
Message Passing and Shared Address Space

Parallelism on an SMP Cluster

Hongzhang Shan a, Jaswinder P. Singh b, Leonid Oliker a,

Rupak Biswas e,*

aNERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

bDept, of Computer Science, Princeton University, Princeton, NJ 08544, USA

CNAS Division, NASA Ames Research Center, Moffett Field, CA 94035, USA

Abstract

Currently, message passing (MP) and shared address space (SAS) are the two lead-

ing parallel programming paradigms. MP has been standardized with MPI, and
is the more common and mature approach; however, code development can be

extremely difficult, especially for irregularly structured computations. SAS offers

substantial ease of programming, but may suffer from performance limitations due

to poor spatial locality and high protocol overhead. In this paper, we compare the

performance of and the programming effort required for six applications under both

programming models on a 32-processor PC-SMP cluster, a platform that is be-

coming increasingly attractive for high-end scientific computing. Our application

suite consists of codes that typically do not exhibit scalable performance under

shared-memory programming due to their high communication-to-computation ra-

tios and/or complex communication patterns. Results indicate that SAS can achieve

about half the parallel efficiency of MPI for most of our applications, while being

competitive for the others. A hybrid MPI+SAS strategy shows only a small perfor-

mance advantage over pure MPI in some eases. Finally, improved implementations

of two MPI collective operations on PC-SMP'clusters are presented.

Key words: PC cluster, message passing, distributed shared memory, benchmark

applications, parallel performance

* Corresponding author. Tel.: +1-650-604-4411; Fax: +1-650-604-3957.
Email addresses: hshan©lbl, gov (Hongzhang Shan), j ps©cs .princeton. edu

(Jaswinder P. Singh), lol±ker©lbl, gov (Leonid Oliker), rbiswasOnas, nasa. gov

(Rupak Biswas). "

Preprint submitted to Elsevier Science 30 September 2002



1 Introduction

The emergence of scalable computer architectures using clusters of PCs (or

PC-SMPs) with commodity networking has made them attractive platforms

for high-end scientific computing. Currently, message passing (MP) and shared

address space (SAS) are the two leading programming paradigms for these

systems. MP has been standardized with MPI, and is the more common and

mature parallel programming approach. It provides both functional and per-

formance portability; however, code development can be extremely difficult,

especially for irregularly structured computations [15,16]. A coherent SAS has

been shown to be very effective at moderate scales for a wide range of ap-

plications when supported efficiently in hardware [9,10,22-24]. The automatic

management of naming and coherent replication in the SAS model also sub-

stantially eases the programming task compared to explicit MP, particularly

for complex irregular applications that are becoming increasingly routine as

multiprocessing matures. This programming advantage can often be translated

directly into performance gains [24,25]. Even as hardware-coherent machines

replace traditional distributed-memory systems at the high end, clusters of

commodity PCs and PC-SMPs are becoming popular for scalable comput-

ing. On these systems, the MP paradigm is dominant while the SAS model is

unproven since it is implemented in software. Given the ease of SAS program-

ming, it is therefore important to understand its performance tradeoffs with

MP on commodity cluster platforms.

Approaches to support SAS in software across clusters differ not only in

the specialization and efficiencies of networks but also in the granularities

at which they provide coherence. Fine-grained software coherence uses either

code instrumentation [19,20] for access control or commodity-oriented hard-

ware support [18] with the protocol implemented in software. Page-grained

software coherence takes advantage of the virtual memory management facili-

ties to provide replication and coherence at page granularity [12]. To alleviate

false sharing and fragmentation problems, a relaxed consistency model is used

to buffer coherence actions. Lu et al. [13] compared the performance of PVM

and the TreadMarks page-based software shared-memory library on an 8-

processor network of ATM-connected workstations and on an 8-processor IBM

SP2. They found that TreadMarks generally performs slightly worse. Karlsson

and Brorsson [11] compared the characteristics of communication patterns in

MP and page-based software shared-memory programs, using MPI and Tread-

Marks running on an SP2. They found that the fraction of small messages in

the TreadMarks executions lead to poor performance. However, the platforms

used by both these groups were of much lower performance, smaller scale, and

not SMP based. In addition, the protocols used for these experiments were

quite inefficient. Recently, both the communication network and the protocols

for shared virtual memory (SVM) have made great progress. Some GB/sec net-

works have been put into use. A new SVM protocol, called GeNIMA [2], for

page-grained SAS on clusters uses general-purpose network interface support



to significantly reduceprotocol overheads.It hasbeenshownto perform quite
well for medium-sizesystemson a fairly wide rangeof applications,achieving
at least half the parallel efficiency of a high-end hardware-coherentsystem
and often exhibiting comparablebehavior [2,8].Thus, a study comparing the
performanceof using GeNIMA against the dominant way of programmingfor
clusters today, namely MPI, becomesnecessaryand important.

In this paper, wecompareperformanceof the MP and SASprogramming
models using the best implementations available to us (MPI/Pro from MPI
SoftwareTechnology,Inc., for MPI, and the GeNIMA SVM protocol for SAS)
on a cluster of eight 4-way SMPs (a total of 32 processors)running Windows
NT 4.0. Our application suite includescodesthat scalewell on tightly-coupled
machines,as well as those that present a challengeto scalableperformance
becauseof their high communication-to-computation ratios and/or complex
communicationpatterns. Our results showthat if very high performanceis the
goal,the difficulty of MP programmingappearsto benecessaryfor commodity
SMP clustersof today. Instead, if easeof programming is important, then SAS
provides it at roughly a factor-of-two deterioration in performancefor many
applications,andsomewhatlessfor others.This is encouragingfor SVM, given
the diversenature of our application suiteand the relative maturity of the MPI
library. Application-driven researchinto coherenceprotocols and extended
hardware support should reduceSVM and SAS overheadson future systems.

We alsoinvestigateda hybrid strategy by implementing SAScodeswithin
eachSMP while using MP amongthe SMP nodes.This allowscodesto poten-
tially benefit from both loop-leveland domain-levelparallelism.Although this
hybrid programming model is the best mapping to our underlying architec-
ture, it hasthe disadvantagesof adverselyaffecting portability and increasing
codecomplexity.Furthermore, results showonly asmall performancegainover
the pure MPI versionsfor a subsetof our applications. Finally, wepresentim-
provedimplementationsof two MPI collectiveoperations (MPI_llreduce and
SPIAllgather) onPC-SMP clusters.Resultsshowthat thesenewalgorithms
achievesignificant improvementsover the default MPI/Pro implementation.

The remainder of this paper is organizedas follows. Section 2 describes
our PC cluster platform, and the implementation of the two programming
models.The benchmarkapplications arebriefly describedin Section3, as are
the modifications that were made to improve their cluster performance.Per-
formanceresultsare presentedand critically analyzedin Section4. Section 5
exploresnew algorithms to efficiently implement two collective functions of
MPI. Section6 summarizesour key conclusions.

2 Platform and programming models

The platform usedfor this study is a cluster of eight 4-way 200MHz Pen-
tium Pro SMPs located at Princeton University. Each of the 32 processors
has separate8 KB data and instruction L1 caches,and a unified 4-way set-

3



associative512 KB L2 cache.Eachof the eight nodesruns Windows NT 4.0,
has 512 MB of main memory, and is connected to other nodes either by
Myrinet [3] or Giganet [6].The SASand MP programmingmodelsarebuilt in
softwareon top of thesetwonetworksrespectively.All our MPI and SAScodes
are compiled using the cl compiler provided by Microsoft Visual Studio 6.0
with the standard compilation options.

2.1 SAS programming model

Much research has been done in the design and implementation of shared

address space (SAS) for clustered architectures, both at page and at finer fixed

granularities through code instrumentation. Among the most popular ways to

support a coherent SAS in software on clusters is page-based shared virtual

memory (SVM). SVM provides replication and coherence at the page granular-

ity by taking advantage of virtual memory management facilities. To alleviate

problems with false sharing and fragmentation, SVM uses a relaxed memory

consistency model to buffer coherence actions such as invalidations or updates,

and postpones them until a synchronization point. Multiple writer protocols

are used to allow more than one processor to modify copies of a page locally

and incoherently between synchronizations, thereby reducing the impact of

write-write false sharing and making the page consistent only when needed

by applying dills and write notices. Many distinct protocols have been de-

veloped which use different timing strategies to propagate write notices and

apply the invalidations to pages. Recently, a new protocol for SVM called

GeNIMA has been developed that shows good performance on moderate-scale

systems for a wide spectrum of applications, achieving at least half the par-

allel efficiency of a high-end hardware-coherent machine [2,8]. It uses general-

purpose network interface support to significantly improve protocol overheads.

Thus, we select GeNIMA as our protocol for the SAS programming model. It is

built on top of VMMC, a high-performance, user-level virtual memory mapped

communication library [5]. VMMC itself runs on the Myrinet network [3].

The SMP nodes in our cluster are connected to a Myrinet system area

network via a PCI bus. A single 16-way Myrinet crossbar switch is used to

minimize contention in the interconnect. Each network interface has a 33 MHz

programmable processor and connects the node to the network with two uni-

directional links of 160 MB/sec peak bandwidth. The actual node-to-network

bandwidth, however, is constrained by the 133 MB/sec PCI bus. The par-

allelism constructs and calls needed by the SAS programs are identical to

those used in our hardware-coherent platform (SGI Origin2000) implementa-

tion [22-24], making portability trivial between these systems.

2.2 MP programming model

The message-passing (MP) implementation used in this work is MPI/Pro

from MPI Software Technology, Inc., and is developed directly on top of Gi-



°'

Table 1

Communication times (in #secs) of different message sizes (in bytes) for the VMMC

and VIA interfaces

Message size

4 16 64 256 1024 4096 16384

VMMC (SAS) 10.9 1t.2 15.1 20.0 34.2 80.1 210

VIA (MPI) 10.3 10.6 12.4 14.3 23.8 65.5 231

ganet networks [6] by the VIA [27] interface. By selecting MPI/Pro instead of

building our own MPI library from VMMC, we can compare the best known

versions of both programming models. In fact, MPI/Pro uses the underlying

shared memory to communication within a single PC node. Thus our final

conclusions are not affected by a potentially poor implementation of the com-

munication layer. Fortunately, as shown in Table 1, VIA and VMMC have

similar communication times for a range of message sizes on our cluster plat-

form. Giganet performs somewhat better for short messages while Myrinet has

a small advantage for larger messages. There should thus be little performance

difference for similar MPI implementations across these two networks. Note

that the Giganet network interfaces are also connected together by a single

crossbar switch.

3 Benchmark applications

Our application suite consists of codes used in previous studies to exam-

ine the performance and implementation complexity of various programming

models on hardware-supported cache-coherent platforms [21-24]. These codes

include regular applications (FFT, OCEAN, and LU) as well as irregularly

structured applications (RADIX, SAMPLE, and N-BODY). FFT performs the

challenging one-dimensional fast Fourier transform using the six-step FFT

method. LU performs the blocked LU factorization of a dense matrix. OCEAN

simulates eddy currents in an ocean basin. RADIX sorts a series of integer

keys in ascending order using the radix algorithm, while SAMPLE uses the

sample sort algorithm. N-BODY simulates the interaction of a system of bod-

ies in three dimensions over a number of time steps, using the Barnes-Hut

algorithm [1].
All six codes have either high communication-to-computation ratios or

complex communication patterns, making scalable performance on cluster

platforms a difficult task. FFT uses a non-localized but regular all-to-all per-

sonalized communication pattern to perform a matrix transposition; i.e., every

process communicates with all others, sending different data across the net-

work. OCEAN exhibits primarily nearest-neighbor patterns, but in a multigrid

formation rather than on a single grid. /U uses one-to-many non-personalized



Table 2

RADIX speedups on the PC cluster and Origin2000 using two messaging strategies

for 32M integers

Origin2000 system

Multi-message Single-message

PC cluster

Multi-message Single-message

P=16 P=32 P=16 P=32 P=16 P=32 P=16 P=32

13.36 33.64 11.44 21.69 4.06 6.44 4.16 7.78

communication. RADIX uses all-to-all personalized communication, but in an

irregular and scattered fashion. In contrast, the all-to-all personalized commu-

nication in SAMPLE is much more regular. Finally, N-BODY requires all-to-all

all-gather communication and demonstrates unpredictable send/receive pat-
terns.

All the SAS implementations except N-BODY come from the SPLASH-2

suite with some additional optimizations [8,23]. FFT, LU, and SAMPLE were

ported to our PC-SMP without any modifications. For RADIX, we used the

improved version described in [23] where keys destined for the same proces-

sor are buffered together instead of being exchanged in a scattered fashion.

Some changes were also made to the SPLASH-2 version of OCEAN to improve

its shared-memory performance [8] on clusters. For example, the matrix was

partitioned by rows across processors instead of by blocks, and significant al-

terations were made to the data structures. The N-BODY code required major

modifications since the original version suffered from the high overhead of

synchronizations during the shared-tree building phase. A new tree building

method, called Barnes-spatial [21], has been developed to completely eliminate

the expensive synchronization operations.

All the MPI implementations were obtained by transforming the corre-

sponding SAS codes using similar partitioning algorithms. Most of the MPI

programs were available from our earlier work on the Origin2000 [22-24], and

ported directly onto the PC cluster without any changes; however, OCEAN

and RADIX required some modifications for better performance. In OCEAN,

the matrix is now partitioned by rows instead of by blocks. This allows each

processor to communicate only with its two neighbors, thus reducing the num-

ber of messages while improving the spatial locality of the communicated data.

For example, by using row partitioning, the OCEAN speedup on 32 processors

improved from 14.15 to 15.20 for a data set of 514x514 grid points.

For RADIX, in the key exchange stage, each processor now sends only one

message to every other processor, containing all its chunks of keys destined for

the destination processor. The receiving processor then reorganizes the data

chunks to their correct positions. On a hardware-supported cache-coherent

platform, a processor would send each contiguously-destined chunk of keys as

a separate message, so that the data could be immediately inserted into the

correct position by the receiver. However, this requires multiple messages from



."

Table 3

Number of essential code lines for MPI and SAS implementations of our benchmark

applications

Benchmark application

FFT OCEAN LU RADIX SAMPLE N-BODY

MPI 222 4320 470 384 479 1371

SAS 210 2878 309 201 450 950

one processor to every other processor. Table 2 presents the RADIX speedups

on the PC cluster and Origin2000 platforms using both messaging strategies

for a data set of 32M integers. Notice that while the original multi-message

implementation succeeds on the Origin2000 system (better speedups), the

modified single-message approach is better suited for cluster platforms since

reducing the number of messages at the cost of increased local computations

is more beneficial. To study the two-level architectural effect (intra-node and

inter-node), we also tested our applications by reorganizing the communication

sequence in various ways (intra-node first, inter-node first, or intra-node and

inter-node mixed). Interestingly, our results showed that the performance of

the MPI programs was insensitive to the communication sequence.

All these applications have been previously used to evaluate the perfor-

mance of MPI and SAS on the Origin2000 hardware-supported cache-coherent

platform [22-24]. It was shown that SAS provides substantial ease of program-

ming compared to MP, while performance, though application-dependent, was

sometimes better for SAS. The ease of programming holds true also on clus-

ter systems, although some SAS code restructuring was required to improve

performance. Nonetheless, a SAS implementation is still easier than MPI as

has been argued earlier in the hardware-coherent context [10].

A comparison between MPI and SAS programmability is presented in Ta-

ble 3. Observe that SAS programs require fewer lines of essential code (exclud-

ing the initialization and debugging code, and comments) compared to MPI.

In fact, as application complexity (e.g., irregularity and dynamic nature) in-

creases, we see a bigger reduction in programming effort using SAS. Note that

"lines of code" is not considered a precise metric, but is nontheless a very useful

measure of overall programming complexity. Some differences could also arise

due to the programmer's style or experience with the programming models.

4 Performance Analysis

In this section, we compare the performance of our benchmark applications

under both the MP and SAS programming paradigms. For each application,

parallel speedups and detailed time breakdowns are presented. To derive the

speedup numbers, we use our best sequential runtimes for comparison. The

7



parallel runtimes are decomposedinto three components:LOCAL, RMEM,
and SYNC. LOCAL includes CPU computation time and CPU waiting time

for local cache misses, RMEM is the CPU time spent for remote communica-

tion, while SYNC represents the synchronization overhead. Two data set sizes

are chosen for each application. The first is a baseline data set at which the

SVM begins to perform "reasonably" well [8]. The second is a larger data set,

since increasing the problem size generally tends to improve many inherent

program characteristics, such as load balance, communication-to-computation

ratio, and spatial locality.

4.1 FFT

The FFT algorithm has very high communication-to-computation ratio,

which diminishes only logarithmically with problem size. It requires a non-

localized but regular all-to-all personalized communication pattern to perform

the matrix transposition, and cannot overlap the transposition and computa-

tion stages. In general, it is much more difficult to achieve high performance

on the one-dimensional FFT, studied here, compared with higher-dimensional

FFTs. Speedups for the SAS and MPI versions are presented in Table 4 for

1M and 4M data sets.

Neither MPI nor SAS show high scalability for our test cases. Increasing

the data set size improves performance, but only slightly. This is mainly due

to the pure communication of the transpose stage whose communication-to-

computation ratio is not affected by problem size. In the sequential case, the

transposition is responsible for approximately 16% of the overall runtime; how-

ever, it increases to 50% when using all 32 processors. It is inherently difficult

to scale pure all-to-all communication. As the number of active processors

increases, so does the contention in the network interface. Additionally, since

each remote request requires access to the memory bus, increasing the number

of processors has a deleterious effect on the local memory access time. This

is particularly true for our commodity 4-way PC-SMP platform which suffers

from high memory bus contention when all four processors simultaneously at-

tempt to access memory. For example, the FFT LOCAL time (which includes

the memory stall time) on two processors for the 4M data set is about 6 secs.

However, LOCAL drops to only about 4.8 secs when all four processors are

Table 4

Speedups for the FFT application

1M data set 4M data set

P= 16 P= 32 P= 16 P = 32

SAS 3.39 3.90 3.83

MPI 5.94 9.18 5.35

5.42

10.43



A

O

.m
b-

MPI

BSYNC

DRMEM

BLOCAL

0 6 12 18 24 30 0 6 12 18 24 30

Processor Identifier

Fig. I. FFT time breakdown for SAS and MPI on 32 processors for 4M data set.

used, compared to an ideal of 3 sees.

Observe though that the MPI implementation significantly outperforms

SAS. To better understand the performance difference, Fig. 1 presents the time

breakdown for the 4M data set running on 32 processors. We find that all the

three time components (LOCAL, RMEM, and SYNC) are much larger in

SAS than in MPI. In order to maintain page coherence, a high protocol over-

head is introduced in SAS programs, including the time to compute cliffs,

creating timestamps, generating write notices, and performing garbage col-

lection. This protocol overhead dramatically increases execution time while

degrading local cache performance, thus causing a higher LOCAL time. In

addition, the dills generated for maintaining coherence immediately cause

pages to be propagated to their home processors, thereby increasing network

traffic and possibly causing more memory contention. Finally, at synchroniza-

tion points, handling the protocol requirements causes a significant dilation of

the synchronization interval, including the expensive invalidation of necessary

pages. None of these protocol overheads exist in the MPI implementation.
MPI does have the additional cost of packing and unpacking data for efficient

communication; however, this overhead is incurred locally on the processors

and is insignificant compared to the protocol costs associated with SAS.

One possible strategy to improve SAS performance would be to restruc-

ture the code so that the data structures more closely resemble the MPI im-

plementation. For example, instead of allocating the matrix as a shared data

structure, each sub-matrix that is transposed onto a different processor could

be allocated separately. Unfortunately, this would dramatically increase the

complexity of the SAS implementation, and thus sacrifice the programming

ease of the shared-memory paradigm.

4.2 OCEAN

OCEAN exhibits a commonly used nearest-neighbor pattern, but in a multi-

grid rather than a single-grid formation. Parallel speedups are presented in

Table 5. The scalability of the commodity SMP platform is relatively low,

9



Table 5

Speedups for the OCEAN application

258 × 258 grid 514x514 grid

P= 16 P= 32 P= 16 P= 32

SAS 2.17 5.96 5.44 6.49

MPI 4.97 8.03 7.45 15.20

compared with previously obtained results on the hardware-supported cache-

coherent architecture of the Origin2000 [22]. Although, the communication-

to-computation ratio of OCEAN is high for small data sets, it quickly improves

with larger problem sizes. This is especially true for the MPI version as shown

in Table 5. Notice that SAS achieves superlinear speedup between 16 and 32

processors on the smaller data set. This occurs partly because as the number

of processors increases, a larger fraction of the problem fits in cache.

The SAS implementation suffers from expensive synchronization overheads,

as shown in Fig. 2. After each nearest-neighbor communication, a barrier syn-

chronization is required to maintain coherence. Further analysis of the syn-

chronization costs show that about 50% of this overhead is spent waiting,

while the remainder is for protocol processing [2]. Thus, the synchronization

cost can be improved either by reducing protocol overhead or by increasing

the data set size. Unfortunately, there is not enough computational work be-

tween synchronization points for the 514 ×514 problem size, especially because

this grid is further coarsened into smaller subgrids during program execution.

Moreover, OCEAN has a large memory requirement due to its use of more than

20 big data arrays, required for the multigrid code. Thus, we are prevented

from running even larger data sets due to memory constraints. The synchro-

nization within the MPI program is dramatically lower since it is implicitly

implemented using send/receive pairs.

42
SAS MPI

35

_" 28

"-" 21
4}
E
_. 14

7

0
0 6 12 18 24 30 0 6 12 18 24 30

BSYNC

DRMEM

BLOCAL

ProcessorIdentifier

Fig. 2. OCEAN time breakdown for SAS and MPI on 32 processors for 514>(514 grid
size.

10



4.3 LU

The communication requirements of LU are smaller compared to our other

benchmark codes, and thus we expect better performance for this application.

This is confirmed by the results shown in Table 6. LU uses one-to-many non-

personalized communication where the pivot block and the pivot row blocks

are each communicated to v_ processors. Prom the time breakdown in Fig. 3,

it is obvious that most of the overhead is in the LOCAL time. The LU perfor-

mance could be further improved by reducing the synchronization cost caused

by the load imbalance associated with the CPU wait time.

Notice that for LU, the performance of the SAS and MPI implementations

are very close in both speedup and time breakdown characteristics. The pro-

tocol overhead of running the SAS version constitutes only a small fraction

of the overall runtime. Unlike our FFT example, the LU matrix is organized

in a four-dimensional array such that blocks assigned to each processor are

allocated locally and contiguously. Thus, each processor modifies only its own

blocks, and the modifications are immediately applied to local data pages. As

a result, no dills generation and propagation are required, greatly reducing

the protocol overhead. These performance results show that for applications

with relatively low communication requirements, it is possible to achieve high

scalability on commodity clusters using both MPI and SAS programming ap-

proaches.

Table 6

Speedups for the LU application

4096 x4096 matrix 6144 x 6144 matrix

P= 16 P = 32 P= 16 P = 32

SAS 12.48 22.98 11.79 21.78

MPI 13.15 23.04 12.31 22.43

SAS MPI
140

120 [] SYNC
.--. 100
u [] RMEM
_,_ 80
® [] LOCAL
E 60

iv- 40

20

0

0 6 12 18 24 30 0 6 12 18 24 30

Processor Identifier

Fig. 3. LU time breakdown for SAS and MPI on 32 processors for 6144x6144 matrix

size.

11



_,._ RADIX

Unlike the three regularly structured codes (FFT, OCEAN, and LU) we

have discussed so far, we now investigate three applications with irregular

characteristics: RADIX, SAMPLE, and N-BODY. The RADIX sort benchmark

requires all-to-all personalized communication, but in an irregular and scat-

tered fashion. It also has a high communication-to-computation ratio that is

independent of problem size and the number of processors. This application

has large memory bandwidth requirements which can exceed the capacity of

current SMP platforms; thus, high contention is caused on the memory bus

when all four processors of a node are in use. The "aggregate" LOCAL time

across processors is much greater than in the uniprocessor case, which leads to

the poor performance shown in Table 7. However, MPI significantly outper-

forms the SAS implementation, since the latter has much larger RMEM and

SYNC times as shown for the 32M integers data set in Fig. 4. These costs are

due to the expensive protocol overhead of performing all-to-all communication,

for reasons similar to those already discussed for FFT.

Note that choice of the proper implementation strategy for the MPI all-

to-all communication is platform dependent. On the commodity cluster, each

processor sends only one large message to all the other processors. The message

contains all the data chunks required by the destination processor which, in

turn, reorganizes the separate blocks of data into their correct positions. This

is similar to the bucket sort algorithm used in the IS NAS Parallel Bench-

Table 7

Speedups for the RADIX application

4M integers

P= 16 P = 32

32M integers

P= 16 P=32

SAS 1.33 1.66

MPI 3.78 5.67

1.86

4.16

2.70

7.78

SAS
12

10

_" 8
4)

"g o
E
_. 4

2

0

0 6 12 18 24 30

MPI

0 6 12 18 24 30

Processor Identifier

• SYNC

El RMEM

[] LOCAL

Fig. 4. RADIX time breakdown for SAS and MPI on 32 processors for 32M integers.

12



°
¢

mark [14]. However, on the hardware-supported cache-coherent Origin2000,

each processor sends the contiguous chunks of data directly to their destina-

tion processors in separate messages. Thus, unlike the cluster, each processor

sends multiple messages to all the other processors in the system. The dif-

ference in these two approaches stems from the relatively high latency and

low bandwidth of the cluster, where it is more efficient to send fewer mes-

sages in exchange for increased computational requirements of assembling the

scattered data chunks.

4.5 SAMPLE

SAMPLE sorting also requires personalized all-to-all communication; how-

ever, it is less irregular than that for the RADI× algorithm. Speedups for SAM-

PLE are presented in Table 8, and compare favorably with the RADIX perfor-

mance. Note that the same sequential time is used to compute the speedups

for all the sorting codes. In SAMPLE, each processor first performs a local

radix sort on its partitioned data. Next, an all-to-all communication is used

to exchange keys, and a second local sort is conducted on the newly-received

data. However, in the sequential case, only a single local sort is required. It is

therefore reasonable to expect ideal SAMPLE performance to achieve only a

50% parallel efficiency.

Fig. 5 presents the time breakdown of SAMPLE for the larger data set on

32 processors. The y-axis scale is the same as in Fig. 4 for easier comparisons.

Table 8

Speedups for the SAMPLE application

4M integers

P= 16 P = 32

32M integers

P=16 P= 32

SAS 2.10 2.13

MPI 4.89 8.60

4.97

5.73

4.89

11.07

12

10

8

"" 6
E

i= 4

0 6

SAS MPI

iSYNC

DRMEM

mLOCAL

Fig. 5. SAMPLE time breakdown for SAS and MPI on 32 processors for 32M integers.

13



Observe that the RMEM and SYNC times are significantly smaller than

those of RADIX, for both MPI and SAS. As a result, the SAMPLE algorithm

outperforms RADIX. Note that the LOCAL time for SAMPLE is only slightly

greater than RADIX, even though much more computation is performed in

SAMPLE. This indicates that contention on the memory bus for RADIX is

higher than that for SAMPLE due to the greater irregularity of its memory

access patterns. On the Origin2000, we found that RADIX performs better

than SAMPLE in most cases; however, the reverse is true on our PC cluster.

This result further verifies that reducing messages is much more important on

a cluster platform than reducing the local computations.

4.6 N-BODY

Finally, we examine the performance of the N-BODY simulation. We use

the Barnes-Hut [1] algorithm which employs a tree structure to reduce the

complexity from O(N) to O(NlogN). Hence, tree building is an essential

component of the solution process. Table 9 shows that MPI once again out-

performs SAS, especially for the larger data set. For 128K particles on 32

processors, MPI achieves almost twice the performance of SAS.

The time breakdown for this larger data set on 32 processors is shown

in Fig. 6. The SAS impiementation has higher SYNC and RMEM times

compared to MPI, but the synchronization overhead clearly dominates the

overall runtime. This is because at each synchronization point, many dills

and write notices are processed by the coherence protocol. In addition, a large

number of shared pages are invalidated. Further analysis shows that 82% of

the barrier time is spent on protocol handling. This expensive synchronization

overhead is incurred in all of our applications except LU, causing a degradation

of SAS performance.

Unlike our other five applications, the MPI version of N-BODY has a higher

LOCAL time than the SAS counterpart. This is due to the use of different

high-level algorithms for each programming model. In the SAS implementa-

tion, each processor builds one part of a globally shared tree; while in MPI,

a locally essential tree is created on each processor. Building the locally es-

sential tree across distributed memories is much more complex than using a

shared memory to build a single globally addressable tree. Therefore, there

Table 9

Speedups for the N-BODY application

32K particles

P= 16 P= 32

128K particles

P=16 P = 32

SAS

MPI

6.05

8.15

9.31

14.10

10.64

14.05

14.30

26.94

14



7

6

.-.5
O

==4

v- 2

SAS MPI

• SYNC

[] RMEM

mLOCAL

1

0 Ht_H I

0 6 12 18 24 30 0 6 12 18 24 30

Processor Identifier

Fig. 6. N-BODY time breakdown for SAS and MPI on 32 processors for 128K par-

ticles.

is a higher computational tree-building cost in the MPI implementation [24].

However, with large data sets, tree building becomes computationally insignif-

icant compared to the other phases of the N-BODY simulation, most notably

the force calculation.

4.7 Hybrid programming

All these results demonstrate that MP programming significantly outper-

forms SAS for our application suite. However, it is not obvious that MP within

each SMP is the most effective use of the system. A recently proposed pro-

gramming paradigm combines two layers of parallelism, by implementing SAS

codes within each SMP while using MP among the SMP nodes. Here, the

hardware directly supports cache coherence for the SAS code segments, while

inter-SMP communication relies on the network through MP. This mixed-

mode/hybrid programming strategy allows codes to potentially benefit from

loop-level parallelism in addition to coarse-grained domain-level parallelism.

Although this hybrid programming methodology is the best mapping to our

underlying architecture, it remains unclear whether the performance gains of

this approach compensate for its drawbacks.

Table 10

Runtimes (in secs) for SAS, MPI, and hybrid MPI+SAS implementations of the

benchmark applications on 32 processors for the larger data sets

Benchmark application

FFT OCEAN LU RADIX SAMPLE N-BODY

SAS 3.12 39.6 126 10.1 5.60 6.08

MPI 1.62 16.9 123 3.52 2.48 3.24

Hybrid 1.83 15.1 117 3.65 2.78 3.23

15



3O

,.,,20 I

"o
• 15
o
o.

• SAS

NMPI

• HYBRID

[-

0

Fig. 7. Speedup comparison of the hybrid implementation with SAS and MPI on 32

processors for the larger data sets of the benchmark applications.

Table 10 presents the hybrid MPI+SAS runtimes on 32 processors for

the larger data sets of our application suite; Fig. 7 shows the corresponding

speedup numbers. Overall, the hybrid implementation is within 12% of the

pure MPI codes, and offers a small performance advantage in some cases.

This is due to tradeoffs between the two approaches. For example, while SAS

programming can potentially reduce the intra-SMP communication compared

to MPI, it may require the additional overhead of explicit synchronizations.

In addition, mixed-mode programming has the inherent disadvantages of ad-

versely affecting portability and increasing code complexity. The latter is es-

pecially true for irregularly structured applications, such as the N-BODY sim-

ulation. Here, the hybrid implementation requires two types of tree-building

algorithms: the MP version uses a distributed locally essential tree, while the

SAS layer implements the additional data structure of a globally shared tree.

Thus, in general, a pure MPI implementation is a more effective strategy than

hybrid programming on SMP clusters. Similar conclusions have recently been

drawn for other architectures and application domains [4,7,17].

5 MPI collective functions

An interesting question for clusters, particularly hybrid clusters of SMPs,

is how to structure collective communication. In the MPI library, the com-

munication operations can be divided into three broad categories: the basic

send/receive functions, collective functions, and other operations. The per-

formance of the basic send/receive operations primarily depends on the un-

derlying communication hardware and the low-level software. On the other

hand, the performance of the collective functions is affected by their individ-

ual implementations. Research in this area has been performed for a variety of

platforms [26]. In this section, we discuss the algorithms suitable for our plat-

form: a cluster of 4-way SMPs. Specifically, we explore the algorithms for two

16



Level 0

Level 1

Level 2

Level 3

B-Tree B-Tree-4

Fig. 8. The algorithms used to implement MPI__llreduce on two 4-way SMP nodes.

collective functions, MPI_Allreduce and MPI_Allgather, that are used in our

applications. Here, we label the MPI/Pro implementation as "Original" (the

exact algorithms used are not well documented) and use it as our baseline.

The most commonly used algorithm to implement MPIAllreduce is the

binary tree (B-Tree), shown in Fig. 8. The structure of our 4-way SMP nodes

motivates us to modify the deepest level of the B-Tree to a quadtree struc-

ture, called B-Tree-4. Note that within an SMP node, the communication can

be implemented either in shared memory or by using basic MPI send/receive

functions; however, no measurable performance difference was observed be-

tween these two intra-node approaches. Timing results for reducing a double-

precision floating-point variable per processor are shown in Table 11. The

B-Tree implementation is about 7% faster than the MPI/Pro version, while

the B-Tree-4 algorithm improves efficiency by another 5%. This strategy can

be easily extended to larger SMP nodes, leading to greater improvements in

those cases.

We explored several different algorithms for the MPI__llgather function.
The first two methods were B-Tree and B-Tree-4 described above. In the B-

Tree-4 algorithm, after the root processor (level 0 in Fig. 8) collects all the

data, it broadcasts the data back to the processors at level 1 and below. Notice

though that before the broadcast begins, each processor at level 1 already has

a copy of all the data it collected from its own subtree. These two processors at

level 1 can therefore directly exchange their data between themselves instead

of sending them to the root processor and receiving them back. In other words,

it is redundant to broadcast all the data to these processors at level 1. In fact,

this idea can be extended to the lowest level of the tree (bounded by the size

of an SMP node). We call this algorithm B-Tree-4..

In Table 12, we present execution times of the different implementations

Table 11

Execution times (in #secs) for different MPI_Allreduce implementations on 32 pro-

cessors (8 nodes) for one double-precision variable per processor

Implementation algorithm

•Original B-Tree B-Tree-4

one float 1117 1035 981

17



Table12
Executiontimes(in #secs)for differentMPIAllgather implementationson32pro-
cessors(8 nodes)for oneand1000integersper processor

Implementationalgorithm

Original B-Tree B-Tree-4 B-Tree-4,

oneinteger 1538 1540 1479 1124

1K integers 1633 1052 993 975

Table13
Speedupsof four applicationswith the originaland improvedimplementationsof
MPI collectivefunctionson32processorsfor the largerdatasets

Benchmarkapplication

OCEAN RADIX SAMPLE N-BODY

Original 15.20 7.78 11.07 26.94

New 15.60 8.02 12.10 27.02

of ffPI_Allgather for both one and 1000 integers per processor. Results show

that the B-Tree-4. algorithm improves performance on our PC-SMP plat-

form significantly, almost 27% and 41% compared to the original MPI/Pro

implementation, for the two cases, respectively.

We applied these improved MPI_Allreduce and MPI_Allgather algorithms

to four of the codes in our application suite. Table 13 presents the speedups

with both the original MPI/Pro and our new implementations on 32 proces-

sors for the larger data sets of OCEAN, RADIX, SAMPLE, and N-BODY. Since

most of the remote communication time in the applications is spent on the

send/receive functions, the overall performance improves only slightly. SAM-

PLE shows the best results, achieving a 9% gain in performance. Codes relying

heavily on these collective communication operations would obviously show a

larger benefit. However, these results validate our improved implementations,

and present future library developers with an approach for reducing collective

communication overheads on SMP clusters.

6 Conclusions

In this paper, we studied the performance of and the programming effort

required for six applications using the message passing (MP) and shared ad-

dress space (SAS) programming paradigms on a 32-processor PC-SMP cluster.

The system consisted of eight 4-way Pentium Pro SMPs running Windows NT

4.0. To make a fair comparison between the two programming methodologies,

we used the best known implementations of the underlying communication

18



v °

libraries. The MP version used MPI/Pro which is developed directly on top

of Giganet by the VIA interface. The SAS implementation used the GeNIMA

SVM protocol over the VMMC communication library, which runs on Myrinet.

Experiments showed that VIA and VMMC have similar communication char-

acteristics for a range of message sizes on our cluster platform.

Our application suite consisted of codes that typically do not exhibit

scalable performance under shared-memory programming due to their high

communication-to-computation ratios and/or complex communication pat-

terns. Three regular applications (FFT, OCEAN, and l_U) and three irregularly

structured applications (RADIX, SAMPLE, and N-BODY) were tested. Porting

these codes from the SGI Origin2000 system required some modifications to

improve their performance on the cluster platform. Changes included reduc-

ing the number of messages in the MP versions, and removing fine-grained

synchronizations from the SAS codes.

SAS provided substantial ease of programming, especially for the more

complex applications whi'ch are irregular and dynamic in nature. However,

unlike in a previous study on hardware-coherent machines where the SAS im-

plementations were also performance-competitive with MPI, and despite all

the research in SVM protocols and communication libraries in the last several

years, SAS achieved only about half the parallel efficiency of MPI for most

of our applications. The I_U benchmark was an exception, in which the SAS

implementation on the PC cluster showed very similar performance compared

to the MPI version. The higher runtimes of the SAS codes were due to the

excessive cost of the SVM protocol overhead associated with maintaining page

coherence and implementing synchronizations. These costs include the time

to compute dills, create timestamps, generate write notices, and perform

garbage collection. Future research should focus on reducing this synchro-

nization cost. Possible approaches may include applying the dills before the

synchronization points, moving the shared-page invalidation operation out of

synchronization points, and increasing the protocol hardware support.

We also investigated a hybrid MPI+SAS strategy that combined loop-level

and domain-level parallelism. Even though this model naturally matched the

architecture of our cluster platform, the results were only marginally better.

Overall, our results demonstrated that if very high performance is the goal, the

difficulty of MP programming appears to be necessary for commodity SMP

clusters of today. On the other hand, if ease of programming is paramount,

then SAS provides it at approximately a factor-of-two deterioration in perfor-

mance for many applications, and somewhat less for others. This is encourag-

ing for SVM, given the relative maturity of the MPI library and the diverse

nature of our test suite. Finally, we presented new algorithms for improved

implementations of MPI collective functions on PC clusters. Results showed

significant gains compared to the default implementation.

19



Acknowledgements

The work of the first two authors was supported by NSF under grant
number ESS-9806751to Princeton University. The secondauthor was also
supported by PECASE and a Sloan ResearchFellowship. The work of the
third author wassupportedby the U.S.Department of Energy undercontract
number DE-AC03-76SF00098.

References

[1] J.E.BarnesandP.Hut, A hierarchicalO(N log N) force-calculationalgorithm,
Nature 324 (1986) 446-449.

[2] A. Bilas, C. Liao, and J.P. Singh, Using network interface support to avoid

asynchronous protocol processing in shared virtual memory systems, in:

Proceedings 26th International Symposium on Computer Architecture (Atlanta,
GA, 1999) 282-293.

[3] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovic,

and W.-K. Su, Myrinet: A gigabit-per-second local area network, IEEE Micro

15 (1995) 29-36.

[4] F. Cappello and D. Etiemble, MPI versus MPI+OpenMP on the IBM SP for

the NAS benchmarks, in: Proceedings SC2000 Conference (Dallas, TX, 2000).

[5] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and K. Li, VMMC-2: Efficient

support for reliable, connection-oriented communication, in: Proceedings 5th

Hot Interconnects Symposium (Stanford, CA, 1997).

[6] Giganet, Inc., URL: http://www.giganet.com/

[7]D.S. Henty, Performance of hybrid message-passing and shared-memory

parallelism for discrete element modeling, in: Proceedings SC2000 Conference

(Dallas, TX, 2000).

[8] D. Jiang, B. O'Kelly, X. Yu, S. Kumar, A. Bilas, and J.P. Singh, Application

scaling under shared virtual memory on a cluster of SMPs, in: Proceedings 13th

International Conference on Supercomputing (Rhodes, Greece, 1999) 165-174.

[9] D. Jiang, H. Shan, and J.P. Singh, Application restructuring and performance

portability on shared virtual memory and hardware-coherent multiprocessors,

in: Proceedings 6th A CM Symposium on Principles 8_ Practice of Parallel

Programming (Las Vegas, NV, 1997) 217-229.

[10] D. Jiang and J.P. Singh, Scaling application performance on cache-coherent

multiprocessors, in: Proceedings 26th International Symposium on Computer

Architecture (Atlanta, GA, 1999) 305-316.

[11] S. Karlsson and M. Brorsson, A comparative characterization of communication

patterns in applications using MPI and shared memory on an IBM SP2, in:

2O



[12]

[13]

[14]

[15]

[16]

Proceedings 2rid International Workshop on Communication, Architecture, and

Applications for Network-Based Parallel Computing (Las Vegas, NV, 1998) 189-

201.

K. Li and P. Hudak, Memory coherence in shared virtual memory systems,

ACM Transactions on Computer Systems 7 (1989) 321-359.

H. Lu, S. Dwarkadas, A.L. Cox, and W. Zwaenepoel, Quantifying the

performance differences between PVM and TreadMarks, Journal of Parallel

and Distributed Computing 43 (1997) 65-78.

NAS Parallel Benchmarks, URL: http ://www. nas. nasa. gov/Software/NPB/

L. Oliker and R. Biswas, Parallelization of a dynamic unstructured algorithm

using three leading programming paradigms, IEEE Transactions on Parallel

and Distributed Systems 11 (2000) 931-940.

L. Oliker, R. Biswas, and H.N. Gabow, Parallel tetrahedral mesh adaptation

with dynamic load balancing, Parallel Computing 26 (2000) 1583-1608.

[17] L. Oliker, X. Li, P. Husbands, and R. Biswas, Effects of ordering strategies

and programming paradigms on sparse matrix computations, SIAM Review 44

(2002) 373-393.

[18] S.K. Reinhardt, J.R. Larus, and D.A. Wood, Tempest and Typhoon: User-level

shared memory, in: Proceedings 21st International Symposium on Computer

Architecture (Chicago, IL, 1994) 325-336.

[19] D.J. Scales, K. Gharachorloo, and C.A. Thekkath, Shasta: A low overhead,

software-only approach for supporting fine-grain shared memory, in: Proceedings

7th International Conference on Architectural Support for Programming

Languages and Operating Systems (Cambridge, MA, 1996) 174-185.

[20] I. Schoinas, B. Falsafi, A.R. Lebeck, S.K. Reinhardt, J.R. Larus, and D.A.

Wood, Fine-grain access control for distributed shared memory, in: Proceedings

6th International Conference on Architectural Support for Programming

Languages and Operating Systems (San Jose, CA, 1994) 297-306.

[21]

[22]

[23]

[24]

H. Shan and J.P. Singh, Parallel tree building on a range of shared address space

multiprocessors: Algorithms and application performance, in: Proceedings 12th

International Parallel Processing Symposium (Orlando, FL, 1998) 475-484.

H. Shan and J.P. Singh, A comparison of MPI, SHMEM and cache-coherent

shared address space programming models on a tightly-coupled multiprocessor,

International Journal of Parallel Programming 29 (2001) 283-318.

H. Shah and J.P. Singh, Parallel sorting on cache-coherent DSM

multiprocessors, in: Proceedings SC99 Conference (Portland, OR, 1999).

H. Shan, J.P. Singh, L. Oliker, and R. Biswas, A comparison of three

programming models for adaptive applications on the Origin2000, Journal of

Parallel and Distributed Computing 62 (2002) 241-266.

21



[25]J.P. Singh, A. Gupta, and M. Levoy, Parallel visualization algorithms:
Performanceand architecturalimplications,IEEE Computer 27 (1994) 45-55.

[26] S. Sistare, R. vandeVaart, and E. Loh, Optimization of MPI collectives on

clusters of large-scale SMPs, in: Proceedings SC99 Conference (Portland, OR,
1999).

[27] Virtual Interface Architecture, URL: http://www.viarch, org/

22


