K

(β,γ)
53 ¹u

2(β+1,γ)
3 +K

(β,γ+1)
64 ¹u

2(β,γ+1)
3 +K

(β,γ+1)
63 ¹u

2(β+1,γ+1)
3 +

K
(β,γ)
56 ¹u

3(β,γ)
2 + (K

(β,γ)
55 +K

(β,γ+1)
66 )¹u

3(β,γ+1)
2 +K

(β,γ+1)
65 ¹u

3(β,γ+2)
2 =

¡
(β,γ)
52

¹T
(β,γ)
2 + ¡

(β,γ)
51

¹T
(β+1,γ)
2 + ¡

(β,γ+1)
62

¹T
(β,γ+1)
2 + ¡

(β,γ+1)
61

¹T
(β+1,γ+1)
2 (196)

K
(β,γ)
72 ¹u

2(β,γ)
2 +K

(β,γ)
71 ¹u

2(β+1,γ)
2 +K

(β,γ+1)
82 ¹u

2(β,γ+1)
2 +K

(β,γ+1)
81 ¹u

2(β+1,γ+1)
2 +

K
(β,γ)
74 ¹u

2(β,γ)
3 +K

(β,γ)
73 ¹u

2(β+1,γ)
3 +K

(β,γ+1)
84 ¹u

2(β,γ+1)
3 +K

(β,γ+1)
83 ¹u

2(β+1,γ+1)
3 +

K
(β,γ)
78 ¹u

3(β,γ)
3 + (K

(β,γ)
77 +K

(β,γ+1)
88 )¹u

3(β,γ+1)
3 +K

(β,γ+1)
87 ¹u

3(β,γ+2)
3 =

¡
(β,γ)
74

¹T
(β,γ)
3 + (¡

(β,γ)
73 + ¡

(β,γ+1)
84 ) ¹T

(β,γ+1)
3 + ¡

(β,γ+1)
83

¹T
(β,γ+2)
3 (197)

Thus, Eqs. (194)¡ (197) provide us with a total of 2(Nβ ¡ 1)Nγ +2(Nγ ¡ 1)Nβ equations in terms
of the common interfacial surface-averaged displacements and the surface-averaged displacements
at the external boundaries.

3.3.4 Boundary conditions

At the external boundaries of the composite, we have 2(Nβ+Nγ) faces of the subcells where either
tractions or displacements are deÞned. This gives rise to additional 4(Nβ +Nγ) unknown surface-
averaged quantities. The additional 4(Nβ+Nγ) equations are obtained from the imposed boundary
conditions given by

¹t
2(1,γ)
i = t

(γ)
left(x3) (198)

¹t
2(Nβ ,γ)
i = t

(γ)
right(x3) i = 2; 3 (199)

where t(γ)left(x3) and t
(γ)
right(x3) are piece-wise uniform surface tractions applied on the vertical bound-

aries in the x2 ¡ x3 plane. Similar reasoning holds for subcells (¯; 1); and (¯;Nγ): Alternatively,
if the displacements are speciÞed on the vertical boundaries, then the applied boundary conditions
are given by

u
3(β,1)
i = u

(β)
bottom(x2) (200)

u
3(β,Nγ)
i = u

(β)
top(x2) i = 2; 3 (201)

For other type of boundary conditions, the Eqs. (198)¡ (201) are modiÞed accordingly.

Note that at least one ¹u
(·)
2 and at least one ¹u

(·)
3 should be deÞned at the external boundary in

order to prevent rigid body motion.
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3.3.5 Solution for the surface-averaged displacements

Equations (194) ¡ (197) together with the imposed boundary conditions (198) ¡ (201) provide us
with the necessary 2(Nβ+1)Nγ+2(Nγ+1)Nβ relations for the 2(Nβ+1)Nγ+2(Nγ+1)Nβ unknown
surface-averaged variables, i.e., 2(Nβ ¡ 1)Nγ + 2(Nγ ¡ 1)Nβ unknown common interfacial surface-
averaged displacements along with 4(Nβ + Nγ) unknown surface-averaged displacements and/or
surface tractions at the external boundaries. Also, the unknown uniform strain ¹"11 is determined
from the generalized plane strain condition given by Eq. (124). For plane strain, ¹"11 is zero.

The Þnal system of equations obtained is symbolically written as

K U=t (202)

In the above equation, K is the global stiffness matrix obtained after assembling the local stiffness
matrices given by Eq. (181) using the local-global stiffness matrix approach as explained above.
The matrix K essentially contains information on the geometry and thermomechanical properties
of the individual NβNγ subcells. The general format and assembly of the global stiffness matrix K
has been summarized in the next subsection. The vector U contains the unknown surface-averaged
displacements at the subcell interfaces and the outer edges of the composite and is given by

U= [¹u
2(1)
2 ; :::; ¹u

2(Nγ)
2 ; ¹u

2(1)
3 ; :::; ¹u

2(Nγ)
3 ; ¹u

3(1)
2 ; :::; ¹u

3(Nβ)
2 ; ¹u

3(1)
3 ; :::; ¹u

3(Nβ)
3 ;¹"11]

where

¹u
2(γ)
2 = [¹u

2(1,γ)
2 ; :::; ¹u

2(Nβ+1,γ)
2 ] ¹u

2(γ)
3 = [¹u

2(1,γ)
3 ; :::; ¹u

2(Nβ+1,γ)
3 ]

¹u
3(β)
2 = [¹u

3(1,β)
2 ; :::; ¹u

3(Nβ+1,β)
2 ] ¹u

3(β)
3 = [¹u

3(1,β)
3 ; :::; ¹u

3(Nβ+1,β)
3 ]

The surface-averaged traction vector t contains information on the applied boundary conditions
and the mechanical effects produced by thermal loading.

Once Eq. (202) is solved for the surface-averaged displacements at all the subcell interfaces and
external boundaries, we substitute the surface-averaged displacements back into Eqs. (171)¡ (172)

and Eqs. (164) ¡ (167) and obtain the microvariables W (β,γ)
i(mn) which deÞne the displacement Þeld

in each subcell.

3.3.6 Assembly of the global stiffness matrix K

The general format and assembly of the global stiffness matrix K is summarized in this subsection.
K consists of eight submatrices

K =

2664
K11 0 K13 K14

0 K22 K23 K24

K31 K32 K33 0
K41 K42 0 K44

3775
where K11;K22;K33 and K44 relate the quantities in their respective directions and have entries
concentrated along the diagonal. The remaining submatrices represent coupling of the Þeld variables
in the x2 and x3 directions and have entries scattered throughout. The size of the global stiffness
matrix K is [2Nβ(Nγ + 1) + 2Nγ(Nβ + 1)] £ [2Nβ(Nγ + 1) + 2Nγ(Nβ + 1)] for plane strain. An
additional row and column is added for the generalized plane strain case. The structure of the
submatrix K11 is shown below
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K11 =

2666666666664

A
(1)
11 0 0 0 0 0 0 0

0 A
(2)
11 0 0 0 0 0 0

0 0 : 0 0 0 0 0
0 0 0 : 0 0 0 0
0 0 0 0 : 0 0 0
0 0 0 0 0 : 0 0
0 0 0 0 0 0 : 0

0 0 0 0 0 0 0 A
(Nγ)
11

3777777777775
where the size of K11 is [Nγ(Nβ + 1) £ Nγ(Nβ + 1)] : The structure of the submatrices A

(γ)
11 is

shown in the appendix. The structure of K22;K33 and K44 is similar to K11: The structure of the
coupling matrix K13 is shown below

K13 =

26666666666664

B
(11)
13 B

(12)
13 : : : : : B

(1Nβ)
13

B
(21)
13 B

(22)
13 : : : : : B

(2Nβ)
13

: : : : : : : :
: : : : : : : :
: : : : : : : :
: : : : : : : :
: : : : : : : :

B
(Nγ1)
13 B

(Nγ2)
13 : : : : : B

(NγNβ)
13

37777777777775
where the size of K13 is [Nγ(Nβ + 1) £ Nβ(Nγ + 1)] : The structure of the submatrices B

(γβ)
13 is

shown in the appendix. The structure of the remaining coupling matrices is similar to K13:

4 Mesh-Sensitivity and Validation Studies

The two-dimensional formulation of the original higher-order theory was discussed brießy in Section
2. In Section 3, an efficient reformulation of the higher-order theory was developed and discussed
in detail. The procedure for determining the various Þeld quantities using the reformulated higher-
order theory was also outlined in Section 3. The next step is to verify the efficiency and accuracy
of this reformulated version for various thermal, mechanical, and thermomechanical problems.
In this section, we investigate the convergence of thermal and mechanical Þeld quantities with
mesh reÞnement and also verify their accuracy upon comparison with analytical and Þnite-element
solutions.

4.1 Mesh Sensitivity: Thermal Problem

In this subsection, the convergence of temperature Þeld with mesh reÞnement is investigated and
the results are compared with an analytical solution. The problem deÞnition, investigated geometry
and meshing are shown in Fig. 7. As shown in Fig. 7 (a), the cross-section of the block has unit
dimensions in the x2¡x3 plane. The dimension of the block is considered inÞnite in the out-of-plane
(x1) direction which, however, does not play a role in the temperature Þeld analysis. The block is
subjected to a temperature of 100◦C; which is held constant, at the left, top and bottom faces and
a temperature of 200◦C at the right face. As shown in Figs. 7 (b), (c) and (d), the cross-section of
the block in the x2 ¡ x3 plane is discretized into 4£ 4; 12£ 12; and 32£ 32 subcells, respectively,
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Fig. 7. Problem deÞnition, investigated geometry and discretization used for mesh sensitivity
studies: thermal problem.
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of uniform size. The material within the block is homogeneous and the thermal conductivity is
taken to be 25 W=m¡ ◦C: However, the analytical solution of the Laplace�s equation indicates that
the temperature Þeld is independent of the thermal conductivity for the homogeneous case.

For the given boundary conditions, geometry and meshing, the temperature Þeld was generated
using the reformulated higher-order theory. Analytical solution for the temperature Þeld was ob-
tained by solving the Laplace equation using the standard Fourier series approach, Zhong (2002).
The contour plots of the temperature Þelds for the 4£ 4; 12 £ 12; and 32£ 32 subcell meshes are
shown in Figs. 8 (a), (b) and (c), respectively, and are compared with the analytical solution shown
in Fig. 8 (d). As observed from the contour plots, the 4£ 4 subcell mesh approximates the actual
temperature Þeld only in a rough sense. As the mesh is reÞned to 12£12 subcells, the temperature
Þeld becomes almost identical with the actual temperature Þeld except near the (1; 0) and (1; 1)
coordinates in the x2 ¡ x3 plane. These are the points of temperature discontinuity and hence
greater mesh reÞnement is required in order to properly capture the actual temperature near these
points. This is achieved with the 32£32 subcell mesh for which the temperature Þeld, Fig. 8 (c), is
visually identical to the actual temperature Þeld, Fig. 8 (d), obtained from the analytical solution.

Next, we consider the convergence behavior along several cross-sections. For the 4 £ 4 subcell
mesh shown in Fig. 7(b), the cross-section along the line x3 = 0:25 happens to be the interface
between the subcells (1; °) and (2; °), and the cross-section along the line x3 = 0:5 is the interface
between the subcells (2; °) and (3; °): Similarly, for the 12 £ 12 and 32 £ 32 subcell cases, the
cross-sections along the lines x3 = 0:25 and x3 = 0:5 run along the corresponding subcell interfaces.
The pointwise temperature distribution (also displacements and stresses) along each interface can
be calculated using the microvariables associated with the subcell on either side of the interface. In
general, the microvariables belonging to subcells on the opposite sides of the interface are different.
Therefore, the pointwise interfacial temperatures calculated using the microvariables on either side
will be different since the thermal/heat ßux continuity conditions across the interface are applied
in a surface-average sense. However, with the reÞnement in mesh, the interfacial temperatures
calculated using the subcell microvariables on either side of the interface should converge. The
exception occurs when the interfacial line happens to be the line of symmetry. In that case, the
magnitude of the subcell microvariables on the opposite sides of the interface is identical and hence
the interfacial temperatures.

Figure 9 shows the temperature distributions along the lines x3 = 0:25 and x3 = 0:5: The
symbol ¹T2 denotes the common interfacial surface-averaged temperatures which are the basis of
the reformulation. The product of the global thermal conductivity with these interfacial surface-
averaged temperatures yields the applied thermal/heat ßux boundary conditions. T+ denotes the
interfacial temperature obtained using the microvariables of the subcells lying below the interfacial
lines. T− denotes the interfacial temperature obtained using the microvariables of the subcells
lying above the interfacial lines. As observed in Fig. 9 (a), the temperature distributions along
the line x3 = 0:25 calculated using the subcell microvariables on the opposite sides of the interface
are quite different for the 4 £ 4 subcell case. However, the interfacial temperature distributions
tend to converge to the same values for the 12 £ 12 subcell case and practically coincide for the
32£ 32 subcell case, Figs. 9 (c) and (e), respectively. Also, the surface-averaged temperatures ( ¹T2)
tend to converge in a piece-wise uniform manner to the actual temperature distribution with mesh
reÞnement. For the cross-section along the line x3 = 0:5; the temperature distributions, T+ and
T−; calculated using the subcell microvariables on the opposite sides of the interface are identical
even for the 4 £ 4 subcell case, Fig. 9 (b). This is because the line x3 = 0:5 happens to be the
line of symmetry for the given boundary conditions and hence the microvariables belonging to the
subcells on the opposite side of the interface are identical. This provides an additional veriÞcation
of the results obtained using the reformulated higher-order theory.
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Fig. 8. Temperature Þeld for mesh discretizations and boundary conditions given in Fig. 7 and
comparison with analytical solution.
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Fig. 9. Convergence studies for temperature distributions along the cross-sections x3 = 0.25, 0.5
shown in Fig. 7.
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Figure 10 shows the temperature distributions along the lines x2 = 0:5 and x2 = 0:75: These
cross-sections do not lie along the line of symmetry and hence the corresponding interfacial distribu-
tions exhibit trends similar to those observed in the cross-section along the line x3 = 0:25 described
above. The temperature distributions T+ and T− calculated using the subcell microvariables on
the left and right sides of the interface, respectively, are quite different for the 4 £ 4 subcell case,
Figs. 10 (a) and (b). These interfacial temperature distributions tend to converge to the same
values for the 12£ 12 subcell case, Figs. 10 (c) and (d), and coincide for the 32£ 32 subcell case,
Figs. 10 (e) and (f). Also, the surface-averaged temperatures ( ¹T3) tend to converge to the actual
temperature distribution with mesh reÞnement.

Figure 11 shows the temperature distributions along the boundaries x3 = 0 and x2 = 1. As
observed in the Þgure, these distributions calculated using the reformulated higher-order theory
approach the applied boundary conditions with mesh reÞnement. However, they do not exactly
match the applied boundary conditions due to the presence of the temperature discontinuity at
the (1; 0) and (1; 1) coordinates. Virtually, an inÞnitely dense mesh near these points would be
required to exactly match the applied boundary conditions. Even in the case of the analytical
solution, a large number of terms in the Fourier series expansion is needed in order to obtain
converged solution near the points of temperature discontinuity. At the point of discontinuity,
however, only the average value is obtained according to the well-known theorem.

The interfacial temperature distributions calculated using the subcell microvariables on the
opposite sides of the interface and averaged at each point across the interface are plotted along the
various cross-sections (along the lines x3 = 0:25; 0:5 and x2 = 0:5; 0:75) in Fig. 12. These plots were
generated for the different meshes considered above and the results are compared with the analytical
solution. As observed in these cross-sectional plots, averaging the temperatures calculated using
the subcell microvariables on the opposite sides of the interface produces acceptable results even for
the rough mesh as in the 4£ 4 subcell case considered here. The difference between the analytical
solution and the 4£4 subcell mesh is greater in the regions of high temperature gradients. Since the
considered cross-sections are removed from the points of temperature discontinuity, the temperature
distributions generated using 12£12 and 32£32 subcell meshes coincide with the analytical solution.

4.2 Validation: Thermal Problem

In the case of functionally graded materials, the microstructural gradation is typically varied gradu-
ally in a manner that depends on the boundary conditions in order to obtain the required optimized
composition proÞle. This results in continuous or discrete gradation of microstructure as described
in Section 1, and therefore continuously or discretely varying properties. In this subsection, a
heterogeneous composition with discrete variation of microstructure is considered. In order to
generate discretely varying thermal conductivity k; a continuous (exponential) function of spatial
coordinates is employed as a basis. The thermal conductivity is then calculated at the center of
each subcell according to the given function and is assumed to be constant within the subcell.
The results are compared with the Þnite-element solution obtained using ANSYS, and the effect of
thermal conductivity variation on temperature Þeld and its gradients is discussed.

Four different thermal conductivity variations were considered. The problem deÞnition, inves-
tigated geometry and meshing are given in Fig. 13. The investigated geometry and meshing are
the same for all four cases. The cross-section of the block has unit dimensions in the x2¡ x3 plane
and is considered inÞnitely long in the out-of-plane (x1) direction. As observed in Subsection 4.1,
the temperature Þeld for the homogeneous case converged fairly well with the 12£ 12 subcell mesh
except at the points of temperature discontinuity, and it was identical to the actual solution for
the 32£ 32 subcell mesh. Therefore, in the cases considered here, the cross-section was discretized
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Fig. 10. Convergence studies for temperature distributions along the cross-sections x2 = 0.5, 0.75
shown in Fig. 7.
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Fig. 11. Convergence studies for temperature distributions along the edges x3 = 0 and x2 = 1
shown in Fig. 7.
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Fig. 12. Convergence studies for averaged interfacial temperature distributions along the
cross-sections shown in Fig. 7, and comparison with analytical solutions.
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into 25 £ 25 subcells of uniform size. In the Þrst case, Fig. 13 (a), the block is subjected to a
temperature of 100◦C; which is held constant, at the left, top and bottom faces and a temperature
of 200◦C at the right face. The thermal conductivity k (W=m¡ ◦C) is assumed to be exponentially
increasing in the x2 direction according to the function

k(x2) =
1

2
e5x2 (203)

In the second case, Fig. 13 (b), the applied temperature boundary conditions remain the same but
the thermal conductivity k is assumed to be exponentially decreasing in the x2 direction according
to the function

k(x2) = 60e−5x2 (204)

In the third and fourth cases, the block is subjected to a temperature of 100◦C; which is held
constant, at the left and top faces, and a temperature of 200◦C at the right and bottom faces.
The thermal conductivity k is assumed to be vary exponentially in both the x2 and x3 directions
according to the functions

k(x2; x3) = 10e−2x2+2x3 (205)

and
k(x2; x3) = 10e2x2−2x3 (206)

4.2.1 Reformulated HOTFGM and Þnite-element comparison

The temperature Þeld calculated using the reformulated version of the higher-order theory is com-
pared with the Þnite-element solution. The Þnite-element solution was obtained by simulating the
above cases in ANSYS using 8-node thermal elements called Plane77. The mesh discretization used
in the Þnite-element analysis is the same as that used in the reformulated higher-order theory. Also,
the Plane77 element in ANSYS has the same order (quadratic) of temperature Þeld approximation
as in the reformulated higher-order theory. For the Þrst case, Fig. 13 (a), the temperature Þeld
contour plots obtained using the reformulated higher-order theory and ANSYS are shown in Figs.
14 (a) and (b), respectively. For the second case, Fig. 13 (b), the temperature Þeld contour plots
obtained using the reformulated higher-order theory and ANSYS are shown in Figs. 14 (c) and
(d), respectively. For the third case, Fig. 13 (c), the temperature Þeld contour plots obtained using
the reformulated higher-order theory and ANSYS are shown in Figs. 15 (a) and (b), respectively.
Finally, for the fourth case, Fig. 13 (d), the temperature Þeld contour plots obtained using the
reformulated higher-order theory and ANSYS are shown in Figs. 15 (c) and (d), respectively.

As observed in the contour plots, the temperature Þelds obtained from the reformulated higher-
order theory and the Þnite-element analysis match very closely. However, at the points with the
coordinates (1; 0) and (1; 1), which are the points of temperature discontinuity, the temperature
Þeld obtained from reformulated higher-order theory shows better convergence than the Þnite-
element solution. This is because the boundary conditions in the higher-order theory are applied in
a surface-average sense, whereas in the Þnite-elements the boundary conditions are applied at the
nodes. Therefore, higher mesh reÞnement is required at the points of temperature discontinuity in
the Þnite-element case for this particular choice of element.

4.2.2 Effect of thermal conductivity variation

According to the Fourier�s law of heat conduction, the heat ßux is in the direction of the nega-
tive temperature gradient. Moreover, the temperature Þeld is modulated by the variation in thermal
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Fig. 13. Different thermal conductivity variations and mesh discretizations used for validation
studies: thermal problem.
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Fig. 14. Temperature Þeld comparison obtained using HOTFGM and FEA for thermal
conductivity variations in x2 direction.
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Fig. 15. Temperature Þeld comparison obtained using HOTFGM and FEA for thermal
conductivity variations in both x2 and x3 direction.

49NASA/CR—2002-211909



conductivity. Increasing the thermal conductivity in a particular direction shifts the temperature
Þeld towards the opposite direction, thereby decreasing the temperature gradient and vice-versa.

The temperature Þeld for the same geometry and boundary conditions as in the Þrst and the
second case discussed in this subsection, but for the homogeneous material, was presented in Fig. 8
(d). In the Þrst case, increasing the thermal conductivity in the x2 direction shifts the temperature
Þeld in the negative x2 direction, Fig. 14 (a), relative to the homogeneous case. In the second case,
on the other hand, decreasing the thermal conductivity in the x2 direction shifts the temperature
Þeld in the positive x2 direction, thereby increasing the temperature gradient near the right face
of the block, Fig. 14 (c). Similar behavior is observed for the two-dimensional variation of thermal
conductivity shown in Figs. 15 (a) and (c).

4.3 Validation: Mechanical Problem

In Subsections 4.1 and 4.2, mesh sensitivity and validation studies were conducted for thermal
cases with both homogeneous and heterogenous materials. In this subsection, the classical Eshelby
problem for the pure mechanical loading is considered. This problem involves an elliptical Þber
inclusion in an inÞnite matrix with uniform surface tractions applied over the boundaries at inÞnity.

Here, for the purpose of comparison, a circular inclusion is considered instead of an elliptical
one and plane strain analysis is carried out. The matrix is assumed to be made up of epoxy and
its cross-section has unit dimensions in the x2 ¡ x3 plane. A very small glass Þber is embedded in
the matrix so that the matrix practically behaves as inÞnite and the effects of the Þber inclusion�s
presence on stresses are not felt near the edges. The material properties of glass and epoxy used
in the analysis are listed in Table 1. The matrix is subjected to normal surface tractions of unit
magnitude in the x2 direction at the outer faces as shown in Fig. 16 (a).

Material E (GPa) º

Glass Þber 69.0 0.2
Epoxy matrix 4.8 0.34

Table 1. Material properties of constituent Þber and matrix phases.

Because of the type of boundary conditions and the investigated geometry, the problem is
symmetric about the cross-sections along the lines x2 = 0:5 and x3 = 0:5: The mid-points along
the lines x2 = 0; 1 and x3 = 0; 1 are not expected to move in the x3 and x2 directions, respectively.
Therefore, in order to prevent rigid body motion, the middle two subcells along the lines x2 = 0
and x3 = 0 were constrained from moving in the x3 and x2 direction, respectively.

The full mesh used in the reformulated higher-order theory is shown in Fig. 16 (a). In order
to capture the high stress gradients near the interface of the glass Þber and epoxy matrix, which
occur due to the large material property mismatch between the two materials, very reÞned mesh
was used in the interface�s vicinity. In order to clearly see the reÞned mesh near the inclusion, the
magniÞed mesh discretization is shown in Fig. 16 (b).

Stress contours obtained using the reformulated higher-order theory are shown in Figs. 17
(a), (c) and (e) and compared with the analytical solution (cf., Dugdale and Ruiz (1971)) in
Figs. 17 (b), (d) and (f), respectively. As observed from the contour plots, the reformulated
higher-order theory results match the exact analytical results very closely, both qualitatively and
quantitatively. The normal stress contour plots obtained from the reformulated higher-order the-
ory are perfectly symmetric about the horizontal and the vertical lines passing through the center of
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Fig. 16. Boundary conditions and mesh discretization for the Eshelby problem.
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Fig. 17. Comparison of stress Þelds obtained using HOTFGM and analytical solutions.
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the Þber inclusion as they ought to be due to the symmetry of the problem about these lines. Also,
the normal stresses are nearly uniform in the Þber and the shear stress is nearly zero. The stress
Þelds in the vicinity of the Þber are almost the same as those of the exact analytical solution.

The higher-order theory is sometimes confused with the Þnite-element technique. To demon-
strate that the two approaches are fundamentally different, a Þnite-element solution was developed
for the above problem. The same mesh was generated in ANSYS using 2-D structural 4-node
(Plane182) and 2-D structural 8-node (Plane183) elements with unit negative pressure applied along
x2 = 0; 1: Plane182 elements use a bilinear approximation of the displacement Þeld while Plane183
elements have the same order (quadratic) displacement Þeld approximation as in the reformulated
higher-order theory. The middle nodes along x2 = 0; 1 and x3 = 0; 1 were constrained from moving
in the x3 and x2 directions, respectively, in order to prevent rigid body motion. Stress contour plots
generated using the reformulated higher-order theory and Þnite-element analysis based on the 8-
noded elements are compared in Fig. 18. The results are plotted using the same color scale and are
magniÞed by 250 percent in order to compare the stresses in the vicinity of the Þber inclusion more
closely. As observed in these plots, the Þnite-element solution picks up local stress concentrations
at the interfacial subcell corners while, as seen in Fig. 17, the reformulated higher-order theory
does not pick these stress concentrations and compares well with the actual solution. Further, the
traction quantities are not continuous along the element interfaces in the Þnite-element case while
they are continuous along the subcell interfaces in the reformulated higher-order theory. Finally,
the stress components are not fully uniform within the Þber in the Þnite-element case. Table 2 lists
the maximum and the minimum stresses obtained from the analytical, reformulated higher-order
theory and the Þnite-element solutions. As observed in Table 2, the stress concentrations picked
in the Þnite-element analysis based on the 4-noded elements are smaller than the ones picked up
by the 8-noded elements and hence closer to the actual solution. However, the 4 -noded element
assumes a bilinear variation of displacement Þeld while the 8-noded element assumes a quadratic
variation. Hence, the results from the 8-noded element based analysis should be compared with
the actual solution because of the higher-order Þeld approximation. In the Þnite-element case,
these stress concentrations are picked up because the circular inclusion has been approximated by
a stair-case pattern shown in Fig. 16 (b).

(MPa) Analytical HOTFGM
FEA

(4-node)
FEA

(8-node)
¾max22 1.49 1.58 2.52 2.94
¾min22 0.05 -0.027 0.02 0.08
¾max33 0.68 0.72 0.68 0.64
¾min33 -0.35 -0.3 -0.63 -1.65
¾max23 0.37 0.36 0.25 0.72
¾min23 -0.37 -0.36 -0.25 -0.72

Table 2. Comparison of maximum and minimum stresses obtained using analytical, HOTFGM
and FEA approaches.

Further, in the Þnite-element case, the continuity of displacements is satisÞed in a point-wise
manner (at the nodes) and therefore, the exact details of the geometry are important in order to
obtain converged results. This was demonstrated by generating the exact circular inclusion shape
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Fig. 18. Comparison of stress Þelds obtained using HOTFGM and FEA.
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Fig. 19. Comparison of stress Þelds obtained using FEA with exact circular inclusion and
analytical solutions.
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using 8-noded (Plane183) elements in ANSYS. A total of 1045 elements was used in the analy-
sis. The results obtained for this case are plotted in Fig. 19 and compared with the analytical
results. As seen in Fig. 19, the results obtained using the Þnite-element analysis for the exact
inclusion geometry match the actual analytical results both qualitatively and quantitatively. In the
reformulated higher-order theory, the displacement/traction continuity conditions are applied in a
surface-averaged sense and therefore the various Þeld quantities are blurred acrss the interfaces.
An approximation of the inclusion geometry produces good results. This is very useful in analyzing
practical problems where modeling the exact geometry can be very demanding.

4.4 Validation: Combined Thermomechanical Case

In this subsection, a combined thermomechanical case is considered. The effect of temperature
increase on a constrained geometry is studied and the results obtained from the reformulated
higher-order theory are compared with Þnite-element analysis. The investigated geometry and the
thermal boundary conditions are the same as those considered in Subsection 4.1 and are shown
again in Fig. 20 (a) for convenience. The block is considered to be made up of aluminium and the
material properties used for the analysis are listed in Table 3. The mechanical constraints imposed
are the Þxidity of the left and the right face of the block.

Material k (W=m¡ ◦C) E (GPa) º ® £ 10−6 (=◦C)

Aluminum 220 72.4 0.33 22.5

Table 3. Material properties used for the combined thermomechanical analysis.

The cross-section of the block in the x2¡x3 plane was initially discretized into 32£ 32 subcells
of uniform size as shown in Fig. 20 (b). This discretization was shown to be satisfactory in dealing
with the thermal problem in Subsection 4.1. As the gradients of various mechanical Þeld quantities
are expected to be higher around the corners, the mesh should be more reÞned in the regions of
higher gradients. Therefore, another discretization with the same number of subcells but with the
mesh reÞned around the corners was also considered as shown in Fig. 20 (c). In order to compare
with Þnite-element results, the same mesh (32 £ 32, non-uniform, Fig. 20 (d)) was created in
ANSYS.

The temperature, displacement and stress Þeld contour plots obtained using the reformulated
higher-order theory and Þnite-element analysis for the graded (reÞned around the corners) mesh
are shown in Figs. 21 and 22. As observed from the contour plots, the temperature and the
displacement Þeld obtained using the two approaches are visually indistinguishable. The stress
Þeld contour plots generated using the two methods also match very closely except at the corners.
The maximum and minimum stresses are obtained at the corners and their magnitudes predicted
by the reformulated higher-order theory and the Þnite-element analysis are different as shown in
Table 4. No consistent trend is observed from these magnitudes. The normal stresses predicted
by Þnite-element analysis are higher than the higher-order theory results, while the shear stress
predicted by the higher-order theory is higher than the Þnite-element result. A thorough ANSYS
analysis showed that these stress magnitudes (at the corners) do not converge with any amount of
mesh reÞnement but continue to increase as the mesh is reÞned further and further. This is most
likely due to the singular behavior at the corners which occurs because of the applied mechanical
boundary conditions.
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Fig. 20. Problem deÞnition, investigated geometry and discretization used for validation studies:
thermomechanical problem.
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Fig. 21. Temperature and displacement Þeld comparison obtained using HOTFGM and FEA for
the homogeneous plate with Þxed boundary conditions.
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Fig. 22. Stress Þeld comparison obtained using HOTFGM and FEA for the homogeneous plate
with Þxed boundary conditions.

59NASA/CR—2002-211909



(MPa) HOTFGM FEA
¾max22 -83 -70
¾min22 -1871 -2063
¾max33 152 59
¾min33 -715 -1253
¾max23 963 608
¾min23 -963 -608

Table 4. Comparison of maximum and minimum stresses obtained using HOTFGM and FEA
approaches.

The various Þeld quantities (temperature, displacements u2 and u3, and stresses ¾22; ¾33; and
¾23) were also plotted along the cross-section x3 = 0:1 in order to demonstrate the advantages of
reÞning the mesh in the regions of high gradients. The effect of uniform and non-uniform mesh
is studied and the results are compared with the Þnite-element results in Fig. 23. From these
cross-sectional plots, it is observed that the temperature and displacements converge with 32£ 32
subcells even for the uniform mesh case. However, the stresses are different for the uniform mesh
case, especially near the corners. This is because of the higher gradients in these regions. The
stresses are related to the derivatives of the displacement Þeld and, therefore, the error in the stress
Þeld is expected to be higher than in the displacement Þeld. The non-uniform mesh with 32 £ 32
subcells converges better then the uniform 32 £ 32 subcell mesh. This shows the advantages of
effectively graded meshes. Therefore, an effective mesh should be created with relatively more
subcells in the regions of high Þeld gradients. As observed from the above cross-sectional plots,
comparable results are obtained from the Þnite-elements and the reformulated higher-order theory
for the graded mesh.

5 Application: Thermal Barrier Coatings

As described in Section 1, one of the most important applications of functionally graded materials is
in the thermal protection systems such as thermal barrier coatings. In many practical applications
such as aerospace engines, electronic circuit boards, packaging of chips, etc., the structures are
subjected to very high thermal gradient loading. The metallic part in these structures yields when
subjected to very high temperatures. In order to prevent this yielding, the metallic substrate is
coated with a low conductivity ceramic layer to reduce the temperature to which the metal is
exposed. These ceramic coatings of metallic substrates with an adhesive layer between the metal
and ceramic regions, or the bond coat, are called thermal barrier coatings or TBCs.

Layers of bond coat and ceramic with sharp interfaces produce high interlaminar stresses at the
edges which may lead to separation of these layers. Therefore, in order to prevent these free-edge
interlaminar stresses, which occur due to large material property mismatch, the microstructure is
gradually varied. There are various spray techniques such as plasma spray, ßame spray, arc spray,
etc., which are used in different industries for fabricating thermal barrier coatings. The metallic
substrate is Þrst sprayed with an adhesive which acts as a bond coat between the metal and the
ceramic material, followed by the coating itself. These spray techniques can be very efficient in
producing functionally graded microstructures for thermal barrier coatings.

Thermal barrier coatings can be analyzed by using either the uncoupled or the coupled approach
as described in Section 1. In the uncoupled approach, the gradually varying microstructure is either
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Fig. 23. Comparison of temperature displacement and stress distributions along x3 = 0.1
obtained using HOTFGM and FEA.
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assumed to be continuous function of spatial coordinates which best Þts the given distribution or
approximated by layers with constant homogenized properties. These homogenized properties are
calculated using various micromechanical models. However, the uncoupled approach neglects the
locally produced effects of microstructural gradation. Using the layered approach with homogenized
properties may produce stress concentrations at the interfaces in the vicinity of free edge which
would not otherwise occur in the actual microstructure.

In this section, a TBC with continuously varying microstructure is analyzed using the reformu-
lated higher-order theory and the results are compared with Þnite-element analysis.

5.1 Problem DeÞnition

The investigated geometry, microstructural gradation and the boundary conditions are shown in
Fig. 24 (a). The cross-section of the TBC in the x2¡x3 plane has unit dimension in the x3 direction
and is twice as long in the x2 direction. The cross-section is discretized into 120£ 60 subcells such
that each subcell has an aspect ratio of one. The dimension of the block is considered inÞnite in
the out of plane (x1) direction and plane strain analysis is carried out. The thermal barrier coating
is subjected to zero temperature at the bottom face and a concentrated temperature at the top.
The left and the right faces are insulated against conduction (zero heat ßux). At the top face, the
temperature is assumed to vary with the x2 coordinate according to the exponential function

T (x2; 1) = 1325 (cos jx2 ¡ 1j)20 + 25 (207)

as shown in Fig. 24 (a). The temperature is calculated at the right corner of the top edge of each
subcell and that constant value is applied at the top face of the subcell. The bottom face of the TBC
is placed on rollers and the middle two subcells at the bottom are Þxed in order to prevent rigid body
motion. The bottom 12 rows of subcells (¯ = 1; 2; ::; 12; ° = 1; 2; :::; 120) are assigned the properties
of steel which is the substrate. The next 8 rows of subcells (¯ = 13; 14; ::; 20; ° = 1; 2; :::; 120) are
assigned the properties of the alloy CoCrAlY which acts as the bond coat adhesive. In the remaining
40 rows of subcells (¯ = 21; 22; ::; 60; ° = 1; 2; :::; 120); the material properties are assigned such
that the adhesive (CoCrAlY) lies at the bottom and the ceramic (zirconia) at the top with gradual
variation from the bond coat to the ceramic top coat. The material properties used in the analysis
are listed in Table 5. The volume fraction of the CoCrAlY bond coat is plotted as a function of x3
in Fig 24 (b), showing the gradually changing microstructure.

Material k (W=m¡ ◦C) E (GPa) º ® £ 10−6 (=◦C)

Steel 60.5 207 0.33 15
CoCrAlY 2.42 197 0.25 11
Zirconia 0.5 36 0.2 8

Table 5. Material properties used for the thermal barrier coating application.

5.2 HOTFGM and Finite-Element Comparison

For the given geometry, microstructure and boundary conditions, the various Þeld quantities (tem-
perature, displacements u2 and u3; stresses ¾22; ¾33 and ¾23) were generated using the reformulated
higher-order theory and are shown in Figs. 25 (a) - 30 (a). The various Þeld quantities were also cal-
culated using the Þnite-element method in order to compare the reformulated higher-order theory
results. The Þnite-element solution was obtained by generating the same mesh and microstructure
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Fig. 24. Problem deÞntion, investigated geometry and material gradation used for TBC
application.
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in ANSYS using 2-D coupled Þeld, 4-node (Plane13) elements. In the Þnite-element case, the
temperature applied at the top face is calculated at the nodes using the assumed exponential
function. The bottom face is constrained to move in the x3 direction and the middle node at the
bottom is Þxed in order to prevent rigid body motion. The generated contour plots for the various
Þeld quantities are shown in Figs. 25 (b) - 30 (b). Also, the maximum and the minimum values of
the various Þeld quantities are listed in Table 6.

Maximum Minimum
HOTFGM FEA HOTFGM FEA

u2 0.0023 0.0022 -0.0023 -0.0022
u3 0.0035 0.0034 0 0
¾22 103.7 107.9 -140.8 -225.6
¾33 71.5 105.4 -186.6 -217.2
¾23 70.1 86.7 -70.9 -84.7

Table 6. Comparison of maximum and minimum displacements and stresses obtained using
HOTFGM and FEA approaches.

As observed in the contour plots, Figs. 25 - 27, and also in Table 6, the temperature and dis-
placement Þelds obtained from the reformulated higher-order theory and the Þnite-element analysis
match very closely. However, the stress values obtained using the two approaches are considerably
different in the graded region, eventhough the general distributions are similar. In the Þnite-
element case, the stresses across the interfaces of the elements vary considerably as observed from
the contour plots in Figs. 28 (b) - 30 (b). The ¾22 and ¾23 stress components are the traction
components along the vertical interfaces of the subcells and ¾23 and ¾33 are the traction compo-
nents along the horizontal interfaces of the subcells. These traction quantities are expected to be
approximately continuous from one subcell or element to another. In the reformulated higher-order
theory, the traction quantities are continuous across the subcell interfaces. In the Þnite-element
case, on the other hand, the difference in these tractions across the interfaces of the elements,
particularly in the graded region, is very high, which demonstrates that the stress Þeld has not con-
verged. This is partly due to the continuity of tractions/displacements which is explicitly applied
(in a surface-average sense) across the subcell interfaces in the reformulated higher-order theory.
In the Þnite-element case, continuity of displacements is explicitly applied in a pointwise manner
(at the nodes) and then the potential energy is minimized in order to obtain the displacement and
stress Þelds. Therefore, in the Þnite-element case, a more reÞned mesh is required in order to get
converged solution for the stresses. Also, as observed in the stress contour plots, the boundary
conditions are somewhat better satisÞed by the reformulated higher-order theory.

6 Conclusions and Future Work

6.1 Conclusions

An efficient reformulation of the higher-order theory for functionally graded materials for two-
dimensional thermoelastic problems has been successfully developed. The subcell microvariables,
which were the basic unknowns in the original higher-order theory, were expressed in terms of the in-
terfacial surface-averaged quantities (temperatures and displacements) and these interfacial surface-
averaged quantities were considered to be the basic unknown quantities in the reformulation. The
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Fig. 25. Temperature Þeld for TBC application obtained using HOTFGM and FEA.
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Fig. 26. Displacement Þeld u2 for TBC application obtained using HOTFGM and FEA.

66NASA/CR—2002-211909



Fig. 27. Displacement Þeld u3 for TBC application obtained using HOTFGM and FEA.
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Fig. 28. Stress Þeld ¾22 for TBC application obtained using HOTFGM and FEA.
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Fig. 29. Stress Þeld ¾33 for TBC application obtained using HOTFGM and FEA.
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Fig. 30. Stress Þeld ¾23 for TBC application obtained using HOTFGM and FEA.
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local-global conductivity and local-global stiffness matrix approach was used in order to eliminate
redundant equations. This resulted in the reduction of the size of the global conductivity and
stiffness matrices by approximately sixty percent. The reduction in the number of equations has
enhanced the theory�s capability to analyze computationally intensive and demanding cases. Prob-
lems requiring greater mesh discretization (large number of subcells) which could not be analyzed
using the original higher-order theory because of the large number of equations involved are now
solvable with the reformulated higher-order theory.

Mesh sensitivity and validation studies were carried out for various thermal, mechanical and
combined thermomechanical cases. A practical application of the thermal barrier coating was also
analyzed. The results were compared to analytical and Þnite-element solutions for the various cases.

From the mesh sensitivity studies, it was observed that the temperature Þeld converges very
quickly with mesh reÞnement and the temperature distribution can be accurately captured using
a relatively coarse mesh, especially for problems involving homogeneous materials. Also, averaging
the temperature across subcell interfacial lines calculated using subcell microvariables on each side
of the interface produces better results.

A functionally graded case with thermal conductivity varying according to an exponential func-
tion was considered and thermal analysis was carried out. The results obtained from the higher-
order theory matched the Þnite-element analysis very closely. However, in the Þnite-element case
the temperature Þeld did not converge to the actual temperature Þeld at the points of tempera-
ture discontinuity. A more reÞned mesh is required at these points in the Þnite-element case. On
the other hand, the results obtained from the reformulated higher-order theory exhibited better
convergence at these points.

In many practical problems, the mesh discretization required to simulate exact inclusion shapes
can be very demanding. The Eshelby problem demonstrated the efficiency of higher-order theory
in terms of mesh discretization approximation of the inclusion phase. It was observed that a
decent approximation of the circular inclusion using a rectangular grid produced results which were
comparable with the actual analytical solution. However, in the Þnite-element case, approximating
an inclusion shape using the same mesh discretization picks up stress concentrations at the sharp
edges which are not present in the actual solution. Therefore, a more reÞned mesh is required in
order to properly approximate the shape of inclusions in the Þnite-element case.

A thermomechanical case involving a homogeneous plate was also analyzed. The results from
the higher-order theory and the Þnite-elements matched very closely. The efficiency of using a
locally reÞned mesh in the regions of high temperature and stress gradients was demonstrated.

In the thermal barrier coating application, it was observed that the temperature and displace-
ment Þelds obtained using the reformulated higher-order theory and the Þnite-element approach
were visually indistinguishable, in contrast to the stress Þelds. In the Þnite-element case, the
tractions were not continuous across the element interfaces, especially in the graded region, and
the boundary conditions were not as well satisÞed. In the reformulated higher-order theory, on
the other hand, the tractions were approximately continuous across the subcell interfaces and the
boundary conditions were better satisÞed. This demonstrated the efficiency of the higher-order
theory in analyzing functionally graded microstructures. In the case of functionally graded mate-
rials analyzed using the Þnite-element approach, mesh discretization required for converged results
can be computationally very demanding if the actual microstructural details are explicitly taken
into account. In the Þnite-element case, displacement continuity is satisÞed in a point wise man-
ner and hence stress concentrations are picked up at the points of material discontinuity at sharp
edges. However, in the higher-order theory, the continuity of tractions/displacements is applied
in a surface-average sense. This smoothing operation produces sufficiently accurate solutions with
relatively coarse meshes and approximate inclusion shapes.
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6.2 Future work

The completed two-dimensional thermoelastic reformulation of the higher-order theory is useful for
plane strain and generalized plane strain problems. In many practical applications, the type of
problems encountered are not limited to two dimensions, however. Many cases involve out-of-plane
loading conditions. Therefore, the next step is to extend the reformulation to three dimensions in
order to analyze more general problems. Also, in cases involving traditional composites, the material
is locally heterogeneous but globally periodic. Structural problems involving composites can be
analyzed by homogenizing the material using the concept of a representative volume element or
RVE. The effective properties of the locally heterogeneous RVE can be found using the homogenized
version of the reformulated higher-order theory by applying periodic boundary conditions, and
then the structure can be analyzed globally using the reformulated higher-order theory or other
techniques. The second step, therefore, is to incorporate periodic boundary conditions and out-of-
plane loading capabilities.

Generally, in practical problems encountered in the industry, deformations enter into the inelas-
tic range at the point where the structure can still withstand considerably higher loads. Also, the
loading history affects stresses and deformations to an extent that depends on the type of material.
In order to carry out an optimum design of a structure, it is necessary to include these plastic
and viscoelastic or viscoplastic effects and analyze the design taking into account such behavior.
Therefore, viscoelastic, viscoplastic and plastic capabilities should be included in the reformulated
higher-order theory.

Presently, material properties are considered to be constant within a subcell. The material
properties can be assumed to be linear or higher-order in local coordinates depending on the
actual gradation of the microstructure. This may potentially lead to further reductions in mesh
discretization required to obtain converged solutions. The capability of having linearly varying
material properties within a subcell has been incorporated by Zhong (2002) into the thermal portion
of the reformulated higher-order theory. This will be extended to the mechanical portion.

The stringent environment and loading conditions to which structures are subjected may lead
to the initiation of cracks. Another long-term goal is to include fracture mechanics capabilities in
the reformulated higher-order theory in order to be able to analyze crack problems.
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The submatrix A
(γ)
2 used in the global thermal conductivity matrix assembly
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The submatrix B
(γβ)
2 used in the global thermal conductivity matrix assembly
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2 =
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73NASA/CR—2002-211909



The submatrix A
(γ)
11 used in the global stiffness matrix assembly
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The submatrix B
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13 used in the global stiffness matrix assembly
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