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A reduced-order model (ROM) is developed for aeroelasfiic analysis using the CFL3D

version 6.0 computational fluid dynamics (CFD) code, recently developed at the NASA

Langley Research Center. This latest version of the flow solver includes a deforming

mesh capability, a modal structural definition for nonlinear aeroelastic analyses, and a

parallelization capability that provides a significant increase in computational efficiency.

Flutter results for the ACIARD 445.6 Wing computed using CFL3D v6.0 are presented,

including discussion of associated computational costs. Modal impulse responses of

the unsteady aerodynamic system are then computed using the CFL3Dv6 code and

transformed into state-space form. Important numerical issues associated with the com-

putation of the impulse responses are presented. The unsteady aerodynamic state-space

ROM is then combined with a state-space model of the structure to create an aeroelas-

tic simulation using the MATLAB/SIMULINK environment. The MATLAB/SIMULINK

ROM is used to rapidly compute aeroelastic transients including flutter. The ROM shows

excellent agreement with the aeroelastic analyses computed using the CFL3Dv6.0 code

directly.

Introduction

ARLY mathematical models of unsteady aerodynamic response capitalized on the efficiency and
power of superposition of scaled and time shifted fun

damental responses, also known as convolution. Chs
sical models of two dimensional airfoils in incompress

ible flow s include Wagner's function2(response to a

unit step variation in angle of attack), Kussner's func
tiona(response to a sharp edged gust), Theodorsen's
function4(frequency response to sinusoidal pitching

motion), and Seat's function (frequency response to
a sinusoidal gust). As geometric complexity increased

from airfoils to wings to complete configurations, the
analytical derivation of these types of response func
tions became impractical and the numerical computa

tion of linear unsteady aerodynamic responses, in the
frequency domain, became the method of choice. 5
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When geometry and flow dependent nonlinear aero
dynamic effects became significant, appropriate non

linear aerodynamic equations were solved using time
integration techniques. Coupling the nonlinear aero
dynamic equations with a linear structural model pro

vides a direct simulation of aeroehstic phenomena.

This direct simulation approach for solving nonlinear
aeroehstic problems has yielded a very powerful sire

nhtion capability with two primary challenges. The
first challenge is the associated computational cost
of this simulation, which increases with the fidelity

of the nonlinear aerodynamic equations to be solved.
Computational cost may be reduced via the imple

mentation of parallel processing techniques, advanced
algorithms, and improved computer hardware process

ing speeds. The second, more serious, challenge is
that the information generated by these simulations

cannot be used effectively within a preliminary design
environment. Any attempt to incorporate the output

of these aeroelastic simulations within a design envi
ronment inevitably becomes design by trial and error,
a completely impractical approach. As a result, the

integration of traditional, computational aeroehstic

simulations into preliminary design activities involving
disciplines such as aeroelasticity, aeroservoehsticity
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(ASE), and optimization is, at present, a costly and

impractical venture.

The goal behind the development of reduced order

models (ROMs) is aimed precisely at addressing these

two challenges. Development of a ROM entails the

development of a simplified mathematical model that

captures the dominant dynamics of the original sys

tern. This alternative mathematical representation of

the original system is, by design, in a mathematical

form suitable for use in a multidisciplinary, prelimi

nary design environment. As a result, interconnection

of the ROM with other disciplines is possible, thereby

addressing the second challenge. The simplicRy of

the ROM yields significant improvements in compu

rational efficiency as compared to the original system,

thereby addressing the first challenge.

At present, the development of CFD based ROMs

is an area of active research at several industry, gov

ernment, and academic instRutions. _ Development

of ROMs based on the Volterra theory is one of sev

eral ROM methods currently under development, r ,1

Reduced order models based on the Volterra theory

have been applied successfully to Euler and Navier

Stokes models of nonlinear unsteady aerodynamic and

aeroelastic systems. Volterra based ROMs are based

on the creation of linearized and nonlinear unsteady

aerodynamic impulse responses that are then used in

a convolution scheme to provide the linearized and

nonlinear responses of the system to arbitrary inputs.

In this setting, the linearized and nonlinear impulse

responses are the ROMs of the particular nonlinear

system under investigation. Upon transformation of

the linearized and nonlinear impulse responses into

state space form, the state space models generated can

also be considered ROMs.

Another ROM method, different from the Volterra

based ROM approach, is the Proper Orthogonal De

composition (POD) technique. The POD is a method

that is used extensively at several research organiza

tions for the development of reduced order models. A

thorough review of POD research activities can be

found in Beran and Silva. _ In addition, a review of the

issues involved in the development of reduced order

models for fluid structure interaction problems is pro

vided by Dowell and Hall. s2 A topic of recent interest

is the potential development of hybrid POD/Volterra

methods. These hybrid techniques would combine the

spatial resolution possible with POD methods with

the lout dimensionality and computational efficiency

of Volterra methods.

The linearization of a nonlinear aeroelastic model

is an important first step towards understanding the

nature and magnitude of nonlinear aeroelastic phe

nomena. The response of a linearized system about

a nonlinear steady state condition can be obtained via

several methods. Some of these methods include the

order reduction of state space models using various

techniques.18,14 One method for building a linearized,

low order, frequency domain model from CFD anal

ysis is to apply the exponential (Gaussian) pulse in

put. s5 This method is used to excite an aeroelastic

system, one mode at a time, using a smoothly varying,

small amplitude Gaussian pulse. The time domain

aeroelastic responses due to the exponential pulse in

put are transformed into frequency domain general

ized aerodynamic forces (GAPs). These linearized
GAFs can then be used in standard linear aeroelas

tic analyses. 16 Raveh et aP 7 applied this method but

replaced the exponential pulse input wRh step and

impulse inputs. Raveh ss also performed parametric

variations in order to better understand the numeri

cal issues associated with impulse and step responses,

particularly for nonlinear problems. Guendel and

Cesnik s9 applied the Aerodynamic Impulse Response

(AIR) technique, based on the VoRerra theory, to the

PMARC aerodynamic panel code. The PMARC/AIR

code was applied to a simplified High Altitude Long

Endurance (HALE) aircraft for rapid linear and non

linear aeroelastic analysis of the vehicle.

As mentioned above, various inputs can be used in

the time domain (CFD code) to generate GAPs in

the frequency domain in order to perform standard,

frequency domain aeroelastic analyses. But if time

domain aeroservoelastic (ASE) analyses are desired,

the frequency domain GAFs are transformed back into

the time domain using traditional rational function

approximation (RFA) techniques. These techniques

include, for example, the well known Rogers approx

imation 2° and the Minimum State technique. 2s The

RFA techniques transform frequency domain GAPs

into state space (time domain) models amenable for

use with modern control theory and optimization. The

process just described transforms time domain infor

rimdon (CFD results) into frequency domain informa

tion only to have the frequency domain information
transformed back into the time domain.

Gupta et a122 and Cowan et ao123,24 applied a set

of flight testing inputs to an unsteady CFD code and

used the information to create a linear ARMA (autore

gressive moving average) model that was transformed

into state space form. Although this technique is ap

plied entirely within the time domain, the shape of the

inputs applied to the CFD code requires tailoring in

order to excite a specific frequency range, resulting in

an iterative process. In a similar vein, Rodrigues 25 de

veloped a state space model for an airfoil in transonic

flow using a transonic small disturbance algorithm. In

this paper, a direct approach for efficiently generating

linearized unsteady aerodynamic state space models is

presented. Although the present application of the

method deals with linearized responses based on lin

earized impulse responses (linearized Volterra kernels),

the method can be formally extended to address non

linear aeroelastic phenomena via the use of nonlinear
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impulse responses (nonlinear Volterra kernels).

The goal of this paper is to develop linearized, un

steady aerodynamic state space models for prediction

of flutter and aeroelastic response using the the paral

lelized, aeroelastic capability of the C,FL3Dv6 code.

The results to be presented provide an important

validation of the various phases of the ROM devel

opment process. As such, this paper begins with a

brief outline of the various phases of the process. This

outline is followed by a description of the CFL3Dv6

code and a description of the CFD based impulse re

sponse technique. The Eigensystem Realization A1

gorithm (ERA), 2s which transforms an impulse re

sponse into state space form, is described. Flutter

results for the AGARD 445.6 Aeroelastic Wing using

the CFL3Dv6 code are presented, including computa

tional costs. Unsteady aerodynamic state space rood

els are then generated and coupled with a structural

model within a MATLAB/SIMULINK 27 environment

for rapid calculation of aeroelastic responses including

flutter. Aeroelastic responses computed directly using

the CFL3Dv6 code are compared with the aeroelas

tic responses computed using the CFD based ROM

within the MATLAB/SIMULINK environment.

Description of Methods

The following subsections describe the parallelized,

aeroelastic version of the CFL3Dv6 code and the two

primary phases of the ROM development process. The

first phase involves the identification of unsteady aero

dynamic impulse responses; the second phase involves

the transformation of these impulse responses into

state space form. Step responses can be used in lieu

of impulse responses since these functions are related

via differentiation and both functions provide equiva

lent levels of excitation to a given system. Preference

of one function over the other will be mentioned when

appropriate.

CFLaDv6 Code

The computer code used in this study is the

CFLaDv6 code, which solves the three dimensional,

thin layer, Reynolds averaged Navier Stokes equations

with an upwind finite volume formulation. 2s'29 The

code uses third order upwind biased spatial differenc

ing for the inviscid terms with flux limiting in the

presence of shocks. Either flux difference splitting or

flux vector splitting is available. The flux difference

splitting method of Roe 3° is employed in the present

computations to obtain fluxes at cell faces. There are

two types of time discretization available in the code.

The first order backward time differencing is used for

steady calculations while the second order backward

time differencing with subiterations is used for static

and dynamic aeroelastic calculations. Furthermore,

grid sequencing for steady state and multigrid and lo

cal pseudo time stepping for time marching solutions

are employed.

One of the important features of the CFL3D code is

its capability of solving multiple zone grids with one

to one connectivity. Spatial accuracy is maintained

at zone boundaries, although subiterative updating of

boundary information is required. Coarse grained par

allelization using the Message Passing Interface (MPI)

protocol can be utilized in multiblock computations by

solving one or more blocks per processor. When there

are more blocks than processors, optimal performance

is achieved by allocating an equal number of blocks to

each processor. As a result, the time required for a

CFD based aeroelastic computation can be dramati

cally reduced.

In this paper, multiblock MPI parallel aeroelastic

computations, including flutter, for the AGARD 445.6

Aeroelastic Wing are performed using 96 flowfield

blocks. In order to achieve an optimal division of grid

points, it is necessary to place flow field block bound

aries near a moving solid surface (the wing). The

multiblock boundary and interior movement scheme

allows the user to place block boundaries near surfaces

as necessary for optimal parallelization. Boundaries

interior to the fluid domain near a surface respond to

the local surface motion. As the wing moves, block

boundaries move to maintain integrity of block inter

faces and the airfoil surface.

Because the CFD and computational structural me

chanics (CSM) meshes usually do not match at the

interface, CFD/CSM coupling requires a surface spline

interpolation between the two domains. The interpo

ladon of CSM mode shapes to CFD surface grid points

is done as a preprocessing step. Modal deflections at

all CFD surface grids are first generated. Modal data

at these points are then segmented based on the split

tang of the flow field blocks. Mode shape displacements

located at CFD surface grid points of each segment are

used in the integration of the generalized modal forces

and in the computation of the deflection of the de

formed surface. The final surface deformation at each

time step is a linear superposition of all the modal

deflections.

ROM Development Process

An outline of the ROM development process is as

follows:

1. Implementation of impulse response technique

into aeroelastic CFD code;

2. Computation of impulse responses for each mode

of an aeroelastic system using the aeroelastic CFD

code;

3. Impulse responses generated in Step 2 are input

into the ERA;

4. Evaluation/validation of the state space models

generated in Step 3;

Steps 1 and 2 are described in greater detail in the

references that address Volterra based Reduced Order
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Fig. 1 Coupling of structure and aerodynamics
within an aeroelastic CFD code.

Fig. 2 Identification of generalized aerodynamic
forces (GAFs).

Models (ROMs) such as Refs. 3 7. The basic premise
of Volterrwbased FIOMs is the extraction of linear

and nonlinear kernel functions that capture the input
output functional relationship between, for example,

unsteady motion of a wing (input) and the resultant

loads created by that motion (output). For Volterra
based ROMs, these kernel functions are linearized and
nonlinear impulse response functions. The relevant as

pacts of Step 1 and Step 2 are discussed in the next
two subsections. Details of Step 3 are presented in the
third subsection. Step 4 is presented in the Results

section of the paper.

CFD-Based Discrete Unit Impulse Response
Teehnique

An aeroelastic system can be viewed as the coupling
of an unsteady aerodynamic system (flow solver) with

a structural system (Figure 1). The present study fo
cuses on the development of an unsteady aerodynamic
ROM (Figure 2) that is then coupled to a structural
model for aeroelastic analyses.

A standard technique for computing linearized gen

eralized aerodynamic forces (GAFs) for an aeroelas
tic system with n modes using a CFD code is the

application of a Greens function (influence function)
approach. Using the CFD code, each mode is individ
ually excited to obtain the response of all the modes to

this excitation. This process is applied to all n modes,
resulting in an n by n "matrix" of responses. The term
"matrix" is in quotes to indicate that the responses

obtained using this method are usually time domain
functions rather than constants that usually populate
a standard matrix.

This technique is a linearization by virtue of the

fact that, in a computational aeroelastic analysis, the
input to the nonlinear flow solver is the total physi

cal deformation of the wing consisting of the summed

total of all the modes of interest. By applying a sep

arate excitation to each mode through the nonlinear
flow solver, the total nonlinear aeroelastic response is

being approximated by a linear superposition of its
individual responses. For a linear flow solver, this
approach would be exact. Consistent with this as

sumption, this approximation is valid only for small
input amplitudes. This is not necessarily a drawback

as, quite often, the linearized dynamic aeroelastic re

sponse about a nonlinear steady (or static aeroelastic)
condition is a reasonable representation of the nonlin

ear aeroelastic system under investigation.

There are three types of modal excitation inputs

that are typically used when implementing this tech
nique. The first is a brute force approach based on the
input of sine waves of individual frequencies. The in

dividual modal responses to these inputs for n modes
and r frequencies requires n times r separate code eval

uations. In addition, the time length required for each
one of these evaluations can be quite large (i.e., corn

putationally expensive) in order to get an adequate
number of cycles for adequate frequency resolution,
especially for the lower frequencies. This approach is

clearly the least efficient.

A second, more elegant approach, involves the use
of an exponential (Gaussian) pulse. 15 The exponen
tim pulse can be shaped to excite a particular range

of frequencies. Because an exponential pulse excites

a pre selected frequency range, only one code eval
uation is required per mode. This is a significant
computational savings compared to the brute force

approach, but shape optimization of the exponential
pulse may be required when targeting a particular

frequency range. In addition, the exponential pulse
appears to be strictly limited to linearized analyses.
Whereas the impulse function finds formal application
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to nonlinear problems via the Volterra theory, the in

clusion of the exponential pulse within a Volterra type

theoretical framework is undefined.

A third, recently developed, approach consists of

replacing the exponential pulse input with a unit im

pulse.S 11 The unit impulse excites the entire fre

quency range of a system so that shape optimization

to excite a particular range of frequencies is not nec

essary. In addition, due to the simplicity of the input

and the short amount of time required for convergence,

each solution is computed with significant computa

tional efficiency. Raveh et al n applied this technique

successfully to the AGARD 445.6 Aeroelastic Wing

using step and impulse responses. Convolution of

the step responses with siuusoids of varying fl'equency

yielded frequency domain GAFs that were then used

for frequency domain aeroelastic analyses. If desired, a

more direct approach for computing frequency domain

GAFs is to apply a Fast Fourier Transform (FFT) to

the impulse responses. An example of this approach is

presented in a subsequent section.

System/Observer/Controller Identifieatlon

Toolbox (SOCIT)

In structural dynamics, the realization of discrete

time state space models that describe the modal dy

namics of a structure has been enabled by the de

velopment of algorithms such as the Eigensystem

Realization Algorithm (ERA) 26 and the Observer

Kalman Identification (OKID) m Algorithm. These

algorithms perform state space realizations by us

ing the Markov parameters (discrete time impulse

responses) of the systems of interest. These algo

rithms have been combined into one package known as

the System/Observer/Controller Identification Tool

box (SOCIT) 32 developed at NASA Langley Research

Center.

The primary algorithm within the SOCIT group

of algorithms used for the present system realization

is known as the Eigensystem Realization Algorithm

(ERA). A brief summary of the basis of this algorithm

follows.

A finite dimensional, discrete time, linear, time

invariant dynamical system has the state variable

equations

x(k + 1) -- Ax(k) + Bu(k) (1)

g(k) = Cx(k) + Du(k) (2)

where x is an n dimensional state vector, u an m

dimensional control input, and y a p dimensional out

put or measurement vector with k being the discrete

time index. The transition matrix, A, characterizes

the dynamics of the system. The goal of system real

ization is to generate constant matrices (A, B, C) such

that the output responses of a given system due to a

particular set of inputs is reproduced by the discrete

time state space system described above.

Mode I

Mode 3 Mode

Fig. 3 Aeroelastlc modes for the AGARD 445.6

W-ing.

For the system of Eqs. (1) and (2), the time domain

values of the systems discrete time impulse response

are also known as the Markov parameters and are de

fined as

Y(k) = CA_-_B (3)

with B an (u x m) matrix and C a (p x n) matrix.

The ERA algorithm begins by defining the generalized

Hankel matrix consisting of the discrete time impulse

responses for all input/output combinations. The al

gorithm then uses the singular value decomposition

(SVD) to compute the A, B, and C matrices.

In this fashion, the ERA is applied to unsteady

aerodynamic impulse responses to construct unsteady

aerodynamic state space models. The next section

presents computational aeroelastic and unsteady aero

dynamic results for the CFL3Dv6 code and for the

state space ROM.

Results

The AGARD 445.6 Aeroelastic Wing has been used

extensively by several authors to validate computa

tional methods. 16,22:aa Although the aeroelastic be

havior of this wing is fairly benign (weakly nonlin

ear), the aeroelastic data from the flutter test of this

wing provides a good starting point for validation of

computational techniques. 34 The wing is a 45 degree

swept back wing with a NACA 65A004 airfoil section,

panel aspect ratio of 1.65, and a taper ratio of 0.6576.

The shapes of the first four structural modes for this

wing are presented in Figure 3. The modes are first

bending, first torsion, second bending and second tot

sion. The corresponding modal frequencies in vacuo

are 9.60, 38.2, 48.35, and 91.54 Hz. Additional details

regarding this wing can be found in the references.

Full CFD Flutter Solution

This section presents results based on the tradi

tional full CFD flutter solution. The flutter solution
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is obtained by iterating between the nonlinear aerody

namic system (flow solver) and the structural system

at a given Mach number and dynamic pressure entirely

within the CFD code. The output of this solution con

sists of a time history of the generalized coordinates of

the aeroelastic system. Depending on the nature of

this aeroelastic response (divergent or convergent), a

new dynamic pressure is selected and a corresponding

flutter solution is computed. This iterative process is

used to define the flutter boundary at several Mach

numbers. The results presented in this paper are for

the solution of the Euler equations within CFL3Dv6.

Figure 4 presents the response of each of the four

generalized coordinates at a Mach number of 0.9, a

dynamic pressure of 89.3 psf, and a structural damp

ing value (g) of zero. The divergent nature of the first

mode indicates that this condition is above the flutter

boundary. By performing similar analyses at different

dynamic pressures, a dynamic pressure of 75 psf was

defined as the flutter dynamic pressure (neutral stabil

ity point) for this Mach number. The corresponding

flutter frequency was 14.8 Hz. The aeroelastic re

sponse at a dynamic pressure of 75 psf is presented as

Figure 5, indicating the neutral stability of the aeroe

lastic system at this condition. These solutions were

computed using a non dimensional time step of 0.3

with 5 subiterations per time step and use of multigrid

capability for error reduction and convergence acceler

ation.

Comparison of flutter results for the full CFD anal

ysis with 0.03 structural damping, the analysis of

Lee Rausch is (0.03 structural damping), and the ex

perimental results of Yates et al a4 are presented in

Table 1 and Table 2 for Flutter Speed Index (FSI)

and Flutter Frequency Ratio (FFR), respectively. Re

sults from the full CFD flutter analysis are consistent

with those from Lee Rausch 1_ and other Euler flutter

results. 22

Table 1 Comparison of Flutter Speed Index (FSI)

with published results.

M Exp. Lee Rausch CFL3Dv6

g=0.03 g=0.03

0.9 0.370 0.:352 0.350

0.96 0.308 0.275 0.279

Table 2 Comparison of Flutter Frequency Ratio

(FFR) with published results.

M Exp. Lee Rausch CFL3Dv6

g=0.03 g=0.03

0.9 0.422 0.425 0.394

0.96 0.365 0.:343 0.315

The computational cost for one flutter solution (at a

given Mach number and dynamic pressure) is 71 CPU

10 -3

Mode 1

-3
0 200 400 600 800 1000

Number of Time Steps

Fig. 4 Aeroelastic transients in terms of general-

ized coordinates at M:0.9 and Q:89.3 psf.

x 10 -a

Mode 1

0 200 400 600 800 1000

Number of Time Steps

Fig. 5 Aeroelastic transients in terms of general-

ized coordinates at M:0.9 and Q:75.0 psf.

hours for the number of cycles shown in Figures 4 and

5. This is the total CPU cost but, using 96 processors,

the actual execution time is approximately 45 minutes

on an Origin 2000 cluster. The total time elapsed from

the moment the job is submitted for execution, how

ever, can vary depending on the number of other jobs

(from different users) in the queue for the computer

resources. The total elapsed time for a single flutter

solution can therefore range from 45 minutes to several

hours if the job queue is busy. In addition, although

four cycles of the lowest frequency mode appear to be

sufficient for visually determining the stability of the

system, accurate computation of the relevant aeroelas

tic frequency and damping requires additional cycles.

If the number of cycles is doubled to eight cycles, the

computational costs increase proportionately to 142

CPU hours and 90 minutes of execution time. The to
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tal time elapsed can range from 90 minutes to several
hours depending on the number of jobs in the queue.

These costs are, of course, a function of the aeroelas
tic properties of the system under investigation. The

use of parallel processing clearly provides significant
improvement in computational time. However, the

computational costs (CPU) are still high because par
allelization, obviously, does not reduce the amount of
computation that needs to be done. Nonetheless, this

is a significant improvement over computations per
formed on a serial platform.

Assuming four dynamic pressure solutions per Mach

number, the cost of computing a flutter point (at one
Mach number) is 568 CPU hours, requiring at least
360 minutes of execution time. The actual time in

vested, however, can be on the order of days since

the value of dynamic pressure selected for the subse
quent analysis depends on the results obtained from

the previous analysis. If additional analyses involving

parametric variations of structural parameters (damp
ing and frequencies) are needed, additional flutter so
lutions would be required, increasing computational

costs (CPU and time). Finally, as can be seen, the
output of traditional CFD based flutter analyses are

aeroelastic transients which provide frequency and

damping information at a given flight condition. These
transients can certainly be used to define the flutter

boundary of the aeroelastic system under investigation
but do not comprise a matherimdcal model of the sys

tern itself. In order to develop a mathematical model of
the system itself, a ROM is needed. The next sections

present results for the development and validation of
a ROM using the CFL3Dv6 code.

Unsteady Aerodynamic System Identification

Step�Impulse Responses

Identification of the unsteady aerodynamic system

begins with the excitation of each mode using a step
or impulse input. Although the frequency content

of both responses is identical, the use of the impulse
response is beneficial when computing the frequency

domain generalized aerodynamic forces (GAFs) and in
the application of the ERA code for the generation of
state space models. Raveh et a117 indicate improved

numerical robustness for the step response over the im
pulse response. Selection of one input over the other

may depend on the particular configuration and prob

lem under investigation.

Consistent with the linearization process described
in a previous section and in order to reduce the

possibility of numerical problems with aeroelastically
deforming grids, smM1 amplitudes are used with this

technique. The mode by mode excitation for the
AGARD 445.6 Aeroelastic Wing using impulse and

step inputs is performed using the first four elastic
modes of the wing. The mode by mode excitation
technique provides the unsteady aerodynamic response

60
0 40 t

15 20
Number of Time Steps

Fig. 6 Impulse response in mode 1 due to mode
1, M=0.9.

in all four modes due to an excitation of one of the

modes. In this fashion, the matrix of four by four re

sponse functions is developed, resulting in a total of
sixteen response functions.

Figure 6 presents the impulse response of the first
mode due to an impulse input in the first mode. This
response was computed using a nondimensional time

step of 0.3, a modal amplitude of 0.001 with 5 subit
erations and multigrid for improved convergence and
error minimization. As can be seen, the response is

well behaved and numerically stable.

An important point in the generation of step and

impulse responses is the need to maintain the rate

oLchange of the excitation input (the modal velocity
in this case) to a reasonable value. For an aeroe
lastic analysis, the modal velocity is defined as the

modal amplitude of the excitation input divided by
the nondimensional dine step. Values on the order of

unity appear to be the most robust although values as
high as ten have worked. The adherence to this range
of values for the modal velocity provides the neces

sary numerical stability to generate these responses for
unsteady motions with deforming grids. For rigidly de

forming grids, such as plunging and pitching motions,
this limitation can be relaxed since the rigid body am

plitudes and velocities can be defined independently.
For an aeroelastically deforming grid, the modal am

plitude is input explicitly while the modal velocity is
computed implicitly based on the amplitude of mo

tion and the time step. This is consistent with results
obtained by Raveh et a111 and Silva and Raveh. 85

Successful and accurate identification of impulse

and step responses requires careful consideration of
time/frequency resolution issues. In addition, the eL

fect of input amplitude on the convergence of the solu
tion and verification of linear/nonlinear behavior must
be addressed. These issues are extremely important
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and are discussed in greater detail in the Appendix.

Time- and Frequency-Domain GAPT

For the present four mode aeroelastic system, four

separate analyses were performed to compute the nec

essary impulse response CAFs. Figure 7 presents the

sixteen impulse response GAPs due to each of the four

modes at a Mach number of 0.9 computed using a

modal amplitude of 0.001 and a nondimensional time

step size of 0.3. Using a total of 2000 time steps and ac

counting for various nondimensional parameters, this

nodin_tenstional time step size and number of time

steps translates to a reduced frequency resolution of

0.009. Clearly, all impulse responses are well behaved.

It is noticed that the GAFs with the largest magni

tudes correspond to the "diagonal" responses (All,

A22, A3a, and A44). This makes physical sense since

a mode exhibits the largest response to its own exci

ration.

Once all of the impulse response GAFs were corn

puted for all of the modes, an FFT of each impulse

response GAF yielded the frequency domain GAF.

Figure 8 presents a comparison of the resultant FFTs

of the impulse response GAFs fi'om Figure 7 with

frequency domain results computed using a linear un

steady aerodynamic method. H As can be seen, the

comparison is very good for most of the GAFs with

some discrepancies at the higher frequency modes.

Additional analyses are required to determine if these

differences are due to physically nonlinear effects or if

they are due to numerical/computational differences.

This type of comparison with a linear unsteady aero

dynamic code can also be used to ascertain the level

of linear/nonlinear content of the CFD based unsteady

aerodynamics. The results of Figure 8 shout a close

correlation of the linearized (CFD based) GAFs with

the fully linear GAFs.

Fig. 8 Comparison of frequency-domaln GAFs

from the impulse response GAFs with GAFs from

a linear unsteady aerodynamic method.

ROM Flutter Solution

Unsteady Aerodynamic State-Space Models

The ERA was then used to transform the impulse

response GAFs from Figure 7 into s_ate space form.

This process is performed within MATLAB and exe

cutes quickly. Several options are available to allow

the user to reduce the size of the resultant state space

matrices depending on the desired frequency range or

importance of particular modes. For the present anal

ysis, no order reduction of this type was performed

in order to establish a baseline performance level to

which subsequent order reductions could be compared

in future analyses. The resultant system quadruple

(A,B,C,D) is of 196th order with four inputs and four

outputs corresponding to the four modes. Although

this is a high order, it is important to mention that

this state space model contains the entire range of

unsteady aerodynamic frequencies extracted from the

CFD code. Significant reductions in order can be

achieved by defining a frequency bandwidth of interest,

analogous to the procedure in the frequency domain

when rational function approximations are developed.

Given modern computational power, however, this

high order system poses no computational issues with

respect to memory storage or computational speed for

aeroelastic analyses. The order, however, may need to

be reduced for subsequent ASE design studies.

The state space model of the CFD based unsteady

aerodynamic system can be used to compute the re

sponse to arbitrary inputs without costly re execution

of the CFD code. Figure 9 is a comparison of the

responses in the first mode due to an input consist

ing of a narrow exponential pulse applied to all four

modes simultaneously. One of the responses in the

figure was computed using CFL3Dv6 directly while
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Fig. 9 Comparison of GAFs for the CFD and

state-space unsteady aerodynamic model.

the other response was computed using the state space

model within MATLAB. The exact comparison verifies

the accuracy of the unsteady aerodynamic state space

model. The response from the unsteady aerodynamic

state space model was generated within seconds while

the response from CFL3Dv6 required approximately

two hours of total elapsed computing time and 177

CPU hours.

Flutter

Coupling the state space model of the unsteady

aerodynamic system with a state space model of the

structure within MATLAB/SIMULINK results in a

state space aeroelastic system shown in Figure 10.

The aeroelastic response of the system is a function of

the initial conditions of the structure and the dynamic

pressure.

In order to validate this state space aeroelastic sys

tern, simulations were performed at various dynamic

pressures. Figure 11 presents the generalized coordi

nate time histories and the corresponding generalized

coordinate FFTs at zero dynamic pressure (wind off).

The zero dynamic pressure attenuates all aerodynamic

effects, leaving only structural effects. With zero struc

rural damping, the response consists of, in the time

domain, the simple harmonic motion of the uncoupled

vibration modes and, in the frequency domain, fre

quency spikes of the uncoupled vibration modes: 9.60,

38.2, 48.35, and 91.54 Hz.

At a dynamic pressure of 50 psf, Figure 12, the et"

fect of aerodynamic damping is evident in the decaying

response of the generalized coordinate time histories.

The associated modal frequency spikes at this condi

tion are no longer uncoupled as they were in Figure

11.

Finally, at a dynamic pressure of 75 psf, Figure 13,
flutter is evident. A close up of this aeroelastic tran

slant is presented as Figure 14. This result compares

Fig. 10 SIMULINK model of the aeroelastic sys-

tem.
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Fig. 11 Aeroelastlc response of the state-space

aeroelastlc system at M----0.9 and Q--0 psf.

identically with that of Figure 5, which was computed

using CFL3Dv6 directly. In fact, the ROM results

compare identically with results using CFL3Dv6 di

rectly at all dynamic pressures investigated.

These aeroelastic transients are computed in sec

onds within MATLAB/SIMULINK, thus allowing a

larger number of cycles to be computed for improved

frequency resolution. In addition, if parametric varia

tions that involve the structure are desired (structural

damping, updated frequencies, etc), the analyses can

be performed using this approach since the unsteady

aerodynamic system is unaffected by these variations.

These results validate the ROM methodology pre

sented and are examples of a new and powerful tool

available to the aeroelastician. Most importantly,

the state space models developed are suitable for use
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Fig. 12 Aeroelastlc transients in terms of gen-

eralized coordinates for the state-space system at

M=0.9, Q=50 psf, and g=0.0.
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Fig. 13 Aeroelastlc transients in terms of gen-

eralized coordinates for the state-space system at

M=0.9, Q=75 psf, and g=0.0.

within a mutidisciplinary design environment, includ

ing ASE analysis and design.

Concluding Remarks

A reduced order model (ROM) was developed for

aeroelastic analysis using the recently developed, par

allelized CFL3D version 6.0 computational fluid dy

namics (CFD) code. Flutter results for the AGARD

445.6 Wing, computed using CFL3D directly, were

presented, including a discussion of the associated

computational costs. The ROM of the unsteady aero

dynamic system, in state space form, was developed

using modal impulse responses. Important numer

ical issues associated with the computation of the

impulse responses including time/frequency resolution

Fig. 14 Close-up of the aeroelastlc transients for

the state-space system at M=0.9, Q=75 psi', and

g=0.0.

and amplitude dependent convergence issues were pre

sented. The unsteady aerodynamic state space ROM

was then combined with a state space model of the

structure to create an aeroelastic simulation using

the MATLAB/SIMULINK environment. The MAT

LAB/SIMULINK ROM was used to rapidly compute

aeroelastic transients including flutter. The ROM

shows excellent agreement with the aeroelastic analy

ses computed using the CFL3Dv6.0 code directly but

at significantly lower computational costs. The aeroe

lastic state space models generated are then suitable

for use in a rnultidisciplinary, design environment in

cluding computational aeroservoelastieity (ASE).

Appendix

Time Step/F_quency Issues

Successful development of a state space model of an

unsteady aerodynamic system requires an understand

ing of the relationship between the time step used for

the numerical discretization and the frequency con

tent associated with that particular discretization. It

is well known from signal processing theory that the

frequency resolution of a given discretization, AF, is

inversely proportional to the product of the number of

time steps, N, and the discretizing time step, AT, or

1
AF-

N.AT

Standard numerical analysis states that a smaller time

step is more accurate due to a reduction of the error

terms associated with most numerical diseretizations.

A smaller value of frequency resolution is also preferred

so that appropriate frequency domain phenomena can

be captured accurately. This is important, for exam

ple, when an aeroelastic system contains modes that

are closely spaced in frequency. Therefore, a large
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number of time steps is needed to satisfy both of these

requirements.

This observation leads to an important considera

tion when impulse and step responses are generated for

subsequent use in a convolution or state space frame

work. If the time step is reduced (in an effort to reduce

numerical error) while the number of time steps is kept

constant, the frequency resolution is increased. This

increased frequency resolution may lead to inaccurate

representation of frequency content. Therefore, in an

attempt to improve the accuracy of the step or impulse

response, by decreasing the time step (without regard

to the number of time steps), the overall predictive ca

pability of the step or impulse response may in fact be

compromised. Guende119 and Raveh is indicate that

decreasing the time step resulted in decreased predie

rive accuracy of the impulse response. The preceding

observation may explain this counterintuitive and un

expected result.

A small nondimensional time step size (0.001) can

reduce the numerical error, but it places a limit on the

modal amplitude allowed since it affects the discretized

modal velocity. In addition, a small time step requires

a large number of time steps in order to achieve a small

frequency resolution. However, using the subiteration

capability available within the CFL3Dv6 code, larger

time steps can be used while controlling the level of

the numerical error. The ability to safely use larger

time steps provides a significant benefit with respect

to the time/frequency resolution issue. In particular,

the use of a larger nondimensional time step permits

the use of a larger input amplitude (modal velocity)

to excite nonlinear terms. At the same time, a larger

nondimensional time step yields a smaller frequency

resolution for a given number of time steps. Therefore,

the use of a larger nondimensional time step allows

larger input amplitudes and a smaller frequency reso

lution for less time steps than would be required for a

smaller nondimensional time step. This provides valu

able computational efficiency.

A mplitude/Convergence

The subiteration capability must also be used for

controlling the numerical error that is influenced by

the amplitude of the excitation input. Figure 15 is

a comparison of the residual (measure of error) for

two modal step responses with different input ampli

tudes at a Maeh number of 0.9. In the figure, three

regions are presented: Steady Solution, Transient Un

steady Solution, and Final Unsteady Solution. The

Steady Solution consists of the steady state solution

of the Euler equations. The steady state solution is

then used as the starting point for the unsteady solu

tion. The steady state solution does not contain the

time derivative terms needed for the unsteady solu

tion and, as a result, the introduction of the unsteady

terms at the start of the unsteady solution induces the
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Fig. 15 Comparison of the residual errors for two

step responses at different amplitudes.

numerical transient shown in the figure (Transient Un

steady Solution). The step input is therefore delayed

so that the step response will not be contaminated by

the transient at the start of the unsteady solution.

An additional point to be made is that the two

step responses converge to different error levels even

though 10 subiterations per time step are being ap

plied to each solution. The larger amplitude therefore
needs an increased number of subiterations to reduce

its error level to the level of the smaller amplitude re

sponse. Even though the difference in amplitudes is

large for this comparison (two orders of magnitude),

this result emphasizes the importance of tracking the

numerical error as a function of amplitude and apply

ing the subiteration procedure appropriately.

Proper development of a CFD based ROM requires

careful attention to the creation and growth of numer

ical error so that relevant physical characteristics of

a system are not clouded by nonphysical noise. It is

also strongly recommended that linearity tests be per

formed at the conditions of interest. A simple linearity

test consists of applying inputs at various amplitudes

to determine the range of amplitudes over which lin

ear conditions are satisfied. A second linearity test

consists of validating the assumption of modal super

position by comparing the response to an excitation of

all the modes with the sum of the responses for indi

vidual modes. These types of tests were performed for

the present analysis but are not included in the paper.

The point to be made is that, for the conditions at

which analyses were performed, and the range of am

plitudes investigated, the assumption to linearize the

aeroelastie system was validated.
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