
AIAA 2002-0802

Broadband Noise Predictions Based
on a New Aeroacoustic Formulation

J. Casper and F. Farassat
NASA Langley Research Center
Hampton, VA

40th Aerospace Sciences
Meeting and Exhibit

January 14-17, 2002 / Reno, NV

For permission to copy or republish, contact the copyright owner named on the first page. For AIAA-held copyright,
write to AIAA Permissions Department, 1801 Alexander Bell Drive, Suite 500, Reston, VA 20191--4344.



AIAA 2002-0802

BROADBAND NOISE PREDICTIONS BASED

ON A NEW AEROACOUSTIC FORMULATION

J. Casper* and F. Farassat t

NASA Langley Research Center

Hampton, VA 23681

Abstract

A new analytic result in acoustics callcd :'Formulation

1B," proposed by Farassat, is used to compute the load-

ing noise from an unsteady surface pressure dissribution

on a thin airfoil in the time domain. This formulation is

a new solution of the Ffowcs Williams-Hawkings equation

with the loading source term. The formulation contains a

far-field surface integral that depends on she time deriva-

tive and the surface gradient of the pressure on the airfoil,

as well as a contour integral on the boundary of she air-

foil surface. As a first test case, she new formulation is

used to compute the noise radiated from a flat plate, mov-

ing through a sinusoidal gust of constant frequency. The

unsscady surface pressure for this test case is specified

analytically from a result that is based on linear airfoil the-

ory. This test case is used to examine the velocity scaling

properties of Formulation 1B, and to demonstrate its equiv-

alence to Formulation 1A, of Farassat. The new acoustic

formulation, again with an analytic surface pressure, is

then used to predict broadband noise radiated from an air-

foil immersed in homogeneous turbulence. The results are

COrRparcd with experimental data previously reported by

Paterson and Amiet. Good agreement between predictions

and measurements is obtained. The predicted results also

agree very well with those of Paterson and Amiet, who

used a frequency-domain approach. Finally, an alscrnativc

form of Formulation 1B is described for statistical analysis

of broadband noise.
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V/c0, Mach number vector

SI • F/r Mach number in radiation direction

_ • P Mach number in direction of P

unsteady pressure on upper airfoil surface (Pa)

sound pressure radiated to observer (Pa)

directional surface pressure gradient (Pa/m)

_, sound radiation vector (m)
correlation function of u

spectral density of u

observer time (scc)

uniform free-stream speed (m/sec)

unsteady stream-wise velocity (m/see)

airfoil velocity vector (m/see)

local velocity vector magnitude (m/see)

unsteady upwash velocity (m/see)

[xl,x2, x3] T, obscrvcr position (Fig. 1)

[yl, y2, 0] T, surface source position (Fig. 1)

co�f, acoustic wave-lcngsh (m)

directivity angle (Pig. 5)

unit, inward geodesic normal (Pig. 1)

radiation direction (Fig. 1)

ambient density (kg/m 3)

t ,'/_o, source time (soc)
random phase variable

2rrf, circular frcquency (Hz)
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Nomenclature

airfoil semi-span (m)

ambient sound speed (m/see)

frequency (Hz)

geometry function for airfoil surface

f observed in retarded time (Eq. 2(b))

combination of Frcsnel integrals (Eq. 9(g))

velocky-to-prcssure transfer function

co�U, convective wave mtmber (m -1)

kL_/2, reduced frequency

airfoil chord (m)

stream-wise integral length scale

con'elation length in the "i" direction
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1. Introduction

Thc dcvelopment of analytical mcthods to predict noisc

radiated from an airflow over a rigid body has been a

subject of extensive research within the aeroacoustic com-

munity for decades. Research in this area has, in large

part, been motivated by the desire to incorporate the re-

sults of aeroacoustic analysis into an aerodynamic design

methodology. The present work is similarly motivated, and

the resulting formulation should lend itself well to an en-

gineering design-tool suite.

The current work is specifically focused on she calcula-

tion of far-field noise that results from fluctuating pressure

on a solid surface. The acoustic analogy t provides a frame-

work for the development of methods to predict noise from

many types of sources, including noise due to unsteady sur-

face loading. Such noise is mathematically described by

the loading source term, or "dipole term," of the Ffowcs

Williams-Hawkings (FW-H) equation? Because the noise

due to an airflow over a rigid surface is often dominated

by dipole radiation, the acoussic formulations of interest

in this work arc determined by solutions of the FW-H

equation with the loading source term, i.e, neglecting the
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thickness and quadrupolc tcrms.

Thc solution of thc FVV-H equation can bc writtcn in

many forms. A new solution, callcd "Formulation 1B" is

prescntcd herein. The types of noisc that can bc calcu-

latcd with thc proposcd Formulation 1B are most types of

broadband noisc, including noise that is dominated by an

airfoil's lcading and trailing cdges. Formulation 1B is thc

simplcst loading-noisc prcdicdon formula known to date.

This simplicity makcs the new formulation highly suitablc

for statistical analysis of broadband noise for rotating sur-

faces.

In Section 2, Formulation 1B is derived for the specific

case of a fiat plate in rcctilincar motion. For low Maeh

numbers and distant observers, the dominant term in this

formulation is a far-field surface intcgTal that depends on

the time derivative and the surface gradicnt of the airfoil

surface pressure. The formulation also contains a contour

integral on the bonndm-y of the airfoil surface that includes

the leading and trailing edges. This line integral vanishes

along the trailing cdgc if the Kutta condition is imposed.

In Section 3, Formulation 1B is used to calculate the

noise radiated from a fiat plate moving through a sinusoidal

gust of constant frequency. The mlstcady surface pressure

used in this test case is an analytical result from lincarizcd

airfoil theory that is taken from thc work of Amict. s'4 A

mesh refinement study is performed to demonstrate the

cquivalcnce of Formulation 1B with Formulation 1A_ 5 a

previously developed acoustic formulation that is also a

solution of the FW-H equation. Results from this analyt-

ical test ease arc also used to examine the velocity scaling

properties of Formulation 1B, which arc found to be con-

sistcnt with the results of Cnrlc ° and Ffowcs Williams and

Hall. 7 The dircctivity of the noise induced by a periodic

gust is also examined.

In Section 4, the single-frequency surface pressure in Sec-

tion 3 is cxtendcd by spectral reprcscntation to serve as an

analytic broadband source model for incident turbulence

noise. This surface pressure is used as input to Formula-

tion 1B to predict broadband noise to the far field. The

resulting calculations arc compared to experimental data

previously reported by Paterson and Amiet. s In Section 5,

an alternative acoustic formulation is described for statis-

tical analysis of broadband noise.

2. Acoustic Formulation

Consider a fiat, finite surface moving in the plane :r3 =0

along a vclocity vcetor V. Lct f(3cl,x_, t) dcnotc a gco-

metric function that is so defined that f = 0 on the surface

cdgc, and f > 0 on the interior of the surfacc. Let P = _f

denote the unit geodesic normal which lies in the plane of

the surface, is normal to the edge, and is directed inward

(See Fig. 1). The velocity vector V and the plate's geom-

ctry arc related to the coordinate axes as pictured in Fig.

1. Note that V need not bc constant in space or time. The

only stipulation on the velocity is that the motion of the

surface is in the same plane as the surface.

Dcnotc by _ = [:rl, 3c_, :rs] y thc position of an obscrvcr,

and by _7 = [gq, y_, 0] T the position of a sourec point on thc

plate's surface (Fig. 1). The unsteady perturbation pres-

sure p(_, f) on thc surface gives risc to sound that radiates

along r_ = :_ (to the observer. This sound is described by

(X 1, X2_ X 3)

=0

Fig. 1 Schematic for the derivation of Formulation lB.

p'(2, t), thc perturbation pressure that arrives at the point

(x_, x_, xs) at time t. Both _ and _ frames of reference arc

considered fixed relative to the undisturbed medium. For

some of the subtle mathematical details in the following

derivation, see Rcf. 9.

From the FW-H eqnation, the loading noise is given by

a solution of

I Oh' V_/: V-[pam])5(zs)] (la)
c_ Ot_

where co is the ambient sound speed and fi is the unit

surface normal which, for the present case, is eqnivalent to

ds, the unit vector in the direction of the as-axis. H is

the Hcaviside step function and 5 the Dirac delta function.

Evaluating the divergence in Eq. l(a) yields

1 O_p ' V_p'= p(xl,a_,t) H(f)5'(x3) (lb)
c_ at_

where 5'(x3) denotes differentiation with respect to x3.

Eq. l(b) is the wave equation with a source term, and

its formal solution in an unbounded domain rcquires the

Green's function 6(g)/47rr, where g = r t + r/co, and t

and r arc the observer and source times, respectively. The

solution of Eq. l(b) can then be written in the form

4 7r p'(_, t) = p(_]l, _J2, T) H(/)(_'(_]3) d_clw

Now, let r _ g and integrate with rcspcct to g. The result

can bc written

4_p'(_,t)= £_ ![p],_H(F)5'(y_)d_,. (2a)

where the subscript "ret" denotes evaluation at retarded

time r = t r/co, and F is

F(_]l:y2; _c,t) = /(yl,y2, t r/Co) = [f]ret (2b)

Integration with respect to ys on the right-hand side of Eq.

2(a) yields

4 _rp (x, t) = _Oys r Ys-- _]1
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Pcrforming the differentiation in the integrand of Eq. 3(a)

yields

Og3 r co r

+ _[es p]_o_H(P) (3b)

+ -
co r 57 rs p 5( P)

ret

whcrc/5 is the time derivative of pressure evaluated relative

to an observer that is fixed with respect to she medium at

rest, and £s is the third component of the unit radiation

vector _ = F/r. Clearly, then, _s = 8s-_ = cos0, where

0 is as shown in Fig. 1. The first and second terms on the

right-hand side of Eq. 3(b) arc of the similm" form Q H(F).

In Rcf. 10, it is shown that the integration of these two

terms in Eq. 3(a) can be written

f_ Q H ( P) dyl dg_ = _>o O dE = ;> o [1 Q- dSM,_]_,t

(4a)

whcre dE is the element of the surface area of the acoustic

planform of f > 0. Also, M,- = if/- _ is the Mach nmnber

in the radiation direction, where _/ = V/co is thc local

Mach number vector of the surface.

The integrated value of the third term on the right-hand

side of Eq. 3(b) is determined as follows. _Fhis integral is

of the form

: /_2 q(gl, g_) 6(F) dgl dg_ (4b)
Z

Thc differential surface element dgldy_ can be written 1°

d_ dP

dgi dy2 : d£d2V'- [V2F[ (4c)

whcrc d£ and dA f are differential elements of arclcngth that

are, respectively,~ parallel and normal to the the surface

edge defined by F = 0, as shown in Fig. 2. The notation V_

denotes the surface gradient in the gl g_-plane. Moreover,

it can be shown, l° that

d£ dg

iV_Pl- [1 _l,-]_et (4d)

whcrc d_ is an element of arclength along the surface edge

defined by f = 0. Eq. 4(b) can now be written

L d£dFz = _q(y, y_)s(P) IV_Pl

/ q(_]l, _J2) d£ (4e)
:0 Iv_PI

= . =0 [1 3I,- ]ret dg

Note that the surface time ddvative offer in Eq. 3(b),

and contained in q(gl, y_) in Eq. 4@), is referenced to the

undisturbed medium. However, Offer can be related to

the material derivative Dr/Dr in the reference frame of

the moving surface, by

D/ of .- of
-- Or + V. VI= Or + ?.6 (So)Dr

/=0

Fig. 2 Differential surface element in Eq. 4(c).

where the subscript "f = 0" denotes thc reference frame of

the moving surface. Furthermore, when referenced to the

moving surface, D f/Dr must bc zero, and it follows from

Eq. 5(a) that offer = V._.

All three terms on the right-hand side of Eq. 3(b)

arc now intcgTatcd in Eq. 3(a) over the physical surface

f(xl,z_, t) _> 0, using 4(a) and 4(@ Before writing the

final solution to Eq. l(a), note that/5 is referenced to the

medium at rest, e.g. as measured by a transducer that re-

mains stationary as the surface passcs by it. The quantity

/5 can bc relatcd to @/Or, the timc dcrivadvc of prcssurc in

the reference frame of the moving surface, e.g. as measured

by a transducer attached to the surface. This relation is

@ @ @
b=_+P-_v=_ v--as 0b)

where 0p/0s is the gradient ofp in the direction of _, and

V is the local magnitude of V. The minus sign in Eq. 5(b)

results from the fact that the surface gradient and velocity

are measured from opposite directions (Fig. 1).

Incorporating all of the above results into Eqs. 3(a,b),

the solution of Eq. l(a) can now bc written. The result is

Formulation 1B,

47rp'(2, Q = _>0 [( Op/Orco r (V10p/Os)cosO]M,_) retdS

>0 r2 ( ] 7 _/[r ) retdS (6)

:0Lr(1 M,)jde'
ret

where _/1_ = M- 13, the Mach number in the direction of P.

The fit'st and third integrals in Eq. 6 represent the sound

radiated to the far field, whereas the second integral rep-

resents radiation to the near field. It is noteworthy to

consider the relative contributions of the terms in Eq. 6,

under the conditions of low Mach number and an observer

in the acoustic far-field, i.e.

_I << 1, r >> A (7)

whcrc ), is a typical acoustic wavclcngth of intcrcst. With

respcct to M and r, the surfacc far-ficld intcgTal, i.e. thc

first integral in Eq. 6, is proportional to l/r, whcrcas thc

second and third intcgrals arc proportional to 1/r _ and

M/r, rcspcctivcly. Thcrcforc, thc far-field surfacc integral

dominatcs thc signal under thc conditions in Eq. 7.

3
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Note, again, that Eq. 6 is valid for the case of non-

uniform flow. Therefore, Eq. 6 can be used, as is, to

predict loading noise from rotating surfaces. Its predeces-

sor, Formulation 1A; 5 is significantly more complicated in

its rotational form, and cannot be approximated by only

one surface integral in the far field. Such a significaslt sim-

plification for far-field calculations makes Formulation 1B

more suitable for statistical analysis of broadband sources

for rotating surfaces. A statistical formulation based on

Eq. 6 will be addressed in Section 5. However, the focus

of the current work is the time-domain application of For-

muladon 1B , as will be demonstrated in the following two

sections.

3. Sinusoldal Gust of Constant Frequency

Any noise prediction made with Eq. 6 will be only as

good as the input surface pressure p(_7, t). The current

thinking is that such time-dependent pressure data would

result from experimental measurement or a computational

fluid dynamics (CFD) calculation. However, in this initial

work, an analytic expression is used for p(_, f) to serve as

input data for the new acoustic formulation. To this end,

an analytic formulation from thin-airfoil theory will be used

to describe the unsteady surface pressure that results from

a sinusoidal gust of constant frequency. This particular

surface pressure formulation is chosen as an example that

will be used in this section to establish the equivalence of

Formulation 1B and Formulation 1A 5 and to examine the

velocity scaling properties of Formulation lB. In addition,

the frequency-dependent directivity of the far-field sound

produced by this sinusoidal gust is discussed.

3.1 Surfaee Pressure from Thin Airfoil Theory

Consider a rectangular flat plate, in rectilinear motion,

as in Fig. 3. The velocity vector V = [ U, 0,0] T, where U

is a constant subsonic speed. For the following examples,

the plate's surface and its boundmT, f _> 0, are defined by

{0 _< xl _< Lc} x { b_< x_ _< b}. This surface willbe

presumed to have an unsteady pressure distribution that

is analytically prescribed from linearized airfoil theory, as

discussed below.

In Refs. 3 mad 4, Amiet presents closed-form expressions

for the unsteady pressure on the surface of an infinite-span,

thin airfoil. The airfoil is presumed to move rcctilincarly

"_' X2' X 3)

X 3

_. .::_iiiiiiiiiiiiiiiiiiiiiiiiiiiiii_i_:_

.......-??? '='='='iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii',',    "'  7
........ 2b

........ ................................/

< L c >

Fig. 3 Schematic for the constmat-frequcncy loading noise

problem in Section 3.

through a sinusoidal gust. Analytical methods are used to

solve the two-dimensional, time-dependent linear potential

equation by representing the solution as a product of spa-

tial mad temporal solutions. The solution is represented

as a truncated series in which higher-order terms arc ne-

glected (See Refs. 3 and 4 for details.).

A complex-valued representation for the airfoil surface

pressure is assumed to arise from a stationary gust in one

spatial dimension. This gust can be written in the "sta-

tionary" variable :cl Ut as

_(_,1 ut) = _o c-_(__-_) (s)

where k = _/U is the stream-wise convective wave number,

mad w0 is the gust anaplitudc. This gust and the airfoil

surface pressure that it generates are, for now, considered

as functions of a single amplitude and frequency.

The unsteady surface pressure that arises due to the

incidence of a gust of the form in Eq. 8 can be written

_XP(xl, t) = poU'wo g(_'l, k) c _ (9a)

where p0 is the anabicnt density, k = kLc/2 is the re-

duced frequency (based on the semi-chord), mad g(xl,k)

is a transfer function whose form is dependent on the fre-

quency of interest. In Rcf. 8, the suggested parameter to

delineate between the low and high frequency regimes is

p = Mk//3 z, where/3 = _fl M S.

For low frequencies, /_ < 0.4, the transfcr function is

1

g(xl,]_) = _ _ 1 GS(]_*)C i_*q(£'l'fVf) , . < 0.4,

(gb)

where k* = k//32, Gx is the classical Sears function, H

which, for the present work, is approximated by

1

[, 1a_,(,_*) _ -- + 2_* (9e)
1 + 2.4k*

as suggested in Rcf. 8, and

q(xl,M) =M_(2xl/L_ 1)+(1 /3)lnM+/31n(l+/3) ln2

(gd)

For high frequencies, p _> 0.4, the transfer function

is the sum of a leading-edge solution and a trailing-edge

correction 4 i,c,

g(3t'l, _,) = (gl @ g2 ) C -i [2'_(1--_Vf)Xl/Lc-l-w/4]

where

g1(271, ]¢) =

_(_l,_) =

and

, __>0.4
(ge)

1

[ 2,'T]_9;1(1 @ M)/Lc] 1

1+ (1+i) E*[4/_(1 xt/L_)]

[_(l+m) ]1

d_ = c(_) i s(_)
_*({) = (_,._)_

(gf)

(9g)
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The quantities C({) and 8({) are the Fresnel cosine mad

sine integrals, and will be evaluated numcrically by the

formulas dcrivcd by Bocrsma. t2 The final representation

for the unsteady surface pressure p(zl, _) assumed to bc a

real quantity, is

(9h)

Note that Eqs. 9(a-h) rcprcscnt the prcssurc distribution

on thc upper surface of thc airfoil and that this prcssnrc

is assumcd to bc antisymmctric between the upper and

lower surfaccs. Notc, also, somc differences bctwccn Eqs.

9(c-f) and their counterparts in Refs. 3 and 8. Such dif-

fcrcnccs include thc choice of coordinate-axes origin and

the spatial normalization employed by the author. An-

other difference arises from thc use of complcx conjugates

here, which serves to make the present notation more con-

sistent with thc eventual broadband reprcscntation in Rcf.

8, which is also cmploycd in the Section 4. The abovc sur-

face pressure was originally proposed in order to dcrivc an

expression for unsteady lift which was ultimately incorpo-

rated into a frequency-domain acoustic formulation; s's'lS

Howcvcr, in the present work, the unsteady pressure itself

will bc used as input to Eq. 6 for a time-domain prediction.

3.2 Grid Refinement Study

The surface pressure in Eqs. 9(a-h) is now used to numer-

ically demonstrate the equivalcnce of Formulation 1B and

and the loading-noisc terms of Formulation 1A 5. Formula-

tion 1A forms the basis of WOP-WOP, a rotor noise predic-

tion code developed at NASA Langley Research Center. 14

For the prediction of loading noise fi'om an airfoil in uni-

form rectilinear motion, Formulation 1A simplifies to

47rp'(E,t) : ;t>o [ _0_p/_T_COS__Leo,-(1 M, )_]ro_s

t>o r2(T_M'-) 2 retdS (10)

7_( f_,- ) Jr_t

Note that the entire formnlation here is integrated on the

surface interior. At first glance, the form of Eq. 10 appears

no more complex than Eq. 6, but only because of the sim-

plicity of uniform, rectilinear motion. Eq. 10, as written

above, is not applicable to a rotating surface, but Eq. 6 is.

The loading-noise terms of the full Formulation 1A are, in-

deed, applicable to rotational flow, but the full formulation

is more complex than Eq. 10.

The far-field noise radiated from a thin airfoil in a one-

dimensional, single-frequency sinusoidal gust is now calcu-

lated, using Eq. 6 and Eq. 10. Let P_IB and prla denote

the sound calculated by Eqs. 6 and 10, respectively. If the

input surface pressure p(_, t) is known analytically at any

point on the airfoil surface, then the only non-machine-zero

error made in the numerical solution of Eqs. 6 and 10 is the

error associated with the quadrature formula that is cho-

sen to perform the surface and contour integrations. In this

case, the mid-point rule is the quadrature of choice. There-

fore, the equivalence of Eqs. 0 and 10 is demonstrated if the

difference IP'IB P'lal diminishes in mesh rcfinement like

the cummulative CXTOr expected fi-oin the mid-point rule,

i.e, that the error is O(Ax2).

The plate's rectangular dimensions are determined by a

chord length of L_ = 0.5 meter and a span of 2b = 2.0

meters. The plate is moving at a Much number of 0.2,

and the sound speed is taken to be 343 m/see. The am-

bient density p0 = 1.23 kg/m 3, and the upwash amplitude

is w0 = 0.05 U, i,e, five percent of the free stream. The

observer position for this test case is i = [ 1, 0, 1] T, in

meters. Fig. 3 roughly depicts this relative observer posi-

tion, although not to scale.

The calculation is performed for one time period of the

surface pressure fluctuation at frequencies of f = 25 Hz

and f = 1 kHz, with 32 time-steps in each period. These

choices of frequency, at the prescribed observer location,

will test both the nero'-field and far-field equivalence of the

two formulations. Note that the transfer functions in Eqs.

9(b,f) are singular at xl = 0, and the spatial derivative of

Eq. 9(f) is singular at zl = L_. Although both singulari-

ties are integrable, they would cause the quadrature error

to deviate from that of the mid-point rule which, by its

definition, requires sufficient smoothness throughout the

interval of integration. Therefore, the domain of stream-

wise integration is restricted to an interval of the form

_L_ _< Zl _< (1 _) L_ (11)

where c is a small, positive parameter.

Each calculation is performed on a sequence of six sur-

face grids: {10x40}, {20x80}, {40x100}, {80x320}, {160x

640}, and {320 x 1280}. Grid clustering is performed near

the leading and trailing edges of the plate in order to acco-

madate the parameter c = 0.02 on the coarser meshes. The

maximum values of IP'IB P_IA I during each time period,

are shown as a function of the number of grid points on a

log-log plot in Fig. 4. The abscissa N_- is the mimber of

surface elements in xl. The dashed line represents a ficti-

tious quantity whose values are specifically calculated to be

directly proportional to N_Y 2. Clearly, the slopes of both

calculations are visibly parallel to a slope of 2, thereby

10 0

10 _

10 2

10 s

10 4

\\\\\

, , , , I , , , ,I,,,,I,,,,I

100 200 300 400

N_

Fig. 4 Grid refinement validation for equivalence of For-

mulations 1A and lB.
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dcmonstrating that

IP'IB P'la I = O(Xg 2) = O(Az_),

which is the cummulativc error expcctcd from the mid-

point rule of intcgration.

3.3 Velocity Sealing Laws

Attention is now turned to the way in which the intensity

of the far-field noise, as prcdicted by Eqn. 6, will scale as a

function of velocity, when the surface pressure is described

by Eqs. 9(a-h). The physical dimensions of the plate for
this exercise are the same as for the test case above. The

conditions of a far-field observer in a low-Mach-number

flow (Eq. 7) will be assumed. The Mach-numbcr range of

interest is 0.01 _< M _< 0.2. In addition, the proportionality

of the acoustic intensity to velocity will bc determined ac-

cording to two different conditions placcd on the frcquency

f. These two conditions will delineate between compact

and non-conlpact sourccs.

First, it will be assumed that thc source is compact, i.e.

Lc << A. This condition will be achieved |)3' requiring the

frequency to bc proportional to velocity, f _ U/Lc : for a

sufflcicntly low range of frequency. For 0.01 _< 3// _< 0.2,

f = 80Hz is referenced to M = 0.2, and f is then made

a function of velocity while requiring a constant Strouhal

number f Lc/U _ 0.583. The frequency range is, then,

4Hz < f _< 80Hz. Note that /_ < 0.4 throughout this

range.

The platc:s physical dimensions are as in the above mesh

refinement problem. The calculation is performed on a

100 × 400 surface grid, with the stream-wise integration in-

terval rcstrieted as in Eq. 11, with sufficient grid clustering

near the leading and trailing edges to allow for c = 0.003.

_Fhc observer is chosen at a distanec of 100 meters, directly

above the plate's center, i.e. 2 = [0.25, 0, 100] v in meters.

_Fhis location places the observer in the acoustic far-field

for the entire range of frequency.

A separate calculation is run for each Mach number

and its corresponding frcqucncy. The npwash amplitude is

w0 = 0.05 U for each of 50 equally spaced Mach numbers

between 0.01 and 0.2. The surface pressure in Eqs. 9(a-

d,h) is used as input to equation to Eq. 6 to predict the

far-field sound p'(:g, t). Each calculation is performed for

one acoustic period T of the corresponding frequency, with

64 time-steps. The average intensity I(1) of the acoustic

signal at the observer i, assuming spherical spreading, is

then calculated by

1 fo T [p'(fc, f)]SdtI(_) = _ po_o

The average acoustic intensities for a compact source, as

a function of Mach number, arc represented as sqnarcs in

Fig. 5. The slope of these results on a log-log plot can be

visually dctcrmincd by proximity to the dotted line whose

slope is prcciscly six at every point. This U 6 proportional-

ity is consistent with Curle's 4 result, as expected from the

conditions placed upon the calculations.

The demonstration of a velocity scaling law is now de-

sired for a non-compact source i.c, for/_ > 0.4. Therefore,

the restriction that f _ U/L_ must be lifted, so that f is

10 4

10 _

10 s

10 _o

10 _2

1014

Fig. 5

...............................'''"'"'""Y"'""

...y.''" //

.........'""" ///

/ / / / / /_ C'ompact Sotlrce

/ / / _ f l kHz

/ / / Slope 6

/ ..................... Slope = 5/
/

......... , ......... ,0.05 01 0.15 02

M

Velocity scaling properties of Formulation lB.

indcpcndcnt of U. The simplest such condition is that f

is constant, in which case the Strouhal number remains a

function of U. A series of calculations is again performed,

as above, with the only parameter change being that the

frequency is held constant at 1 kHz throughout the range

of Mach number. The input surface pressure for this case is

given by Eqs. 9(a,c-h). The computed acoustic intensities

at 100 meters are represented by circles in Fig. 5. In this

case, the acoustic intensity scales approximately as U 5, a

result that is consistcnt with Ffowcs Williams and Hall 7.

3.4 Directivity

As a final exercise in this section, the dircctivity of a

single-frequency source is examined. The radiated noise

p'(2, t) is calculated at many locations on a circular arc in

the plane z2 = 0 that is centered on the geometric center of

the plate's upper surface, as shown in Fig. 6. The arc tra-

jcctory (r, ©) is determined by r = 3 meters and 0 _< _/, _< 7r.

The dircctivity is determined by the peak pressure ampli-

tude IIp'll that is calculatcd at caeh position on the circular

arc, during one pcriod in time for a given frequency. The

flat plate's dimensions and surface discrctization arc as in

\

b

/
<________Lc______________

2

Fig. 6 Schematic for dircctivity calculation. Observer on

circular path in plane ___ = 0.
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Fig. 7 Dircctivity for two sources of constant frequency.

2-kHz results are scaled by a factor of 2.5.

the previous example, and there arc 128 time-steps in a pe-

riod. The observer path, 0 _< _b _< rr, is discretizcd into 128

equally spaced locations. The Dec-stream Mach number is

0.2 and the gust amplitude is w0 = 0.05 U. Fig. 7 shows

the results, in polar form, for frequencies of 1 kHz and 2

kHz. The higher-frequency results arc scaled in order to

visualize both loci on the same plot. As expected, there arc

twice as :::any lobes in the 2-kHz solution. Also, note the

frequency-dependent positions of the lobes with respect to

a fixed observer. For example, an observer at tb = 7r/2

will receive a signal that is near the peak amplitude for the

central lobe of the 1-kHz signal, whereas the 2-kHz sig-

nal is near a local minimum for the same observer. This

frequcncy-dcpcndent characteristic of directivity is men-

tioncd hcrc for future refcrcnce in thc following section.

4. Broadband Prediction with

Comparison to Experiment

The analytic surface pressure in thc previous section is

cxtendcd to model a broadband sourcc on a slender airfoil

at zero angle of attack. This broadband surface prcssurc

is uscd as input to Formulation 1B to prcdict far-field

radiation, and the rcsults arc compared to experimental

measurcmcnts. Note that Amict 15 has previously proposed

a broadband solution to this problem in the dmc domain,

using the transfer functions in Eqs. 9(c-g). His resulting

solution was a Fourier transform of the frequency-domain

solution in Rcfs. 8 and 13. In thc current work, the high-

frequency formulation in Section 3 is explicitly extended to

a broadband source application with user-specified spectral

content.

4.1 Experiment - Incident Turbulence Noise

Thc cxpcrimcnt that is modeled in this scction is re-

ported by Patcrson and Amict in Rcf. 8. A NACA 0012

airfoil is placed between two vertical plates, at zero angle

of attack, in the test section of an open-jet wind tunnel.

The airfoil has a chord length of 0.23 m and a span of

0.53 m. Turbulence is generated by a grid upstream of the

airfoil. Noise propagates from the test section into an ane-

ehoic chamber that is instrumcnted with six microphones.

The microphones are located on the tunnel ccnterline, on

an arc of raidus 2.25 m, rclativc to thc airfoil's gcometric

ccntcr. The microphonc locations on this arc are at angles

of 70, 90, 105, 120, 130, and 140 degrees, relativc to thc

upstream dircction. Far-ficld noisc mcasurcmcnts of thc

incidcnt turbulencc on thc airfoil are dctcrmincd by sub-

tracting microphone mcasurcmcnts, with and without thc

modcl, at cach of five tunncl specds: 40, 60, 90, 120, and

165 m/s.

4.2 Broadband Analysis

For prcdiction purposcs, thc airfoil is modelcd as a flat

plate in a pcriodic gust that givcs risc to an unsteady

surface prcssure that is a broadband cxtcnsion of thc an-

alytic formulation in Section 3. Thc airfoil geomctry is

oricntcd with respcct to thc coordinatc axcs as in Fig. 3,

with {0_<z: _< L_} x { b_<z2 _<b}, whcrc L_ =0.23

m and 2b = 0.53 m. As cncountcrcd by thc airfoil surfacc

in thc xi-m__ planc, thc normal componcnt of thc turbulent

vclocity ficld can bc writtcn

///iW(Xl ,X2 ,t) = W(/_I ,/_2) (2-/ [ 191(321 --U_)-}-/g2&'2 ] d/_ld/_2

where w(k:,k2) is the gust amplitude wave-number

spectrum, defined by the inverse Fourier transform of

w(z:,ac_, t). The complex-valued, unsteady surface prcs-

sure arising from the incidence of a turbulcnt velocity field

of this form is given by

AP(_:, z_, t) = (12)

po L k:,k_)g(aci,ki,k2)e _ ( k:_Tt--k_ ) dlq dk2

Thc cxprcssion for surface prcssurc in Eq. 13 is simpli-

ficd by thc following rcasoning. Amiet argues in Rcf. 13

that, for an observer in thc planc ac_ = 0, thc only spanwisc

wavemtmber that contributcs significantly to thc far-field

sound is k_ = 0. His conclusion is dcrived mathematically,

in the frequcncy domain, for the limiting case of an airfoil of

infinitc spat:. From a physical standpoint, this conclusion

makcs sense for an observer in a location that is symmetric

to the airfoil span. Thc cffcct on thc far-ficld acoustics of

any gust that is skcwed to the airfoil leading edgc by somc

anglc c_ will be cancclcd by another gust skewed at an an-

gle of c_. In thc case of a finite-span arifoil, Amiet argues

that this simplification is still valid as the quantity Mlv:b

bccomes large, i,e, in the high-frequcncy limit. Follow-

ing this linc of rcasoning, the ace dcpendcnce in Ap also

vanishes, by Eq. 12, and thc surface prcssurc bccomes

AP(acl,t)=po _,(l_l,O) g(aclJ_l,0)ci(klUt) dlq,1 (13)

w_

Thc cvaluation of the surfacc prcssurc in Eq. 13 is accom-

plished by first recognizing the turbulent fluctuations as a

stochastic process. This proccss can bc approximated by a

truncatcd series whose limit exhibits the required relation-

ship between the autocorrclation and the power spcctrmn

of that process. (See, for example, Rcf. 16.). This rela-

tionship is achieved by evaluating the spectral amplitudes

w(k:, k_) as a function of thc power spectral density (PSD)

of v,(ac:, ac_, t). To this end, the infinite wave-number do-

main, oo < k: < co, in Eq. 13 is integrally discretizcd and

truncatcd such that k:,-N < k:,,_ < kl,N. _Fhe largest wave

number k:,N represents an %ppcr-cut-off" wave number,

beyond which the spectral density amplitude is considered
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negligible or is out of range of expcrimcntal measurement.

The unsteady surface pressure in Eq. 13 is then approxi-

mated by

N

zxP(.1, t) _ p0v Z _<_,0o_" g(_, kl ....0) o__<._t/
--2N"

kl,;_ = g/ Z_k I , n = 0, -4-1, 4-2, ... , 4-N (14a)

Ak I = /_I,_y/N

The phase angles {¢5} are independent random variables

uniformly distributed on [0, 2rr]. The transfer function

9(xl, kl .... 0) is an extension of the high-frequency function

in Eqs. 9(c-g), and takes the slightly modified form

g(xl,/¢1 .... 0) = ( gl iI 92 ) e-i [21*n(1--M)Xl/Lcq-)v/4--l_l'n]

where gl and g2_ now functions of/_i .... arc otherwise iden-

tical to Eq. 9(f),

1
gl (Xl, /gl,_) =

[ 27g/g1,,_X1(1 + M)/Lc] 1

(14b)

' ' [2_<,_(l+M)]_

and E* is the same complex combination of Fresncl inte-

grals as in Eq. 9(g). The low-frequency transfer function

is not used in these broadband predictions because the cx-

pcrimcntal facility is anechoic for frequencies above 200 Hz,

and the parameter p is greater _han 0.4 at this frequency

or above, for all five tunnel speeds.

The spectral coefficients {A,_,0} arc evaluated by

1

z_,,,0 = [Stvw(]¢l .... 0) A1¢1Ak2] G (14c)

where S_(kl,k2) is the two-component power spectral

density of w. As this grid-generated curbulcncc is assumed

to bc honmgcneous and isotropic, the PSD is evaluated by

the yon Karman formula. 17 The formula for S_(kl,k_)

that is used in the present calculations is derived from yon

Karman's energy spectrum in Appendix I of Rcf. 13.

4 u_ _'_ ÷ k_
= (14d)

s_(_l,k__) 0_? [_+_1_+_]5

where u 2 is _hc stream-wise turbulent energy, and

ki k_ _f_ F(_) (14e)
/£i- ]_e' -- _i p(1) '

and £1 is thc strcam-wisc integral lcngth scalc

/0£1 = Rww(Xl)dXl

where R_ is the upwash correlation function defined by

/[_wtv(r) = W(Xl,t) Lu(xl + r,t)

lira 1 ./o rT--,_ _ _,(Zl, t) _'(Xl + ," t)dt

Note that the two-component formula in Eq. 14(d) was

dcrivcd in Rcf. 13 by integrating the von Karman cncrgy

spectrum ovcr all ks componcnts. The k2 componcnt is

thcn sct to zcro for thc prcsent calculations. Values for

_2 and £1 are dctcrmined by measurcmcnt. In Rcf. 18,

Fink reports that thc turbulence intensity that rcsults from

the grid in question can bc approximatcd by' _hc cmpirical

formula

(u_) 1 [ g ]-0.2 (14f)U -- 0.04

whcrc the rcfcrcncc spccd is /fret = 60 m/s. Fink 18 also

reports a measurcd valuc for t hc intcgral length scalc as

/21 = 3.175 cm

All of thc above cxprcssions and mcasurcments are in-

corporatcd into Eq. 14(a). Thc final rcprcscntation for thc

unstcady broadband prcssure on the airfoil's uppcr surfacc

is then given by thc rcal part of Eq. 14(a). This broad-

band surfacc prcssurc is uscd as input to Formulation 1B

to predict thc far-field noisc p'(2, Q.

Using symmctry argumcnts and algebraic manipulation,

the indicial bounds for thc surface prcssurc's spectral rcp-

rescmation arc altcrcd so that thc domain includes only

positive wavcnumbcrs. The resulting rcal-valucd surfacc

prcssurc on thc airfoil's upper surface can bc written

N

p(zl,t) = 2p0u_a,_,0[B,,cos(/q,,&t+_,,, _,,)
1

+D,,sin(kl,,_Ut+_,, a',,)] (15a)

wherc thc upwash amplitudes _4-,,,,D arc cvaluatcd by Eq.

14(c) and S_(kl,k2)is dcscribcd in Eqs. 14(d-f). Thc

quantities B,,, D,,, and c_,, are givcn by

C({,_) + S(,%) *
Bn = gl(Zl, kl,,_) @

[2_1,,_(1 + _w)]}

D,_ = s({,0 e(_,_) (_b)
[_1,,_(1 + M)] 1

c_,_ = 2p,_(1 + 3/I /c1,,_ + 7

where vl (_1, _1,,_)is evalnated in Eq. ]4(b), and e({,,) and
S(_,_) arc the eresnel cosine and sine integrals in Eq. 9(g)
with {,_ = 4/_,dl 1 Xl/£_ ). The summation in Eq. 15(a)

begins at ,, = 1 because S'_(0, 0) = 0, by Eq. 14(d).

At this point, thc value of Ake in Eq. 14(c) is unknown

bccause thcrc is no cxplicit span-wise integration, thcrcby

giving rise to an adjustiblc constas_t. This constant is onc

of scale only, and found to have no cffcct t hc shape of thc

far-field spectrum. Furthermore, this scalc factor is found

to bc constant for all data points, i,e, is indcpcndcnt of

all paramctcrs considcrcd (tunnel spccd, frcquency range,

band-width, airfoil span, ctc.).

4.3 Time-Domain Predictions

Thc lower frcqucncy bound, and thcrcforc the funda-

mental frcqucncy, for all fivc calculations is chosen at 10

Hz. Thc uppcr frcquency for the prcdictions is chosen ac-

cording to thc upper frcqucncy for which measurcments arc

availablc for cach tunncl speed. For U = 40, 60, and 90

m/s, thc uppcr bound is fN = 2.5 kHz. Thc uppcr bounds

for U = 120 and 165 m/s arc fN = 3.5 kHz and 4.5 kHz,

respcctivcly. For all fivc calculations, _hc numerical band-

width is Af = 10 Hz. Each calculation is pcrformcd for onc

8

AivIERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS



period of the lowest frequency, i.e. T = 0.1 second. The

numerical solution is sampled at the Nyquist frequency, i.e.

At = T/2N. The calculation is performed on a 100 × 230

surface grid, with the stream-wise integration interval re-

stricted as in Eq. 11, with sufficient grid clustering near

the leading and trailing edges to allow for e = 0.003.

The experimental microphone position for which com-

parisons are made is at a distance of 2.25 m from the model,

and at an angle of 90 degrees relative to the model's geo-

metric center. The coordinate system for the calculation

is such that the _-axis is coincident with the center-span

line, so that the microphone position is in the plane z2 = 0,

as in Fig. 6. The measured observer position for the pre-

diction is, then, E = [0.115, 0, 2.25] T in meters.

The position of the microphone relative to the airfoil is

corrected for refraction due to the presence of a shear layer

that forms downstream of the upper lip of the square nozzle

exit and is positioned between the model and the micro-

phone. This correction is based on geometrical acoustics

with an assumption of a zero-thickness shear layer, and is

reported in Rcf. 19. Shear-layer corrections that are based

on such formulations I9 are reasonable for the present case

with the microphone directly above the source. The re-

quired correction in the microphone position is significmlt.

At a measured angle of 90 degrees, the corrected angles

ranged from approximately 84.5 degrees for U = 40 m/s to

68.2 degrees for U = 165 m/s.

In addition, the amplitude of the radiated noise is also

corrected for the presence of the shear layer, although at a

measured angle of 90 degrees, the amplitude correction is

not significant, especially for the lower tunnel speeds. The

computed sound pressures p_(E, t) were corrected by factors

ranging from approximately 0.997 for U = 40 m/s to 0.942

for U = 165 m/s. The microphone position is corrected for

the shear-layer in a pro-processing step. After the far-field

noise is calculated at the CmTCctcd position, the results are

then post-processed for amplitude correction. In this way,

the corrected predictions can be compared to the cxpcri-

o_

-80 0.025 0.05 0.075 0.1

time, seconds

Fig. 8 Predicted far-field signal, U = 165 m/s. Micro-

phone at 90 °, 2.25 m above airfoil center.

mental results "as measured."

Fig. 8 shows the fin'-field signal p_(E, t) that is predicted

by Fornmlation 1B, for one fundamental period in time, at

the experimental microphone location, for a tunnel speed

of 165 m/s. Shemqaycr corrections for amplitude and di-

rectivity are included in this plot. In order to compare with

experimental measurements in Rcf. 8, the time-domain re-

sults from the numerical predictions, for all five tunnel

speeds, arc Fourier analyzed and converted to the fi'c-

qucncy domain. The resulting frequency-domain solution,

p'(f,_), is used to compute the sound pressure level (SPL)

spectrum of the far-field radiation. These sound pressure

levels are dctcrnfincd by

sPL(f,d = 10log [ p_,

where the reference pressure is pref = 2 × 10 -5 Pa. The

SPL's are converted to a 1 Hz band-width by reducing the

values in Eq. 16 by 10log(A f). This narrow-band conver-

sion is consistent with the experimental SPL's which were

measured at a band-width of 55.7 Hz and reduced by 17.5

dB. _

The predicted far-field spectral density for the five tun-

nel speeds is shown Fig. 9 along with experimental mea-

surements from Rcf. 8. The solid symbols represent those

measurements for which the difference between the noise

with and without the airfoil model was considered too

small, and are therefore subject to greater uncertainty. The

agreement with the measured data is very good. The no-

ticeable "humps" in the predicted spectra are, most likely,

the result of the changing placement of lobes, as a function

90-
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"O
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Q.
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,Ooo_ ,7 \ ...... Experiment

o \ "_ o 40m/s
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_ " vvv _. 120 m/so0
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I I I I I
1000 2000 3000 4000 5000
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Fig. 9 Predicted and measured far-field noise spectra.

Microphone at 90 °, 2.25 m above airfoil center. Experi-

mental data reproduced from Rcf. 8. Solid symbols denote

low signal-to-noise ratio.
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of frequency, relative to the observer. This phenomenon

was described in Section 3 (Fig. 7). That the current pre-

dictions are nearly identical to the predictions in Rcfi 8 is

not surprising, because the current predictions rely upon

the same unsteady surface pressure formulation as those in

Ref. 8.

5. Statistical Formulation

Often, when aeroacoustic experiments are performed,

surface-pressure correlations are extremely useful in char-

acterizing noise due to an airflow over a model. Under

certain conditions, Formulation 1B is readily transformed

into an expression that aids in statistical analysis of broad-

band noise. Recall that, in the case of low Mach number

and with an observer in the acoustic far field (Eq. 7), the

signal is dominated by the first integral in Eq. 6. Also,

recall that the spatial and temporal derivatives of pressure

in this integral can be written as a single time derivative of

pressure when evaluated in a reference frame that is fixed

relative to the medium at rest, as in Eq. 5(b). In this fixed

reference frame, the far-field sound at low Mach number is

approximated by

47rp (x, t) _ /(f_ Mr)ire t>0 co

In addition, assmne that the observer is many correlation

lengths into the far field, i.e. r >> &, where

f01 R_,(xi)dxi, i = 1,2
el- R_(0)

In this case, the values of r, hi,-, and 0 are nearly invariant

within a correlation area Ae of size gl by g2, and Eq. 17

can be re-written as

K

cos(1 0hM,_k ) /a4,'rp'(2, t) _ E /5(_, r) dS (18)
c0 rk

where rk, 0h, and M,- k arc constant values chosen to replace

their nearly invariant counterparts in retarded time, within

cach correlation area.

If the autocorrclation opcrator is applied to Eq. 17, the

result is

lS_ _R.,., (e) = lS__v,(_, e)v,(e, _+ e) (lSa)

1 Cork(1 ]_/rk ) 1 ek Rbb(_7;_'r)d_d_7

where

R_.(_; _,.)= _(_,_)b(_+ _, _ + _) (lSb)

The ability to measure such time-derivative correlations,

relative to the medium at rest, is already in hand. 2° The

potential usefulness of this alternate formulation is clear.

After the autocorrclations in Eq. 18(b) arc determined ex-

perimentally, and used as input to Eq. 18(a), then the

Fourier transform of Eq. 18(a) produces the far-field noise

spectrum. The further development and testing of this

statistical formulation is a topic of ongoing research for its

potential application to trailing cdgc noise prediction.

Concluding Remarks

A new formulation for the solution of the loading tcrm

of the Ffowcs Williams-Hawkings cqnation has been de-

rivcd. Thc potcntial uscfulness of time-domain solutions

for acoustic prcdicdons with Formulation 1B has becn

dcmonstratcd. This ncw far-ficld formulation has somc

advantagcs ovcr previous formulations. The formulation

is both simple and has broad application, including thc

casc of non-uniform flow. In addition, thc dominancc of

only onc tcrm in this formulation makes this solution much

casier to pose in correlation-function form for statistical

analysis of broadband noise. Such an alternative formula-

tion can bc used to aid acoustic expcrimcnts where surfacc

pressurc corrclations are mcasured.
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