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Why Antimatter?? 
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The annihilation of antiprotons with protons represents the highest energy 
density of any known reaction 108 MJ/g: the ultimate form of stored energy 
for future high specific impulse deep space missions. 

• 42 mg of antiprotons = energy of 750,000 kg 
fuel/oxidizer on the Space Shuttle ET 

• Envisioned antimatter initiated propulsion 
concepts require 0.1 to 10 micrograms of 
antiprotons. 

• Storage is a key enabling technology required 
by all users of antiprotons (NASA and 
commercial). 

• Current production sufficient to evaluate basic 
handling/utilization technologies. 
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Matter/Antimatter annihilation represents the "ultimate" source of stored energy 
for space propulsion 

• The potential benefits to propulsion suggest a phased low level research program. 
• Research activities focused on the basic technologies are required to assess its potential. 
• Existing antiproton production facilities provide levels sufficient for proof of concept research. 
• Results of these assessments can be used to determine further investment. 

Antiproton storage is a fundamental technology required to experimentally 
assess utilization methods. The Hi PAT' device provides a critical resource to 
the research community supporting basic evaluation 

• Knowledge in the operations required for the basic handling and manipulation of antiprotons. 
• Development of techniques and basic insight into the operation at production facilities . 
• Provides an accumulator enabling single shot experimental testing of propulsion concepts. 
• Serves as a front end to research related to high density storage of antimatter. 

The HiPAT provides an asset to commercial based enterprises 
• Support of research in the medical field related to the development of radio isotopes production 

and tumor treatment techniques. 



Approach - Goals 
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To address the storage issue, a test device termed the High Performance 
Antiproton Trap (HiPAT) has been designed and fabricated. 

• Electromagnetic Penning-Malmberg design • Ultra high vacuum system «10-11 torr) 
• Capacity of up to 1 x1 012 antiprotons • Capable of portable operation 

HUH'nVILLE, AL 

• Storage lifetimes of 18 days or more • RF stabilization and passive particle detection 
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HiPAT General Layout 
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Beam Line, Ion Source, and Superconducting Magnet Hardware 
• Designed around an ultra high vacuum system with differential pumping capability (maintains 6 
orders of magnitude between trap and ion sources). 

• Vacuum level (10-12 torr range) reduces loss by radial diffusion and annihilation. 
• LHe/LN2 cooled 4 Tesla superconducting magnet system (end compensated sOlenoid). 
• Hydrogen ion source ano hot filament electron gun provide "normal matter" ions. 
• High voltage electrostatic beam optics (Einzellens) to guide and focus ion beams. 
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Sizing For Containment 
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The containment zone - located in the bore of the superconductor - is 
surrounded by a series of electrodes and insulator segments. The 1012 particles 
are confined radially by the magnetic field and axially by the electric field. 

• Magnetic field of 1 Tesla required to balance cloud's radial space charge. 
• Electric field of 20 kV required to balance the cloud's axial potential. 
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Laboratory Operations 
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• Cleaning techniques on the UHV system 
• Hydrogen glow discharge cleaning (GDC), Titanium sublimation pumps (TSP). 
• Achieve very low vacuum to minimize diffusion loss and ion chemistry/charge exchange 

• Ion production within the containment volume via beam ionization 
• Simplistic operation using electron and ion beams to generate ions in place. 
• No cycling of electric fields required. 

• Dynamic Capture of externally produced ions 
• Precision timing of beam line valves, focusing lens and trap electrodes. 
• More closely simulates anticipated operation at antiproton production site. 

• Radio Frequency Systems. 
• Development of and experiments with particle detection and stabilization techniques. 
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Vacuum System Cleaning 
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Effort focused on reducing "contaminants" in the 
vacuum system (e.g., carbon compounds et.al.). 

• Minimize charge exchange, preserve hydrogen. 
• Increase maximum operating voltage (because of 

reducing potential for spontaneous glow discharge). 

Hydrogen glow discharge techniques to scrub 
vacuum system. 

• DC power up to 500 watts. 
• RF power up to 100 watts 
• Thermal bake out average 250 °C 

Result 
• Current pressure 7.2x1 0-12 torr - factor 
of 20 improvement over previous tests. 

• Glow discharge threshold raised from 2 
to 10 kV: visible glow virtually eliminated 
up to 20 kV. 

• Atm to 10-12 torr - less than a week. 

Spontaneous Glow Discharge 

H2 Glow Discharge Cleaning 
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Ion Production Via Electron Gun 
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Simple ionization techniques provide straightforward mechanisms to 
investigate lifetimes and assess RF systems. An electron (or ion) beam can 
produce trappable ions in situ. 

• Technique can be called a "poor man's" ion source 
• Primary beam plows through the potential well, 
ionizing residual background gas (primarily H2) 

• Energetic (secondary/tertiary/ ... ) electrons and ions also ionize 
background gas 

• Total = primary ionization + (e- & ions hnd + (e- & ions hnd + ... 

e - + H 2 ~ H + H + + 2e-

e - + H 2 ~ H - + H + + e -

e - +H 2 ~ e -+ e - +H ; 

• Probability of formation based on: 
• Background density:n (-1x106 Icc) 
• Cross section: (j (-1 x 10-16 cm2) 

• Path length L (-25 cm) (single pass) 

e total = 
I gun t gun 

1.6xlO -19 

Ions total = netotal aL path 
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Particle Capture Via Ion Sources 
MARSHALL SPACE 

FLIGHT CENTER 
HUNTSVILL.E. AL 

Demonstrate Quantity and Lifetime of Trapped Ions Using "Normal Matter" 
Hydrogen Ions (H+) to Simulate Antiprotons. 

• NEe source system for ion generation to more closely simulate actual antiproton loading technique. 

• Single species ions created externally and transported along beam line to the trap system. 

• Source large neutral gas loads require dynamic cycling of isolation valves and differential pumping. 
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Ion Beam Steering/Focusing 
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Transport ion beams from the NEC RF/SNICS sources to the trap system 
• Distance of approximately 3 meters requires use of Einzel electrostatic focusing lens 
• Two beam line apertures <1cm diameter (differential pumping) 
• Compensation against the earth's magnetic field (0.5 gauss) 
• Focus to align ions with magnet's fringe field (maximize particle acceptance) 
• Movable beam detectors used to fine tune voltages on Einzellens 
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Ideal Ion Stacking Sequence 
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Only a limited number of ions can be captured from a single beam spill. 
Reaching higher fill levels necessitates stacking, which entails the following: 

• Rapid cycling of electrode groups between a full and reduced electric field condition 
• Time must be allowed for hot ions to cool, preventing their escape on the next cycle 
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Setup For Dynamic Capture 
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The HiPAT hardware uses the following dynamic system incorporating a series 
of valves, electrostatic lenses, and "trap door" electrodes. 

Time = 0.0 sec 
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Dynamic Capture of H+ Ions 
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The beam line connecting the ion sources to HiPAT has been configured for 
providing pulses of hydrogen ions. These pulses are captured by 
dynamically cycling the HiPAT trap. 

• Beam line valves used to minimize gas 
loading ... 10-6 torr to 10-11 torr (cycle time -2.5 
seconds) 

• Focusing Einzellens used as an electrostatic 
shutter. Triggering between Stall/Focus (cycle 
time as fast as 0.1 nanoseconds) 

• Trap's forward electrode (E1) voltage collapses 
using dump timing circuit to capture a portion of 
the beam. (cycle time as fast as 0.1 
microseconds) 

• BNC 555 pulse timer used to synchronize timing 
of components. Behlke high speed HTS-301 
transistor switches used. 
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Dynamic Capture 
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HiPAT dynamic capture system has successfully demonstrated confinement 
of hydrogen ions. 
• Trap electrode (E1) cycle delayed varied with 

respect to initial ion transmission down beam 
line (stall/focus lens). 

• Ion capture occurs only during interval where 
electrode cycling and the beam coincide. 

• Results show -1.5x1 08 ions captured during the 
center of the interval. Leading and trailing 
edges of ion beam sampling not sharp due to 
resistance/capacitance of pickup system. 

• Data shows no appreciable ionization created by 
incoming ion beam (no ions extracted with small 
delay). 

• Ionization of "Hot" captured beam while it cools 
stil l to be assessed. 
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• Beam spill width of 4 Jlsec, trap electrode cycle width of 1 
Jlsec. 

• Trap flat potential well 1 kV (plasma column geometry) with 
end potentials at 3 kV, 

• Ion beam set to -2 kV energy with an intensity of -20 
Jlamps. 
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Examine a non-destructive method for detection and diagnosis of trapped ions. 
• Measure fundamental ion frequencies & amplitudes (function of containment fields). 
• Apply radio frequency energy & examine the RF-to-Plasma interaction. 

• Two sets of sectioned electrodes serve as antenna for transmit and receive. 
• External low noise amplifiers, couplers, spectrum analyzer, and RF sweep generator. 
• Receiver average noise floor -130 dBm with 10kHz to 100 MHz bandwidth. 

• Ultimate goal: Relate signal amplitude with quantity and species, use RF energy to stabilize ions 
increasing lifetime from minutes to weeks. 

• Product: An autonomous computer driven ion health monitoring system for HiPAT. 

~ - RF Trx RF Rev 

'-----1-
RFTrx RF Rev 
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Radio Frequency Antenna Modeling FLiGHTCE~.!.Bt 

HiPAT electrode structure modeled 
• Antenna characteristics modeled with EM circuit simulation package (Agilent HFSS) 

• Preliminary topology shows that beyond 5 inches from the center the attenuation of the signal is 
approximately -80 dB (normalized to maximum power coupling) at 10 MHz 

• Eventually this simulation will include coupling to the plasma. 
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Low frequency excitation was examined resulting in stabilization of trapped 
ions. Ranges of frequencies with varied amplitudes were investigated 

• Low frequency excitation 50 to 250 kHz range (cloud rotation) appears to stabilize all species. 
• Frequency ranges to stabilize specific ions (while excluding others) were not found: it was an "all or 
nothing" proposition. 
• Baseline no RF tests - nearly all ions were gone within 16 hours. 
• All tests used electron gun ionization to produce trappable particles. 
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Closing Remarks 
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• The HiPAT system has been demonstrated to hold has been successfully 
demonstrated capture and containment of low numbers of ions. 

• The NEG ion source system has provided a very nice mechanism of 
producing trappable ions (investigate increasing beam intensity in an effort to 
reduce stacking requirements). 

• Focus to complete development of ion loading techniques (109 to 1011 range) 
with sufficient lifetime (order of minutes) to support research of the RF 
detection/stabilization system. 

• Ongoing theoretical/experimental studies to identify plasma frequencies, 
densities and temperature with a goal of enabling predictable RF ion 
stabilization. 
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BACKUP STUFF 
Propulsion Applications of Antimatter 
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Traditional Applications 
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Conventional antimatter driven propulsion concepts 
• These systems derive all their thrust from matter/antimatter annihilation 
• Large amounts of antimatter would be required for operation (grams to metric tons) 

• Isp = Specific Impulse (prope"ant usage efficiency thrusUprope"ant weight flow rate) 
• IIp = Efficiency of utilization (%> of available annihilation energy) 

• Solid Core: Limited by material temperature issues, dense heat exchanger high conversion eff 
• Gas Core: Higher temperatures achieved, low gas density results in low conversion eff 
• Plasma Core: Ionized gas with magnetic confinement, very low gas density lowest conversion eff. 
• Beam Core: "Ultimate" system with no secondary fluids, magnets direct annihilation products 
directly 

Solid Core 
Isp - 1,000 sec 
'lJp - 85% 

Gas Core 
Isp - 2,000 sec 
'lJp - 35% 
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Plasma Core 
Isp - 105 sec 
'lJp - 10% 

Beam Core 
Isp - 107 sec 
'lJp - 60% 



Hybrid Applications 
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Hybrid antimatter systems are configured to derive most of their energy from 
fission and/or fusion reactions 

• Acts as an "igniter" to initiating fission/fusion reactions lowering system driver mass requirements. 
• Hybrid systems require less antimatter (1 to 100's of f.lgrams) than conventional approaches. 
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Antimatter-Catalyzed Micro-Fusion (ACMF) 
Isp - 13,500 sec (Specific Impulse) 
1]p - 15% (propulsive energy utilization) 
A - 0.7 (Vehicle structure/propellant mass ratio) 
j3 - 1.6 x 107 (Fusion/annihilation energy ratio) 

Antimatter-Magnetically Insulated Confined Fusion (AMICF) 
Isp - 200,000 sec (Specific Impulse) 
1]p - 10% (propulsive energy utilization) 
A - 2.3 (Vehicle structure/propellant mass ratio) 
j3 - 5.0 X 103 (Fusion/annihilation energy ratio) 

Antimatter-Initiated Micro-fusion (AIM) 
Isp - 67,000 sec Isp - 61 ,000 sec 

1]p - 84% D-He3 1]p - 69% D-T 
A - 0.2 A - 0.3 
j3 - 105 j3 - 2.2 x 104 
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Comparative performance of antimatter based propulsion concepts 
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