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Abstract

An analytical solution to the steady-state fluid temperature for 1-D transpiration cooling

has been derived. Transpiration cooling has potential use in the aerospace industry for

protection against high heating environments for re-entry vehicles. Literature for

analytical treatments of transpiration cooling has been largely confined to the assumption

of thermal equilibrium between the porous matrix and fluid. In the present analysis, the

fundamental fluid and matrix equations are coupled through a volumetric heat transfer

coefficient and investigated in non-thermal equilibrium. The effects of varying the

thermal conductivity of the solid matrix and the heat transfer coefficient are investigated.

The results are also compared to existing experimental data.

Introduction

Transpiration cooling is the process of injecting a fluid (generally serving as a coolant)

into a porous matrix, which could serve as a protective barrier against high temperature

environments for a re-entry vehicle. In order to utilize a transpiration cooling analysis

approach to solving physical applications, a well-developed understanding of the heat

transfer and fluid flow characteristics must be obtained. In the report by J.C.Y. Koh et.

al. "Investigation of Fluid Flow and Heat Transfer in Porous Matrices for Transpiration

Cooling", the fundamental equations for steady state transpiration cooling are stated [1 ].

However, the solution of the fluid temperature distribution generates results that are not

consistent with the physical model requirements as a result of the lack of formal

boundary conditions. The results of which can create conditions that violate energy

conservation. Therefore, an investigation of the fluid temperature solution presented by

Koh is conducted to understand the inconsistencies with the model, and derive an

alternative fluid temperature solution. Once these steady state transpiration equations

have been established, they can be used as a guide for understanding behavior of heat

transfer in porous matrices and also for further transient studies of transpiration cooling.

Transpiration cooling has been treated in the literature by numerous authors. Heat

conduction textbooks generally treat transpiration cooling with the assumption of thermal

equilibrium between the matrix and fluid. The assumption leads to defining an effective

conductivity for the fluid and solid matrix [2]. Curry and Cox conducted numerical

studies of the transient effects of transpiration cooling [3]. Using a non-equilibrium

solution, they determined that for a high conductivity of the solid matrix, the equilibrium

solution is a valid assumption. However, the lower the conductivity of the solid, the more

desperate the fluid solution diverges from that of the solid. Additionally, the volumetric



heat transfer coefficient does not affect the response significantly compared to the

thermal conductivity of the solid matrix [3].

Transpiration Cooling Model

The physical model utilized in Koh's report is used in this analysis. A flat plate with

finite thickness, L, shown in Figure 1, is used for the derivation of the steady state fluid

and matrix temperature distributions. The analysis is based on a one-dimensional model

with constant material properties.
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Figure 1: Transpiration Cooling Model
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The boundary conditions for the transpiration cooling model are taken from Figure 1. A

fluid is injected into porous matrix at a constant mass flow rate, m, dot, with a

temperature To. The temperature of the matrix at the entrance, x 0, is Tmo. A flux is

imposed at xL from the environment which induces a constant temperature boundary

condition at the exit, Tmw.

The energy balance equations for the fluid and the matrix in non-dimensional form are

used to define the goveming differential equations for the transpiration cooling model.

The energy equation for the fluid stated by Koh is,

dr 1 m, dotc
P

where

Of-
Tf mTf,i

Lw m Tf,i
(2)

and cp is the specific heat of the fluid, km is the effective conductivity of the matrix, h' is

the heat transfer coefficient for internal convection, and q -- x/L. Equation (1) states that



heat is transferred from the matrix to the fluid via convection [1]. Conduction from the

matrix to the fluid raises the enthalpy of the fluid and is given by,

dora m, dotc pL

- Of = B Of
d_l km

(3)

where

Om m

m Tf ,i

L_ -- Tf , i

(4)

Matrix Temperature Distribution

From the energy balance equations for the transpiration cooling model, the steady state

equations for the fluid and matrix temperature distributions are derived [1]. Equation (3)

can be solved in terms of the fluid temperature and substituted into equation (1). The

resulting equation is a linear homogeneous second order ordinary differential equation

with constant coefficients previously solved by Koh, which describes the non-

dimensional steady-state matrix temperature:

d20m AdOrn---ABO m = 0
dr/2 dr/ (5)

The boundary conditions imposed upon the matrix are used to solve equation (5) which

are given by,

Om(r/:O)-- Tm'° -Tf'i :Om, °

Lw-r:-i
(6)

Ore(r/ 1) Tmw-Tf,i= - - 1 (7)

Imposing the boundary conditions on the solution of equation (5) results in the non-

dimensional matrix temperature,

Om 1--0 e _ 1-0 e _1__ mo erlrl mo erzr[
erl _er2 erl _er2 (8)

where, rl and r2 are the roots of the characteristic equation defined by equation (5) shown
here,



(9)

rz =A(-I-_/I+4B/A)
(lO)

Equation (8) is the steady state transpiration cooling equation for the matrix temperature

along the r/coordinate. This equation, first derived by Koh, will be necessary for

determining an alternative steady state equation for the fluid temperature distribution,

which is discussed in the following section.

Derivation of Alternative Fluid Temperature Distribution

The fluid temperature distribution is determined by substituting the matrix temperature

solution into one of the energy balance equations, equation (1) or (3). However, the

results from this substitution produce different results based upon which equation is

chosen for the substitution. The fluid temperature presented by Koh utilized equation (3).

However, no boundary condition for the fluid at the entrance is required. Since, the

results from this method do not permit entrance conditions from being incorporated, an

alternative solution which imposes a fluid entrance boundary condition is derived.

Equation (1) can be used to solve for the fluid temperature. The fluid entrance boundary

condition can be incorporated into the solution since equation (1) is a non-homogeneous

first order differential equation of the form,

dOf
--+AO: --AOm
drl (11)

where (9,, is defined by equation (8). The solution to equation (11) is approached by first

multiplying equation (11) by the function, e A_, which produces,

dO: +eA_AO: A_-- =e AOm
eX_ dr 1

(12)

Noting that the left-hand side of equation (12) is equivalent to the derivative D_[eX_ .(9: ],

the following expression can be obtained,

Aq

(13)

where C is a constant of integration and defined by the boundary condition imposed upon

this problem. Substituting equation (8) into equation (12) and solving for 0:yields,



(14)

which can be simplified to the following form,

(15)

The constant of integration is solved by imposing the fluid entrance boundary condition,

which is defined as,

o,(,=o) -r'°-r'i -O,,o
(16)

The boundary condition is imposed on equation (15) and results in the following

expression for the non-dimensional fluid temperature distribution,

l_Omoe_ 1--Omo e_l (er_, ]+
(CK1--CK2 X1P ] Ar A) (CKII] )-- _KI _cr2 _xlPN Ar A) _'_'_ ]

Oj =A

+AI +AI

(17)

which simplifies to

OS=AL (e_-e_r_ +A) _ (e_ -e_ra+A) _ A I

(18)

Equation (18) states the steady state transpiration cooling equation for the fluid
temperature. It is a function of primarily of the distance along the x direction, and based

on the boundary condition of the matrix and fluid at the entrance of the porous matrix.

Results

The steady state transpiration cooling equations for the fluid and the matrix are functions

of a single variable, r/. In Figure 2, the alternative fluid temperature solution and steady

state matrix temperature are plotted versus the non-dimensionalized coordinate, r/. The

entrance fluid boundary condition is assumed to be the temperature of the fluid reservoir

with a temperature of Tj_=Tj_=600 °F and the matrix boundary condition at the entrance is

Tmo = 500 °F. At the exit, Tmw is 1500 °F, which is due to the environmental heating.
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Figure 2: Fluid and Matrix Temperature Distributions along the Porous Matrix

Using equation (8) and (18), the alternative fluid temperature solution and the matrix

solution are shown in Figure 2. The fluid and matrix temperature profiles along the r/

direction obey the conservation of energy and satisfy the physical boundary conditions

imposed upon the model. A comparison of the results from the Koh study and the

alternative method of calculating the fluid temperatures is shown in Figure 3.
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Figure 3: Fluid Temperature Solution Comparison

In Figure 3, the solution presented in [1] results in an entrance fluid temperature that does

not adhere to the boundary conditions imposed upon the system. However, the

alternative solution given by equation (18) has an imposed boundary condition, which

satisfies the physical boundary conditions of the transpiration cooling model.

The parameters that govern the temperature distribution for the fluid and matrix are A

and B defined in equations (1) and (3). The inverse of the thermal conductivity of the

solid matrix is defined in parameter B. The effect of varying the thermal conductivity is

shown in Figure 4.
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Figure 4: Predicted Temperature Distributions with Varying Thermal Conductivity

Since increasing the thermal conductivity results in a decreasing B, the temperature

distribution changes dramatically with the amount of heat that is allowed to flow through

the matrix. It is also clear that the temperature distribution is highly dependent on the

solid matrix conductivity. The volumetric heat transfer coefficient is represented in

parameter A. The effect of varying A is illustrated in Figure 5.
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Figure 5: Predicted Temperature Distributions with Varying Heat Transfer Coefficient

The heat transfer coefficient does not significantly change the temperature distribution of

the solid matrix. For increasing heat transfer coefficient, h', the fluid temperature (not

shown in Figure 5) will converge on the matrix temperature solution, however it will not

significantly affect the matrix temperature distribution. This phenomenon demonstrated

by the present analysis therefore conforms to previous numerical studies of porous media

heat transfer [3].

The results of the present analysis are also compared to previous experimental data [4].

The experimental data is based on air flowing through uniformly packed beds at various

Reynolds numbers. Spheres were used in the experiment approximately. 5 inch in

diameter. However, for materials that would fit transpiration cooling applications, the

porous matrix diameter would be reduced by several magnitudes of order. The reduction

in the porous matrix diameter affects the mass flow rate, which is accounted for in the

present analysis. Iron-constantan thermocouples were imbedded in the spheres to

determine matrix temperatures. Gas temperatures were determined by an energy balance

equation in finite difference form [1].
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Figure 6: Comparison of Theoretical and Experimental Results

As illustrated in Figure 6, the analysis agrees well with the two sets of experimental data.

For the large heat transfer coefficient condition, characterized by a higher value of A, it is

seen that the difference between the matrix and fluid temperatures is small. For the small

thermal conductivity condition, characterized by a higher value for B, the heat flow

becomes significantly reduced agreeing with both the experimental data and previous
numerical studies.

Conclusion

The fluid temperature solution presented by Koh produces results that are not physically

realistic. An alternative method for deriving the steady state fluid temperature has been

presented. This method allows for the inclusion of the entrance boundary condition for

the fluid. Furthermore, the two solutions are compared to one another and the alternative

fluid solution adheres to the physical system requirements. The effect of increased

thermal conductivity of the solid matrix is significant. However, the effect of changing

the volumetric heat transfer coefficient was small. The results also compared well to the

existing experimental data. This analysis may further the understanding not only of

steady state behavior, but also the transient responses in transpiration cooling.
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Nomenclature

A

B

cp
h'

k

1

m, dot

T

X

rl

0

eq. (12), dimensionless

eq. (13), dimensionless

specific heat (Btu/lb.-F)
volumetric heat transfer coefficient (Btu/hr-fl3-F)

thermal conductivity (Btu/hr-ft-F)

length (ft.)

mass flow rate, (lb./hr)

Temperature, (F)

distance measured from inlet of matrix (ft.)

dimensionless variable, x/1

dimensionless variable,

Subscripts

m

f
0

fo
W

matrix solid

fluid

inlet (x=0)
fluid reservoir

fluid inlet (x=0)

wall (x=L)


